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Agenda 

13:30  Introduction – Scope of the seminar 

13:45  Part I: Improvements with minimal effort 

14:30  Break 

14:50  Part II: High level parallel programming 

15:40  Break 

16:00  Part III: Specialized solutions 

16:50  Wrap up 

17:00  Drinks 
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What is MATLAB? 

Reporting and 

Documentation 

Outputs for Design 

Deployment 

Share 

 
Files 

Software 

Hardware 

Access 

 

Code & Applications 

Explore & Discover 

 

Data Analysis  

& Modeling 

Algorithm  

Development 

Application  

Development 
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Why do some of our customers want to speed 

up their MATLAB applications?  

 

 “Our stepwise regression takes approx. 5 minutes per step 

for up to 100 steps and we have to make a decision after 

each step. This process takes one day and we need this to 

go down to 15 minutes!” 
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Why do some of our customers want to speed 

up their MATLAB applications?  

 

“We need to run our credit portfolio for 2000 clients, and with 

1 million simulation paths each, within 5 days! This would 

require 20x speed improvement!”  
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Time means different things to different 

people 
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Why do you want to speed up your MATLAB 

applications?  
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Agenda 

13:30  Introduction 

13:45  Part I: Improvements with minimal effort 

14:30  Break 

14:50  Part II: High level parallel programming 

15:50  Break 

16:10  Part III: Specialized solutions 

16:50  Wrap up 

17:00  Drinks 
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Three Key Takeaways 

 1. If you understand where to put your effort, writing fast 

and efficient code becomes easy 

 

 2. You can make the most of your hardware without 

becoming a programming guru 

 

 3. If your desktop isn‟t enough, you can easily upscale 

to use GPUs or computer clusters 
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How can you speed up your MATLAB programs? 

 

Specialized 
solutions 

High level parallel 
programming 

Understanding 
MATLAB improves 

efficiency 

Speed 

E
ff

o
rt
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An overview of hardware solutions 

 More processing power 

– Faster processors 

– Dedicated hardware 

– More processors 

 More memory 

– 32 bit operating systems (4 GB of address space) 

– 64 bit operating systems (16,000 GB of address space) 

Multi-core Multiprocessor Cluster 
Grid, 

Cloud 

GPGPU, 

FPGA 

Single  

Processor 
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Software solutions for all hardware 

 MATLAB 

 

 Parallel Computing Toolbox 

 

 MATLAB Distributed Computing Server (MDCS) 

GPU  

Computing 

Multithreaded Parallel  

Computing  
Distributed Computing  

MATLAB 
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Agenda 

13:30  Introduction 

13:45  Part I: Improvements with minimal effort 

14:30  Break 

14:50  Part II: High level parallel programming 

15:50  Break 

16:10  Part III: Specialized solutions 

16:50  Wrap up 

17:00  Drinks 
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Improvements with minimal effort 

 Multithreading capabilities in MATLAB 

 MATLAB data storage model 

 Finding bottlenecks 

 Techniques for improving performance 
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MATLAB Multithreaded: new releases are faster 

 No code changes required 

 Enabled at MATLAB start-up 

 Vector math improved  

– Linear Algebra operations 

– Element-wise operations 

 

Linear Algebra Element-wise 
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MATLAB Underlying Technologies 

 Commercial libraries 

– BLAS: Basic Linear Algebra 

 Subroutines (multithreaded) 

– LAPACK: Linear Algebra Package 

– etc. 

 

 JIT/Accelerator 

– Improves looping 

– Generates on-the-fly multithreaded code 

– Continually improving 
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Improvements with minimal effort 

 Multithreading capabilities in MATLAB 

 MATLAB data storage model 

 Finding bottlenecks 

 Techniques for improving performance 
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Understand how MATLAB uses memory 

 Prevent slow execution/out of memory errors 

– Understand the constraints 

– Identify bottlenecks 

 Find the best tradeoff between programming effort and 

achieving your goals 
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What is the largest array you can create in 

MATLAB on 32 bit Windows XP? 
Understand the Constraints … 

 

a) 0.5 GB 

b) 1.0 GB 

c) 1.5 GB 

d) 2.0 GB 

e) 2.5 GB 

Memory Addresses 

Operating System 

Process 
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Memory Allocation for Dynamic Arrays 

>> x = 4 

>> x(2) = 7 

>> x(3) = 12 

 

0x000
0 0x000
8 0x001
0 0x001
8 0x002
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0 0x003
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0 0x001
8 0x002
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8 0x003
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7 

4 

7 

4 

7 

12 

X(3) = 12 X(2) = 7 
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Reduce Memory Operations 

>> x = zeros(3,1) 

>> x(1) = 4 

>> x(2) = 7 

>> x(3) = 12 
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Contiguous memory and copy on write 

>> x    = rand(100,1) 

>> x    = 2*x 

>> y    = x 

>> y(1) = 0 

 

 Do not grow arrays within loops! 

 MATLAB handles memory 

    efficiently 

 

 

x = rand(100,1) 

x = 2*x 

y = x 

Allocated 

y = [ 0, x(2:end)] 
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Use the best way to store your data 

 Numeric arrays 

– Basic matrix; contains only numbers 

– Use sparse where appropriate 

 Cell arrays 

– Can contain a mix of different datatypes 

– Very good for storing string arrays 

 Structures 

– Can contain a mix of different datatypes 

– Make your code more readable 
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Use only the precision you need 

 Numerical data types 

– Float: double and single precision (8 and 4 bytes) 

– Integer: signed and unsigned (1-4 bytes) 

– Logical: 0 or 1 only (1 byte) 

 Floating point for math (e.g. linear algebra) 

 Integers where appropriate (e.g. images) 
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Variable header: 112 bytes* 

Be aware of container overhead 

Numeric Array 

Data: 8 bytes 

Total Used: 120 

Cell Array 

Element header: 112 bytes* 

Field name: 64 bytes 

Structure 

Total Reported:    8 

232 

120 

296 

184 

Data: 8 bytes 

2nd header: 112 bytes* 

Field name: 64 bytes 

+ 120 = 352 

+ 120 = 240 

+ 184 = 480 

+ 184 = 368 + 8 = 16 

+ 8 = 128 

*On a 64-bit system 
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Plotting data 

 How much memory is needed to plot a 10 MB double array? 

>> x = sin(1:125e4); 

>> plot(x); 

 

a)   0 MB 

b) 10 MB 

c) 20 MB 

d) 30 MB 

e) 40 MB 
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Plot only what you need 

 Every plot independently stores x and y data 

>> x = sin(1:125e4); %10MB 

>> plot(x)         ; %20MB for x and y data 

 

 Integers plotted as doubles 

 Strategies: 

– Downsample your data prior to plotting (e.g. every 10th element) 

– Divide your data into regular intervals and plot values of interest (e.g. 

open and close for stock prices, or min/max values) 



29 

Load only the data you need  

 ASCII file: textscan 

– Selectively choose columns to load or ignore 

– Selectively choose rows to load (i.e. block processing) 

 

 Binary file: memmapfile 

– Read and write directly to/from file on disk 

– Overlay address space directly onto file 

– MATLAB dynamically shifts address space to handle larger files 

 e.g. >1.5 GB files on 32 bit Windows can be accessed 
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Improvements with minimal effort 

 Multithreading capabilities in MATLAB 

 MATLAB data storage model 

 Finding bottlenecks 

 Techniques for improving performance 
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Example: fitting data 

 Load data from multiple files 

 Extract a specific test 

 Fit a spline to the data 

 Write results to Microsoft Excel 
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Summary of example 

 Used profiler to analyze code 

 Targeted significant bottlenecks 

 Reduced file I/O 
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Classes of bottlenecks 

 File I/O 

– Disk is slow compared to RAM 

– When possible, use load and save commands 

 Displaying output 

– Creating new figures is expensive 

– Writing to command window is slow 

 Computationally intensive 

– Trade-off modularization, readability and performance 

– Integrate other languages or additional hardware 

 E.g. MEX, GPU / CUDA, FPGAs… 
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Improvements without programming effort 

 Multithreading capabilities in MATLAB 

 MATLAB data storage model 

 Finding bottlenecks 

 Techniques for improving performance 
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Techniques for improving performance 

 Vectorization 

– Take full advantage of BLAS and LAPACK  

– Brute force: cellfun, structfun, arrayfun … 

 Preallocation 

– Minimize changing variable class 

 Mexing (compiled code) 
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Improvements with minimal effort 

MATLAB helps you to take advantage of your hardware 

 

 Use the latest release to take advantage of the latest 

improvements in hardware 

 Use the profiler to identify bottlenecks 

 Write efficient code 
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Three Key Takeaways 

 1. If you understand where to put your effort, writing fast 

and efficient code becomes easy 

 

 2. You can make the most of your hardware without 

becoming a programming guru 

 

 3. If your desktop isn‟t enough, you can easily upscale 

to use GPUs or computer clusters 
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Agenda 

13:30  Introduction 

13:45  Part I: Improvements with minimal effort 

14:30  Break 

14:50  Part II: High level parallel programming 

15:50  Break 

16:10  Part III: Specialized solutions 

16:50  Wrap up 

17:00  Drinks 
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High level parallel programming 

 Support of parallel computing built into toolboxes 

 Task distribution 

 Data distribution 

 Interactive to scheduled 
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Example: optimizing tower placement 

 Determine location of cell towers 

 Maximize coverage 

 Minimize overlap 
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Summary of example 

 Enabled built-in support for 

Parallel Computing Toolbox 

in Optimization Toolbox 

 Used a pool of MATLAB workers 

 Optimized in parallel using fmincon 
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Programming parallel applications 

Level of control 

Minimal 

Some 

Extensive 

Required effort 

None 

Straightforward 

Involved 
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Programming parallel applications 

Level of control 

Minimal 

Some 

Extensive 

Required effort 

Built-in into 

Toolboxes 

Straightforward 

Involved 
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Parallel support in Optimization Toolbox  

 

 Functions:   

– fmincon 

 Finds a constrained minimum of a function of several variables 

– fminimax 

 Finds a minimax solution of a function of several variables 

– fgoalattain 

 Solves the multiobjective goal attainment optimization problem 

 

 Functions can take finite differences in parallel 

in order to speed the estimation of gradients 
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Toolboxes with built-in support 
Contain functions to directly leverage the Parallel Computing Toolbox 

 
 Optimization Toolbox 

 Global Optimization Toolbox 

 Statistics Toolbox 

 SystemTest 

 Simulink Design Optimization 

 Bioinformatics Toolbox 

 Model-Based Calibration Toolbox 

 Communications System Toolbox 

Worker 

Worker 

Worker 

Worker Worker 

Worker 

Worker TOOLBOXES 

BLOCKSETS 
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High level parallel programming 

 Support of parallel computing built into toolboxes 

 Task distribution 

 Data distribution 

 Interactive to scheduled 
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Programming parallel applications 

Level of control 

Minimal 

Some 

Extensive 

Required effort 

None 

Straightforward 

Involved 
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Programming parallel applications 

Level of control 

Minimal 

Some 

Extensive 

Required effort 

Built-in into 

Toolboxes 

High Level Programming 

(parfor) 

Involved 
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Example: parameter sweep of ODEs 

 Solve a 2nd order ODE 

 

 

 

 Simulate with different 

values for b and k 

 Record peak value for each run 

 Plot results 
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Summary of example 

 Mixed task-parallel and serial 

code in the same function 

 Ran loops on a pool of 

MATLAB resources 

 Used MATLAB Code Analyzer to 
help converting existing for-loop 

into parfor-loop 

0 5 10 15 20 25
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

D
is

p
la

ce
m

e
n
t 

(x
)

m = 5, b = 2, k = 2

m = 5, b = 5, k = 5

0

2

4

6 1
2

3
4

5

0.5

1

1.5

2

2.5

Stiffness (k)
Damping (b)

P
e

a
k
 D

is
p

la
c
e

m
e

n
t 
(x

)



51 

Parallel tasks 

Time Time 

Task 1 Task 2 Task 3 Task 4 Task 1 Task 2 Task 3 Task 4 

TOOLBOXES 

BLOCKSETS 

Worker 

Worker 

Worker 

Worker 
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The mechanics of parfor loops 

Pool of MATLAB Workers 

 

a = zeros(10, 1) 

parfor i = 1:10  

 a(i) = i; 

end 

a 

a(i) = i; 

a(i) = i; 

a(i) = i; 

a(i) = i; 

Worker 

Worker 

Worker Worker 

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 
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Converting for to parfor  

 Requirement for parfor loops  

– Order independent 

 Constraints on the loop body 

– Cannot “introduce” variables (e.g. eval, load, global, etc.) 

– Cannot contain break or return statements 

– Cannot contain another parfor loop 

– Use MATLAB Code Analyzer to resolve issues 

 parfor will run serially if no workers are available 
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Advice for converting for to parfor  

 Use Code Analyzer to diagnose parfor issues  

 If your for loop cannot be converted to a parfor, 

consider wrapping a subset of the body to a function 

 Classification (slicing) of variables 

 http://blogs.mathworks.com/loren/2009/10/02/using-

parfor-loops-getting-up-and-running/ 

 

http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
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Some notes on Simultaneous Multi-Threading 
(hyperthreading) 

 SMT provides your operating system with 2 logical 

cores for each physical core 

 Computational  

    capability is not 

    increased 
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High level parallel programming 

 Support of parallel computing built into toolboxes 

 Task distribution 

 Data distribution 

 Interactive to scheduled 
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Programming parallel applications 

Level of control 

Minimal 

Some 

Extensive 

Required effort 

None 

Straightforward 

Involved 
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Programming parallel applications 

Level of control 

Minimal 

Some 

Extensive 

Required effort 

Built-in into 

Toolboxes 

High Level Programming 

(distributed, spmd) 

Involved 
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Parallel data distribution 
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Advice for distributing data 

 Prototype locally before going to a cluster 

– But the data transfer might be not significant 

 Use a scalable approach 

– Do not hard code the number of workers 

 Take care of path and data dependencies 
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High level parallel programming 

 Support of parallel computing built into toolboxes 

 Task distribution 

 Data distribution 

 Interactive to scheduled 
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Interactive to scheduled 

 Interactive 

– Great for prototyping  

– Immediate access to MATLAB workers  

 Scheduled 

– Offloads work to other MATLAB workers (local or on a cluster) 

– Frees up local MATLAB session 
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Scheduling work 

TOOLBOXES 

BLOCKSETS 

Scheduler 

Work 

Result 

Worker 

Worker 

Worker 

Worker 
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Example: schedule processing 

 Offload parameter sweep 

to local workers  

 Get peak value results when 

processing is complete 

 Plot results in local MATLAB 
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Summary of example 

 Used batch for off-loading work 

 Used matlabpool option to 

off-load and run in parallel 

 Used load to retrieve 

worker‟s workspace 
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High level parallel programming: takeaways 

 Support for parallel computing is built into toolboxes 

 Exploit data & task parallelism 

 Offload your computations by scheduling 
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Three Key Takeaways 

 1. If you understand where to put your effort, writing fast 

and efficient code becomes easy 

 

 2. You can make the most of your hardware without 

becoming a programming guru 

 

 3. If your desktop isn‟t enough, you can easily upscale 

to use GPUs or computer clusters 
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Agenda 

13:30  Introduction 

13:45  Part I: Improvements without programming effort 

14:30  Break 

14:50  Part II: High level parallel programming 

15:50  Break 

16:10  Part III: Specialized solutions 

16:50  Wrap up 

17:00  Drinks 
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Specialized solutions 

 Programming distributed jobs 

 Up-scaling to a cluster 

 GPU Computing 

 Handling arbitrarily large datasets 
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Programming parallel applications 

Level of control 

Minimal 

Some 

Extensive 

Required effort 

None 

Straightforward 

Involved 
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Programming parallel applications 

Level of control 

Minimal 

Some 

Extensive 

Required effort 

Built-in into 

Toolboxes 

High Level Programming 

(parfor, spmd) 

Low-Level 

Programming Constructs: 
(e.g. Jobs/Tasks, MPI-based) 
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Task-parallel workflows 

 parfor 

– Multiple independent iterations 

– Easy to combine serial and parallel code 

– Workflow 

 Interactive using matlabpool 

 Scheduled using batch 

 

 jobs/tasks 

– Series of independent tasks; not necessarily iterations 

– Workflow    Always scheduled 
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Example: scheduling independent simulations 

 Offload three independent 

approaches to solving our 

previous ODE example 

 Retrieve simulated displacement 

as a function of time for 

each simulation 

 Plot comparison of results 

in local MATLAB 
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Summary of example 

 Used parcluster to find scheduler 

 Used createJob and createTask  

to set up the problem 

 Used submit to off-load and 

run in parallel 

 Used fetchOutputs 

to retrieve all task outputs 0 5 10 15 20 25
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MPI-Based functions for higher control 

 High-level abstractions of MPI functions 

– Send, receive, and broadcast any data type in MATLAB: 

    labSendReceive, labBroadcast, and others 

 Automatic bookkeeping 

– Setup: communication, ranks, etc. 

– Error detection: deadlocks and miscommunications 

 Pluggable  

– Use any MPI implementation that is binary-compatible with MPICH2 
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Specialized solutions 

 Programming distributed jobs 

 Up-scaling to a cluster 

 GPU Computing 

 Handling arbitrarily large datasets 
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Run 12 local workers on desktop 

 

 Rapidly develop parallel 

applications on local computer 

 Take full advantage of 

desktop power 

 Separate computer cluster 

not required 

Desktop Computer 

Parallel Computing Toolbox 
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Scale up to clusters, grids and clouds 

Desktop Computer 

Parallel Computing Toolbox 

Computer Cluster 

MATLAB Distributed Computing Server 

Scheduler 
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Setting up your cluster client 

 Get a profile file from your cluster admin 

 

 Use the menu or 

parallel.importprofile(„myclusterprofile‟) to get the profile 

installed on your computer 

 



80 

Open API for others 

Support for schedulers 

Direct Support 

TORQUE 

http://www.microsoft.com/hpc/en/us/default.aspx
http://www.univa.com/
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Specialized solutions 

 Programming distributed jobs 

 Up-scaling to a cluster 

 GPU Computing 

 Handling arbitrarily large datasets 
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Using MATLAB with dedicated hardware 

 Use DSPs for real-time execution 

 On target automatic C code generation 

 Deploy on FPGAs 

 Synthesizable automatic HDL code generation 

 Use multi-core and multiprocessor computers 

 Multithreaded parallel computing 

 Distribute on a cluster 

 Distributed computing  

 Use GP-GPUs  ◄ 
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Why GPUs now? 

 GPUs are a commodity 

 Massively parallel architecture that can speed up 

intensive computations 

 GPU are more generically programmable 
 

From 3D gaming to scientific computing 
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Speeding up MATLAB using GPUs 

 MATLAB users can easily benefit from GPUs 

 Support all users from beginners to experts 

? 
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Programming GPU applications 

Level of control 

Minimal 

Some 

Extensive 

Required effort 

Minimal 

Straightforward 

Involved 
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Programming GPU applications 

Level of control 

Minimal 

Some 

Extensive 

Required effort 

Built-in functions 

Straightforward 

Involved 
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Invoke built-in MATLAB functions on the GPU 

 Accelerate standard (highly parallel) functions  

– More than 100 MATLAB functions are already supported 

 Out of the box: 

– No additional effort for programming the GPU 

 No accuracy for speed trade-off 

– Double precision floating-point computations 
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 Without the GPU: Define an array 

 A = rand(1000,1); 

 B = rand(1000,1); 

 Execute a built-in MATLAB function: 

 Y = B\A; 

 

Invoke built-in MATLAB functions on the GPU 
(1) Minimal effort, minimal level of control 
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 Define an array on the GPU 

 A = rand(1000,1); 

 B = rand(1000,1); 

 A_gpu = gpuArray(A); 

 B_gpu = gpuArray(B); 

 Execute a built-in MATLAB function: 

 Y_gpu = B_gpu\A_gpu; 

 Retrieve data from the GPU 

 Y = gather(Y_gpu); 

 

Invoke built-in MATLAB functions on the GPU 
(1) Minimal effort, minimal level of control 
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Benchmarking A\b on the GPU 
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Programming GPU applications 

Level of control 

Minimal 

Some 

Extensive 

Required effort 

Built-in functions 

Scalar functions on 

array data 

Involved 
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Run MATLAB scalar functions on the GPU 

 Accelerate scalar operations on large arrays  

– Take full advantage on data parallelism 

 Out of the box: 

– No additional effort for programming the GPU 

 No accuracy for speed trade-off 

– Double precision floating-point computations 
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 MATLAB function that perform element-wise arithmetic 

 function y = TaylorFun(x) 

y = 1 + x.*(1 + x.*(1 + x.*(1 + ... 

x.*(1 + x.*(1 + x.*(1 + x.*(1 + ... 

x.*(1 + ./9)./8)./7)./6)./5)./4)./3)./2); 

 Load data on the GPU 

 A = rand(1000,1); 

 A_gpu = gpuArray(A); 

 Execute the function as GPU kernels 

 result = arrayfun(@TaylorFun, A_gpu); 

Run MATLAB scalar functions on the GPU 
(2) Straightforward effort, regular level of control 
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Benchmarking scalar operations on the GPU 
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Programming GPU applications 

Level of control 

Minimal 

Some 

Extensive 

Required effort 

Built-in functions 

Scalar functions on 

array data 

Directly invoke 

CUDA code 
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Directly invoke CUDA code from MATLAB 

 Benefit from legacy code highly optimized for speed 

– Achieve all the speed improvement that CUDA can deliver 

 Use MATLAB as a test environment 

– Generation of test signal 

– Post-processing of results 

 Suitable also for non-experts 
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 Compile CUDA (or PTX) code on the GPU 
nvcc -ptx myconv.cu  

 Construct the kernel 
k = parallel.gpu.CUDAKernel('myconv.ptx',           

   'myconv.cu'); 

k.GridSize        = [512 512]; 

k.ThreadBlockSize = [32 32]; 

 Run the kernel using the MATLAB workspace 
o = feval(k, rand(100, 1), rand(100, 1)); 

or gpu data 

i1gpu = gpuArray(rand(100, 1, 'single'));  

i2gpu = gpuArray(rand(100, 1, 'single'));  

ogpu = feval(k, i1gpu, i2gpu); 

Invoke CUDA code from MATLAB 
(3) Involved effort, extensive level of control 
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Speeding up applications with GPUs  

 Different achievable speedups depending on: 

– Hardware 

– Type of application  

– Programmer skills 

Source: NVIDIA 
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Applications that will run faster on GPUs 

 Massively parallel tasks 

 Computationally intensive tasks 

 Tasks that have limited kernel size 

 Tasks that do not necessarily require  

 double accuracy  

 

 

 

All these requirements need to be satisfied! 

 

& 
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Can I use it now? 

 Use the latest release! 

 GPU support is part of Parallel Computing Toolbox 

 NVIDIA CUDA capable GPUs  

– With CUDA version 1.3 or greater 
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Speeding up MATLAB using GPUs 
A stepping stone to accommodate a technology trend 

 MATLAB users can easily benefit from GPUs 

 Support all users from beginners to experts: 

1. Built-in functions 

2. Define your kernel 

3. Directly invoke CUDA 

Early 

Adopter 

Experienced 

User 
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Specialized solutions 

 Programming distributed jobs 

 Up-scaling to a cluster 

 GPU Computing 

 Handling arbitrarily large datasets 
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Handling arbitrarily large datasets 

 Large data (GigaBytes) 

– Use 64 bit operating system 

– Install extra RAM 

– Use SPMD to work on a cluster 

 Arbitrarily large data (TeraBytes) 

– Use System Objects for streaming data 

– Use Database Toolbox, NetCDF and OpenDAP support to 

connect directly to databases 

– Develop a database component using our Compiler and Builder 

JA products 
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Specialized Solutions: takeaways 

 Low level parallel programming for achieving total 

control on the execution 

 Exploit the full capacity of a cluster, without code 

changes 

 GPU computing also for  

   non-experts 

 Handle any amount of  

    data 
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Three Key Takeaways 

 1. If you understand where to put your effort, writing fast 

and efficient code becomes easy 

 

 2. You can make the most of your hardware without 

becoming a programming guru 

 

 3. If your desktop isn‟t enough, you can easily upscale 

to use GPUs or computer clusters 
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Conclusions 
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Earth’s topography on an equidistant cylindrical projection, using the MATLAB Mapping Toolbox 

The MathWorks Mission 
Accelerating the pace of engineering and science  

 2400 employees  

 900+ software developers 

 Benelux-office in Eindhoven 

 >1 mio users worldwide 
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Key Industries 

 Aerospace and defense 

 Automotive 

 Biotech and pharmaceutical 

 Communications 

 Education 

 Electronics and semiconductors 

 Energy production 

 Financial services 

 Industrial automation and 

machinery 
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Deeply Rooted in Education  

Benefits for Industry:  

 Every year, tens of thousands of engineers enter the workforce with 

MathWorks product skills and experience. 

 Students learn theory and techniques while using MATLAB and Simulink. 

 3500+ universities around the world 

 1200+ MATLAB and Simulink based books 

 Academic support for research, fellowships, 
student competitions, and curriculum 
development 

“Everyone that comes in as a new 

hire already knows MATLAB, 

because they all had it in 

college. The learning curve is 

significantly lessened as a result.” 

Jeff Corn,  

Chief of Engineering Projects Section, 

U.S. Air Force 



110 

 MATLAB Fundamentals (3 days)  May 1-3 

 

 Parallel Computing with MATLAB  Nov 22-23 

 

 MATLAB Programming Techniques  June 5  
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MATLAB Central 

 Community for MATLAB and Simulink 

users 

 Over 1 million visits per month 

 File Exchange 

– Upload/download access to free files  

including MATLAB code, Simulink models,  

and documents 

– Ability to rate files, comment, and ask questions 

– More than 12,500 contributed files, 300 

submissions per month, 50,000 downloads  

per month 

 Newsgroup 

– Web forum for technical discussions about 

MathWorks products 

– More than 300 posts per day 

 Blogs 
– Commentary from engineers who design, build, 

and support MathWorks products 

– Open conversation at blogs.mathworks.com 

Based on February 2011 data 

http://blogs.mathworks.com/
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Free on-demand Webinars: a useful resource 
www.mathworks.nl/webinars  

Parallel Computing with MATLAB on Multicore Desktops and GPUs 45:12 

 

Speeding Up MATLAB Applications 53:38 

 

Speeding Up Optimization Problems Using Parallel Computing 55:41 

http://www.mathworks.nl/webinars
http://www.mathworks.com/wbnr56334
http://www.mathworks.com/wbnr49643
http://www.mathworks.com/wbnr50746
http://www.mathworks.com/wbnr50746
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Next Steps… 

 Questions: Contact any of us after the seminar 

 

 For more information: look at www.mathworks.nl 

 

 To start evaluating MATLAB in your company: 

Rob.Heijmans@mathworks.nl   

 

 
 

 

http://www.mathworks.nl/
mailto:Rob.Heijmans@mathworks.nl
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