

Memo

Aan
Projectmedewerkers PMR VNC

Datum
16 september 2009

Aantal pagina's
12

Van
Loana Arentz

Doorkiesnummer
(088) 33 58 234

E-mail
loana.arentz @deltares.nl

Onderwerp
Getting started with the subversion repository.

The ideas behind a subversion repository in a nutshell
The risk
Multiple parties, multiple data, multiple purposes easily results in a chaotic database. This can
be done better. Currently :

- All collaborating, but not enough
- Coordination needed
- But no overall boss
- Like wikipedia

This is illustrated in Figure 1.

The solution
Optimal is possible with a subversion REPOSITORY (see Figure 2).

Figure 1. The risk: chaos Figure 2. The solution: subversion repository

(image © G.J. de Boer)
The principle:
Subversion repository basics:

1. Get username and password.
2. For best quality, all actions are logged (see example below).
3. nothing can be lost, only temporarily disabled
4. so anyone can be allowed to join

Datum
16 september 2009

Pagina
2/12

Figure 3. The principle (image © G.J. de Boer)

It is important to store all relevant data. Please note that Data = raw data + processing:

For example:
NASA satellite data with open source SeaDas processing toollkit (in IDL)
• L0: dump of recorded voltages, only averaged over 16 pixels

• LAC: MLAC
• GAC
• L1: voltages + satellite track
• L2 ~ physical quantities
• L3 ~ binned in space (1 grid instead of zillions of warped photos)
• L4 ~ binned in time (climatology)

We save all relevant sublevels.

A subversion repository: How does it work?
Deltares stelt een centraal 'repository' (uitwisselplatform en tevens archief) in waarin datasets
voortschrijdend (d.w.z. in versies) kunnen worden beheerd (opgeslagen, benaderd, geupdate).
Dit archief zal voor alle projectpartijen toegankelijk zijn: leesrechten voor de specifieke
afnemers, schrijfrechten alleen voor de relevante partijen binnen het betreffende perceel.
Uploads kunnen plaatsvinden zodra een partij zijn data kan en wil vrijgeven (na afronding van
bepaalde campagne en QA, maar in ieder geval altijd voordat een volgende partij deze
informatie nodig heeft). In de repository kunnen uiteraard naast de data files, ook gehele
databases als werkdocumenten en afgeronde rapporten, wetenschappelijke papers en
Powerpoint files opgeslagen en beheerd worden.

Structure of the repository
Here, we will illustrate the global structure of the repository. The structure was set-up for
modifications in a.o. source code of Delates software. Branches and Tags are specifically
designed for such software developments and have no purpose for data management. We only
work in the trunk.

Datum
16 september 2009

Pagina
3/12

Trunk
The trunk contains the main version of the data. This is where all (short) developments by all
users take place. As we are only dealing with short developments this is where we work

Branches
Separate directory e.g. for code developments. Not used here.

Tags
Also for code developments. Not used here.

Subversion (SVN)
Introduction
SVN is a versioning tool. It can be used for keeping track of the history of practically anything.
We use it a.o. for the data in the project tree. SVN is especially useful when multiple users
work on the same data. SVN makes sure that the modifications made by one person are not
overwritten by those of another person, even when they are modifying at the same time. On a
server machine, a source code repository has been created, which can be accessed by
everyone with an internet connection and admission to the repository.

For PMR NCV the repository is https://repos.deltares.nl/repos/PMR-NCV/

Several clients are available to make use of the SVN. The one most frequently used (at
Deltares, on Windows) is TortoiseSVN. Other SVN clients are also available, especially for use
on UNIX. The remainder of this memo will focus on the use of TortoiseSVN.

Download and installing TortoiseSVN
http://tortoisesvn.net download 32 bit (for most regular desktops).

DEMONSTRATION
Now we will illustrate the use of SVN. We will illustrate this for the use on Windows, using
TortoiseSVN. Be sure to have this installed on your PC.

An example is given on how to edit data in the repository. This can be done directly in the
trunk. Below we shall illustrate the different steps to take and the possibilities SVN offers.

SVN Checkout: creating a local copy of (part of) the repository
First, we must obtain a local copy of the part of the directory, which we want to modify. We
must therefore checkout that part of the trunk of the repository, which we are interested in.
Execute the following steps:

 Create a directory where you want to checkout the source code, e.g. E:\Checkouts\
 In this directory right click and select:

TortoiseSVN -> Checkout
or (when available in the right-click menu):
SVN Checkout

 In the Checkout window:
o Specify the location of the source code in the repository.

For the data-trunk this is:

Datum
16 september 2009

Pagina
4/12

https://repos.deltares.nl/repos/PMR-NCV/trunk/
or on a sublevel:
https://repos.deltares.nl/repos/PMR-NCV/trunk/004 Abiotiek/

o Make sure the Checkout directory is the directory where you want your copy of the
source code

o Make sure the checkout depth is set to Fully recursive
o Determine the revision, which you want to checkout. The HEAD revision is the

newest version available. Using the Show log button you can search for other
(older) revisions.

o Click OK to checkout the source code to your local directory.
 Now you can modify the data. SVN will keep track of your changes locally on your PC.

It stores information in subdirectories named “.svn”.
Please note that the checkout also creates a shadow image locally on your pc. If you
checkout 20Mb, you need 40 Mb of free disk space.

Figure 4 SVN checkout (image © G.J. de Boer)

Demo
This demo is for the “OpenEarthTools” repository.

Step 1:
Not handy to get files one by one with browser; get them all at once with free program (SVN
tortoise)

 Make a checkout in e.g. E:\checkouts\
 No need to back this up, it’s only a copy ...

Datum
16 september 2009

Pagina
5/12

(image © G.J. de Boer)

Step 2:

 Copy url from browser (case sensitive!)
 Make sure that tree of local copy resembles server

(image © G.J. de Boer)

Making adjustments in the checkout: editing the data
Important: modifying file or directory names requires special attention, see SVN rename. So
does adding or removing files, see SVN Add/SVN delete.

Datum
16 september 2009

Pagina
6/12

SVN rename
This is done by right-clicking the file and selecting:
TortoiseSVN -> Rename
SVN rename is different from a simple rename. It makes sure that SVN sees the old file (with a
different name) as the predecessor of the new file (with the new name). It makes sure that with
the next commit, the file is also renamed in the repository, such that when other users of the
repository checkout the source code or update their local copy, the same file is also renamed
in their version of the source code.
Simply renaming files causes SVN to loose track of the history of that file. If a file is renamed
(not using SVN rename) SVN will think it is missing.

SVN add
This is done by right-clicking in the containing directory and selecting:
TortoiseSVN -> Add
Using SVN add you can add new files to the repository. The same holds here as for the SVN
rename command. Simply adding a file in a certain directory will not do the trick. You must tell
SVN that there is a new file for which it will have to keep track of its history. This is done using
SVN add. The file will get a ‘+’ as Icon overlay (see Section Settings).

SVN delete
This is done by right-clicking in the containing directory and selecting:
TortoiseSVN -> Delete
For the SVN delete command the same restrictions hold as for SVN rename and SVN add.
Simply deleting a file will not be enough for SVN. It will think the file is missing and put it back
the next time you update. With an SVN delete you actually tell SVN to delete the file from its
repository. Its history will be kept, but from this revision on the file will no longer be included in
the source.
With an SVN delete the file will get an ‘x’ as Icon overlay (see Section Settings).

Repo-browser
This is done by right-clicking in the containing directory and selecting:
TortoiseSVN -> Repo-browser
The Repo-browser (Repository Browser) allows you to quickly browse through the repository.
You can view the history (log) of the trunk and branches, you can search for certain revision
numbers (top right) and you can checkout from the repository browser (by right-clicking).

Show log
This is done by right-clicking in the containing directory and selecting:
TortoiseSVN -> Show log
The log shows you the history of the source code. You can see which files have been modified,
when the modifications were done, by whom and you can view possible comments that were
added with the commit of that revision.

Datum
16 september 2009

Pagina
7/12

Comparing your local copy with the repository
Using SVN diff or Check for modifications you can investigate the status of your local copy, i.e.
which files did you modify? Did you add/delete files? Are there any files, which have been
modified in the repository (by other people) with respect to your local copy?

SVN Update
Using SVN update you can merge the HEAD revision of the repository into your local copy.
Always perform an SVN Update before committing your changes. Updating is done as follows:

 In the directory where you have your local copy of the source code, which you wish to
update, right click and select:
o TortoiseSVN -> Update

Or (when available in the right-click menu):
SVN Update

o SVN will now search all files (recursively down from the directory where you are) in
the repository that have been changed with respect to your local version.

o SVN will merge these changes into the local version.
o SVN will also detect whether one of the files you have edited, has also been edited

by someone else. SVN will try to merge the changes. If SVN does not succeed, it
will report a conflict that you have to resolve. See Resolving possible conflicts.

Figure 5 SVN update (image © G.J. de Boer)

Datum
16 september 2009

Pagina
8/12

Demo
This demo is for the “OpenEarthTools” repository.

(image © G.J. de Boer)

Result of the update:

(image © G.J. de Boer)

Datum
16 september 2009

Pagina
9/12

Every file is logged …

(image © G.J. de Boer)

…. and every line is logged

(image © G.J. de Boer)

SVN Commit
Using SVN commit you can feed your modifications to the repository on the server. After a
Commit, your modifications are available to everyone using the same repository. Be sure to
always do an update before committing. This will avoid conflicts when SVN tries to merge your
local copy with the repository version. Committing is done as follows:

 In the directory where you have the modified source code you wish to feed to the
repository, right click and select:
o TortoiseSVN -> Commit

Or (when available in the right-click menu):
SVN Commit

o SVN will now search all files (recursively down from the directory where you are) in
the local version that you have changed and show them in a pop-up window. With
check boxes, you can decide what changes have to be committed.

o You can add a message (please try to add a message always)
o When clicking OK, SVN sends your changes to the repository on the server

machine and merges them.

Figure 6 SVN commit (image © G.J. de Boer)

Datum
16 september 2009

Pagina
10/12

Users ‘commit’ their files in one central database (regular update local copy). Every commit
gets a unique revision number. Per commit one can add a comment to indicate what was
changed. Please do add a line to describe what you did.

Figure 7 SVN commit: LOGGING (image © G.J. de Boer)

For every code line is it know who, when and under which revision number is was changed.
Colors indicate the age of the code (more blue = older). Every change can be rolled back later
on.

Datum
16 september 2009

Pagina
11/12

Figure 8 SVN commit: BLAMING (image © G.J. de Boer)

Resolving possible conflicts
When updating your source code or when committing to the repository, SVN will try to merge
your local copy with its own version in the repository. Sometimes, when files have been edited
by two different people in the same parts, SVN can not perform the merge. It will then yield
conflicts. These must be resolved by hand. When finished resolving them, mark the related
files as resolved via right click and select: TortoiseSVN -> Resolved.

Settings
When modifying a large number of files it can become difficult to keep an overview of which
files you have edited. SVN has kept track of your modifications. Using Icon overlays you can
easily detect which files have been modified, added, deleted or are in a conflicting state. The
Icon overlays can be switched on as follows. In any directory, e.g. where you have your source
code:

Right click and select TortoiseSVN -> Settings

In the Settings menu, select Icon overlays and make sure the checkbox Show overlays and
context menu only in explorer is NOT checked (if you wish to see the overlays also in Total
Commander).
Using Exclude paths and Include paths you can specify respectively which drives or directories
SVN should not check or check explicitly. So if you do not want SVN to check your C: drive
then write C: in the Exclude paths. If you however do want SVN to check the directory
C:\source, then include C:\source in the Include paths.

Datum
16 september 2009

Pagina
12/12

Figure 9 SVN example of icon overlays (image © G.J. de Boer)

TIPS

1. Maak checkout van alleen die subdirectories waar je iets mee doet (dus voor de
meesten van ons niet op rootniveau in de directory-boom).

2. Het is belangrijk aanpassingen in checkout middels SVN Rename, SVN Add and SVN
Delete uit te voeren.

3. Voer voor een commit altijd een update uit, zodat je aan kan vinken welke
aanpassingen je wil committen naar de repository.

4. It is important to commit your changes as often as possible (only the relevant stuff).

