
1 © 2012 The MathWorks, Inc.

Speeding up MATLAB and

Handling Large Data Sets

Mathijs Faase

Rob Heijmans

Zoetermeer - 26th April 2012

2

Agenda

13:30 Introduction – Scope of the seminar

13:45 Part I: Improvements with minimal effort

14:30 Break

14:50 Part II: High level parallel programming

15:40 Break

16:00 Part III: Specialized solutions

16:50 Wrap up

17:00 Drinks

3

What is MATLAB?

Reporting and

Documentation

Outputs for Design

Deployment

Share

Files

Software

Hardware

Access

Code & Applications

Explore & Discover

Data Analysis

& Modeling

Algorithm

Development

Application

Development

4

Why do some of our customers want to speed

up their MATLAB applications?

 “Our stepwise regression takes approx. 5 minutes per step

for up to 100 steps and we have to make a decision after

each step. This process takes one day and we need this to

go down to 15 minutes!”

5

Why do some of our customers want to speed

up their MATLAB applications?

“We need to run our credit portfolio for 2000 clients, and with

1 million simulation paths each, within 5 days! This would

require 20x speed improvement!”

6

Time means different things to different

people

7

Why do you want to speed up your MATLAB

applications?

8

Agenda

13:30 Introduction

13:45 Part I: Improvements with minimal effort

14:30 Break

14:50 Part II: High level parallel programming

15:50 Break

16:10 Part III: Specialized solutions

16:50 Wrap up

17:00 Drinks

9

Three Key Takeaways

 1. If you understand where to put your effort, writing fast

and efficient code becomes easy

 2. You can make the most of your hardware without

becoming a programming guru

 3. If your desktop isn‟t enough, you can easily upscale

to use GPUs or computer clusters

10

How can you speed up your MATLAB programs?

Specialized
solutions

High level parallel
programming

Understanding
MATLAB improves

efficiency

Speed

E
ff

o
rt

11

An overview of hardware solutions

 More processing power

– Faster processors

– Dedicated hardware

– More processors

 More memory

– 32 bit operating systems (4 GB of address space)

– 64 bit operating systems (16,000 GB of address space)

Multi-core Multiprocessor Cluster
Grid,

Cloud

GPGPU,

FPGA

Single

Processor

12

Software solutions for all hardware

 MATLAB

 Parallel Computing Toolbox

 MATLAB Distributed Computing Server (MDCS)

GPU

Computing

Multithreaded Parallel

Computing
Distributed Computing

MATLAB

13

Agenda

13:30 Introduction

13:45 Part I: Improvements with minimal effort

14:30 Break

14:50 Part II: High level parallel programming

15:50 Break

16:10 Part III: Specialized solutions

16:50 Wrap up

17:00 Drinks

14

Improvements with minimal effort

 Multithreading capabilities in MATLAB

 MATLAB data storage model

 Finding bottlenecks

 Techniques for improving performance

15

MATLAB Multithreaded: new releases are faster

 No code changes required

 Enabled at MATLAB start-up

 Vector math improved

– Linear Algebra operations

– Element-wise operations

Linear Algebra Element-wise

16

MATLAB Underlying Technologies

 Commercial libraries

– BLAS: Basic Linear Algebra

 Subroutines (multithreaded)

– LAPACK: Linear Algebra Package

– etc.

 JIT/Accelerator

– Improves looping

– Generates on-the-fly multithreaded code

– Continually improving

17

Improvements with minimal effort

 Multithreading capabilities in MATLAB

 MATLAB data storage model

 Finding bottlenecks

 Techniques for improving performance

18

Understand how MATLAB uses memory

 Prevent slow execution/out of memory errors

– Understand the constraints

– Identify bottlenecks

 Find the best tradeoff between programming effort and

achieving your goals

20

What is the largest array you can create in

MATLAB on 32 bit Windows XP?
Understand the Constraints …

a) 0.5 GB

b) 1.0 GB

c) 1.5 GB

d) 2.0 GB

e) 2.5 GB

Memory Addresses

Operating System

Process

21

Memory Allocation for Dynamic Arrays

>> x = 4

>> x(2) = 7

>> x(3) = 12

0x000
0 0x000
8 0x001
0 0x001
8 0x002
0 0x002
8 0x003
0 0x003
8

0x000
0 0x000
8 0x001
0 0x001
8 0x002
0 0x002
8 0x003
0 0x003
8

0x000
0 0x000
8 0x001
0 0x001
8 0x002
0 0x002
8 0x003
0 0x003
8

4 4

4

7

4

7

4

7

12

X(3) = 12 X(2) = 7

22

Reduce Memory Operations

>> x = zeros(3,1)

>> x(1) = 4

>> x(2) = 7

>> x(3) = 12

 0x000
0 0x000
8 0x001
0 0x001
8 0x002
0 0x002
8 0x003
0 0x003
8

0

0

0

0x000
0 0x000
8 0x001
0 0x001
8 0x002
0 0x002
8 0x003
0 0x003
8

4

0

0

0x000
0 0x000
8 0x001
0 0x001
8 0x002
0 0x002
8 0x003
0 0x003
8

0x000
0 0x000
8 0x001
0 0x001
8 0x002
0 0x002
8 0x003
0 0x003
8

4

7

0

4

7

12

23

Contiguous memory and copy on write

>> x = rand(100,1)

>> x = 2*x

>> y = x

>> y(1) = 0

 Do not grow arrays within loops!

 MATLAB handles memory

 efficiently

x = rand(100,1)

x = 2*x

y = x

Allocated

y = [0, x(2:end)]

24

Use the best way to store your data

 Numeric arrays

– Basic matrix; contains only numbers

– Use sparse where appropriate

 Cell arrays

– Can contain a mix of different datatypes

– Very good for storing string arrays

 Structures

– Can contain a mix of different datatypes

– Make your code more readable

25

Use only the precision you need

 Numerical data types

– Float: double and single precision (8 and 4 bytes)

– Integer: signed and unsigned (1-4 bytes)

– Logical: 0 or 1 only (1 byte)

 Floating point for math (e.g. linear algebra)

 Integers where appropriate (e.g. images)

26

Variable header: 112 bytes*

Be aware of container overhead

Numeric Array

Data: 8 bytes

Total Used: 120

Cell Array

Element header: 112 bytes*

Field name: 64 bytes

Structure

Total Reported: 8

232

120

296

184

Data: 8 bytes

2nd header: 112 bytes*

Field name: 64 bytes

+ 120 = 352

+ 120 = 240

+ 184 = 480

+ 184 = 368 + 8 = 16

+ 8 = 128

*On a 64-bit system

27

Plotting data

 How much memory is needed to plot a 10 MB double array?

>> x = sin(1:125e4);

>> plot(x);

a) 0 MB

b) 10 MB

c) 20 MB

d) 30 MB

e) 40 MB

28

Plot only what you need

 Every plot independently stores x and y data

>> x = sin(1:125e4); %10MB

>> plot(x) ; %20MB for x and y data

 Integers plotted as doubles

 Strategies:

– Downsample your data prior to plotting (e.g. every 10th element)

– Divide your data into regular intervals and plot values of interest (e.g.

open and close for stock prices, or min/max values)

29

Load only the data you need

 ASCII file: textscan

– Selectively choose columns to load or ignore

– Selectively choose rows to load (i.e. block processing)

 Binary file: memmapfile

– Read and write directly to/from file on disk

– Overlay address space directly onto file

– MATLAB dynamically shifts address space to handle larger files

 e.g. >1.5 GB files on 32 bit Windows can be accessed

30

Improvements with minimal effort

 Multithreading capabilities in MATLAB

 MATLAB data storage model

 Finding bottlenecks

 Techniques for improving performance

31

Example: fitting data

 Load data from multiple files

 Extract a specific test

 Fit a spline to the data

 Write results to Microsoft Excel

32

Summary of example

 Used profiler to analyze code

 Targeted significant bottlenecks

 Reduced file I/O

33

Classes of bottlenecks

 File I/O

– Disk is slow compared to RAM

– When possible, use load and save commands

 Displaying output

– Creating new figures is expensive

– Writing to command window is slow

 Computationally intensive

– Trade-off modularization, readability and performance

– Integrate other languages or additional hardware

 E.g. MEX, GPU / CUDA, FPGAs…

34

Improvements without programming effort

 Multithreading capabilities in MATLAB

 MATLAB data storage model

 Finding bottlenecks

 Techniques for improving performance

35

Techniques for improving performance

 Vectorization

– Take full advantage of BLAS and LAPACK

– Brute force: cellfun, structfun, arrayfun …

 Preallocation

– Minimize changing variable class

 Mexing (compiled code)

36

Improvements with minimal effort

MATLAB helps you to take advantage of your hardware

 Use the latest release to take advantage of the latest

improvements in hardware

 Use the profiler to identify bottlenecks

 Write efficient code

37

Three Key Takeaways

 1. If you understand where to put your effort, writing fast

and efficient code becomes easy

 2. You can make the most of your hardware without

becoming a programming guru

 3. If your desktop isn‟t enough, you can easily upscale

to use GPUs or computer clusters

38

Agenda

13:30 Introduction

13:45 Part I: Improvements with minimal effort

14:30 Break

14:50 Part II: High level parallel programming

15:50 Break

16:10 Part III: Specialized solutions

16:50 Wrap up

17:00 Drinks

39

High level parallel programming

 Support of parallel computing built into toolboxes

 Task distribution

 Data distribution

 Interactive to scheduled

40

Example: optimizing tower placement

 Determine location of cell towers

 Maximize coverage

 Minimize overlap

41

Summary of example

 Enabled built-in support for

Parallel Computing Toolbox

in Optimization Toolbox

 Used a pool of MATLAB workers

 Optimized in parallel using fmincon

42

Programming parallel applications

Level of control

Minimal

Some

Extensive

Required effort

None

Straightforward

Involved

43

Programming parallel applications

Level of control

Minimal

Some

Extensive

Required effort

Built-in into

Toolboxes

Straightforward

Involved

44

Parallel support in Optimization Toolbox

 Functions:

– fmincon

 Finds a constrained minimum of a function of several variables

– fminimax

 Finds a minimax solution of a function of several variables

– fgoalattain

 Solves the multiobjective goal attainment optimization problem

 Functions can take finite differences in parallel

in order to speed the estimation of gradients

45

Toolboxes with built-in support
Contain functions to directly leverage the Parallel Computing Toolbox

 Optimization Toolbox

 Global Optimization Toolbox

 Statistics Toolbox

 SystemTest

 Simulink Design Optimization

 Bioinformatics Toolbox

 Model-Based Calibration Toolbox

 Communications System Toolbox

Worker

Worker

Worker

Worker Worker

Worker

Worker TOOLBOXES

BLOCKSETS

46

High level parallel programming

 Support of parallel computing built into toolboxes

 Task distribution

 Data distribution

 Interactive to scheduled

47

Programming parallel applications

Level of control

Minimal

Some

Extensive

Required effort

None

Straightforward

Involved

48

Programming parallel applications

Level of control

Minimal

Some

Extensive

Required effort

Built-in into

Toolboxes

High Level Programming

(parfor)

Involved

49

Example: parameter sweep of ODEs

 Solve a 2nd order ODE

 Simulate with different

values for b and k

 Record peak value for each run

 Plot results



  0
,...2,1,...2,1

5

 xkxbxm 

0 5 10 15 20 25
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

D
is

p
la

ce
m

e
n
t

(x
)

m = 5, b = 2, k = 2

m = 5, b = 5, k = 5

0

2

4

6 1
2

3
4

5

0.5

1

1.5

2

2.5

Stiffness (k)
Damping (b)

P
e

a
k
 D

is
p

la
c
e

m
e

n
t
(x

)

50

Summary of example

 Mixed task-parallel and serial

code in the same function

 Ran loops on a pool of

MATLAB resources

 Used MATLAB Code Analyzer to
help converting existing for-loop

into parfor-loop

0 5 10 15 20 25
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

D
is

p
la

ce
m

e
n
t

(x
)

m = 5, b = 2, k = 2

m = 5, b = 5, k = 5

0

2

4

6 1
2

3
4

5

0.5

1

1.5

2

2.5

Stiffness (k)
Damping (b)

P
e

a
k
 D

is
p

la
c
e

m
e

n
t
(x

)

51

Parallel tasks

Time Time

Task 1 Task 2 Task 3 Task 4 Task 1 Task 2 Task 3 Task 4

TOOLBOXES

BLOCKSETS

Worker

Worker

Worker

Worker

52

The mechanics of parfor loops

Pool of MATLAB Workers

a = zeros(10, 1)

parfor i = 1:10

 a(i) = i;

end

a

a(i) = i;

a(i) = i;

a(i) = i;

a(i) = i;

Worker

Worker

Worker Worker

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

53

Converting for to parfor

 Requirement for parfor loops

– Order independent

 Constraints on the loop body

– Cannot “introduce” variables (e.g. eval, load, global, etc.)

– Cannot contain break or return statements

– Cannot contain another parfor loop

– Use MATLAB Code Analyzer to resolve issues

 parfor will run serially if no workers are available

54

Advice for converting for to parfor

 Use Code Analyzer to diagnose parfor issues

 If your for loop cannot be converted to a parfor,

consider wrapping a subset of the body to a function

 Classification (slicing) of variables

 http://blogs.mathworks.com/loren/2009/10/02/using-

parfor-loops-getting-up-and-running/

http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/

55

Some notes on Simultaneous Multi-Threading
(hyperthreading)

 SMT provides your operating system with 2 logical

cores for each physical core

 Computational

 capability is not

 increased

56

High level parallel programming

 Support of parallel computing built into toolboxes

 Task distribution

 Data distribution

 Interactive to scheduled

57

Programming parallel applications

Level of control

Minimal

Some

Extensive

Required effort

None

Straightforward

Involved

58

Programming parallel applications

Level of control

Minimal

Some

Extensive

Required effort

Built-in into

Toolboxes

High Level Programming

(distributed, spmd)

Involved

59

Parallel data distribution

1
1

2
6

4
1 1

2
2
7

4
2 1

3
2
8

4
3 1

4
2
9

4
4 1

5
3
0

4
5 1

6
3
1

4
6 1

7
3
2

4
7 1

7
3
3

4
8 1

9
3
4

4
9 2

0
3
5

5
0 2

1
3
6

5
1 2

2
3
7

5
2

1
1

2
6

4
1 1

2
2
7

4
2 1

3
2
8

4
3 1

4
2
9

4
4 1

5
3
0

4
5 1

6
3
1

4
6 1

7
3
2

4
7 1

7
3
3

4
8 1

9
3
4

4
9 2

0
3
5

5
0 2

1
3
6

5
1 2

2
3
7

5
2

TOOLBOXES

BLOCKSETS

60

Advice for distributing data

 Prototype locally before going to a cluster

– But the data transfer might be not significant

 Use a scalable approach

– Do not hard code the number of workers

 Take care of path and data dependencies

61

High level parallel programming

 Support of parallel computing built into toolboxes

 Task distribution

 Data distribution

 Interactive to scheduled

62

Interactive to scheduled

 Interactive

– Great for prototyping

– Immediate access to MATLAB workers

 Scheduled

– Offloads work to other MATLAB workers (local or on a cluster)

– Frees up local MATLAB session

63

Scheduling work

TOOLBOXES

BLOCKSETS

Scheduler

Work

Result

Worker

Worker

Worker

Worker

64

Example: schedule processing

 Offload parameter sweep

to local workers

 Get peak value results when

processing is complete

 Plot results in local MATLAB
0 5 10 15 20 25

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

D
is

p
la

ce
m

e
n
t

(x
)

m = 5, b = 2, k = 2

m = 5, b = 5, k = 5

0

2

4

6 1
2

3
4

5

0.5

1

1.5

2

2.5

Stiffness (k)
Damping (b)

P
e

a
k
 D

is
p

la
c
e

m
e

n
t
(x

)

65

Summary of example

 Used batch for off-loading work

 Used matlabpool option to

off-load and run in parallel

 Used load to retrieve

worker‟s workspace

0 5 10 15 20 25

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

D
is

p
la

ce
m

e
n
t

(x
)

m = 5, b = 2, k = 2

m = 5, b = 5, k = 5

0

2

4

6 1
2

3
4

5

0.5

1

1.5

2

2.5

Stiffness (k)
Damping (b)

P
e

a
k
 D

is
p

la
c
e

m
e

n
t
(x

)

66

High level parallel programming: takeaways

 Support for parallel computing is built into toolboxes

 Exploit data & task parallelism

 Offload your computations by scheduling

67

Three Key Takeaways

 1. If you understand where to put your effort, writing fast

and efficient code becomes easy

 2. You can make the most of your hardware without

becoming a programming guru

 3. If your desktop isn‟t enough, you can easily upscale

to use GPUs or computer clusters

68

Agenda

13:30 Introduction

13:45 Part I: Improvements without programming effort

14:30 Break

14:50 Part II: High level parallel programming

15:50 Break

16:10 Part III: Specialized solutions

16:50 Wrap up

17:00 Drinks

69

Specialized solutions

 Programming distributed jobs

 Up-scaling to a cluster

 GPU Computing

 Handling arbitrarily large datasets

70

Programming parallel applications

Level of control

Minimal

Some

Extensive

Required effort

None

Straightforward

Involved

71

Programming parallel applications

Level of control

Minimal

Some

Extensive

Required effort

Built-in into

Toolboxes

High Level Programming

(parfor, spmd)

Low-Level

Programming Constructs:
(e.g. Jobs/Tasks, MPI-based)

72

Task-parallel workflows

 parfor

– Multiple independent iterations

– Easy to combine serial and parallel code

– Workflow

 Interactive using matlabpool

 Scheduled using batch

 jobs/tasks

– Series of independent tasks; not necessarily iterations

– Workflow  Always scheduled

73

Example: scheduling independent simulations

 Offload three independent

approaches to solving our

previous ODE example

 Retrieve simulated displacement

as a function of time for

each simulation

 Plot comparison of results

in local MATLAB

0 5 10 15 20 25
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

D
is

p
la

ce
m

e
n
t

(x
)

m = 5, b = 2, k = 2

m = 5, b = 5, k = 5

74

Summary of example

 Used parcluster to find scheduler

 Used createJob and createTask

to set up the problem

 Used submit to off-load and

run in parallel

 Used fetchOutputs

to retrieve all task outputs 0 5 10 15 20 25
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

D
is

p
la

ce
m

e
n
t

(x
)

m = 5, b = 2, k = 2

m = 5, b = 5, k = 5

75

MPI-Based functions for higher control

 High-level abstractions of MPI functions

– Send, receive, and broadcast any data type in MATLAB:

 labSendReceive, labBroadcast, and others

 Automatic bookkeeping

– Setup: communication, ranks, etc.

– Error detection: deadlocks and miscommunications

 Pluggable

– Use any MPI implementation that is binary-compatible with MPICH2

76

Specialized solutions

 Programming distributed jobs

 Up-scaling to a cluster

 GPU Computing

 Handling arbitrarily large datasets

77

Run 12 local workers on desktop

 Rapidly develop parallel

applications on local computer

 Take full advantage of

desktop power

 Separate computer cluster

not required

Desktop Computer

Parallel Computing Toolbox

78

Scale up to clusters, grids and clouds

Desktop Computer

Parallel Computing Toolbox

Computer Cluster

MATLAB Distributed Computing Server

Scheduler

79

Setting up your cluster client

 Get a profile file from your cluster admin

 Use the menu or

parallel.importprofile(„myclusterprofile‟) to get the profile

installed on your computer

80

Open API for others

Support for schedulers

Direct Support

TORQUE

http://www.microsoft.com/hpc/en/us/default.aspx
http://www.univa.com/

81

Specialized solutions

 Programming distributed jobs

 Up-scaling to a cluster

 GPU Computing

 Handling arbitrarily large datasets

82

Using MATLAB with dedicated hardware

 Use DSPs for real-time execution

 On target automatic C code generation

 Deploy on FPGAs

 Synthesizable automatic HDL code generation

 Use multi-core and multiprocessor computers

 Multithreaded parallel computing

 Distribute on a cluster

 Distributed computing

 Use GP-GPUs ◄

83

Why GPUs now?

 GPUs are a commodity

 Massively parallel architecture that can speed up

intensive computations

 GPU are more generically programmable

From 3D gaming to scientific computing

84

Speeding up MATLAB using GPUs

 MATLAB users can easily benefit from GPUs

 Support all users from beginners to experts

?

85

Programming GPU applications

Level of control

Minimal

Some

Extensive

Required effort

Minimal

Straightforward

Involved

86

Programming GPU applications

Level of control

Minimal

Some

Extensive

Required effort

Built-in functions

Straightforward

Involved

87

Invoke built-in MATLAB functions on the GPU

 Accelerate standard (highly parallel) functions

– More than 100 MATLAB functions are already supported

 Out of the box:

– No additional effort for programming the GPU

 No accuracy for speed trade-off

– Double precision floating-point computations

88

 Without the GPU: Define an array

 A = rand(1000,1);

 B = rand(1000,1);

 Execute a built-in MATLAB function:

 Y = B\A;

Invoke built-in MATLAB functions on the GPU
(1) Minimal effort, minimal level of control

89

 Define an array on the GPU

 A = rand(1000,1);

 B = rand(1000,1);

 A_gpu = gpuArray(A);

 B_gpu = gpuArray(B);

 Execute a built-in MATLAB function:

 Y_gpu = B_gpu\A_gpu;

 Retrieve data from the GPU

 Y = gather(Y_gpu);

Invoke built-in MATLAB functions on the GPU
(1) Minimal effort, minimal level of control

90

Benchmarking A\b on the GPU

91

Programming GPU applications

Level of control

Minimal

Some

Extensive

Required effort

Built-in functions

Scalar functions on

array data

Involved

92

Run MATLAB scalar functions on the GPU

 Accelerate scalar operations on large arrays

– Take full advantage on data parallelism

 Out of the box:

– No additional effort for programming the GPU

 No accuracy for speed trade-off

– Double precision floating-point computations

93

 MATLAB function that perform element-wise arithmetic

 function y = TaylorFun(x)

y = 1 + x.*(1 + x.*(1 + x.*(1 + ...

x.*(1 + x.*(1 + x.*(1 + x.*(1 + ...

x.*(1 + ./9)./8)./7)./6)./5)./4)./3)./2);

 Load data on the GPU

 A = rand(1000,1);

 A_gpu = gpuArray(A);

 Execute the function as GPU kernels

 result = arrayfun(@TaylorFun, A_gpu);

Run MATLAB scalar functions on the GPU
(2) Straightforward effort, regular level of control

94

Benchmarking scalar operations on the GPU

95

Programming GPU applications

Level of control

Minimal

Some

Extensive

Required effort

Built-in functions

Scalar functions on

array data

Directly invoke

CUDA code

96

Directly invoke CUDA code from MATLAB

 Benefit from legacy code highly optimized for speed

– Achieve all the speed improvement that CUDA can deliver

 Use MATLAB as a test environment

– Generation of test signal

– Post-processing of results

 Suitable also for non-experts

97

 Compile CUDA (or PTX) code on the GPU
nvcc -ptx myconv.cu

 Construct the kernel
k = parallel.gpu.CUDAKernel('myconv.ptx',

 'myconv.cu');

k.GridSize = [512 512];

k.ThreadBlockSize = [32 32];

 Run the kernel using the MATLAB workspace
o = feval(k, rand(100, 1), rand(100, 1));

or gpu data

i1gpu = gpuArray(rand(100, 1, 'single'));

i2gpu = gpuArray(rand(100, 1, 'single'));

ogpu = feval(k, i1gpu, i2gpu);

Invoke CUDA code from MATLAB
(3) Involved effort, extensive level of control

98

Speeding up applications with GPUs

 Different achievable speedups depending on:

– Hardware

– Type of application

– Programmer skills

Source: NVIDIA

99

Applications that will run faster on GPUs

 Massively parallel tasks

 Computationally intensive tasks

 Tasks that have limited kernel size

 Tasks that do not necessarily require

 double accuracy

All these requirements need to be satisfied!

&

100

Can I use it now?

 Use the latest release!

 GPU support is part of Parallel Computing Toolbox

 NVIDIA CUDA capable GPUs

– With CUDA version 1.3 or greater

101

Speeding up MATLAB using GPUs
A stepping stone to accommodate a technology trend

 MATLAB users can easily benefit from GPUs

 Support all users from beginners to experts:

1. Built-in functions

2. Define your kernel

3. Directly invoke CUDA

Early

Adopter

Experienced

User

102

Specialized solutions

 Programming distributed jobs

 Up-scaling to a cluster

 GPU Computing

 Handling arbitrarily large datasets

103

Handling arbitrarily large datasets

 Large data (GigaBytes)

– Use 64 bit operating system

– Install extra RAM

– Use SPMD to work on a cluster

 Arbitrarily large data (TeraBytes)

– Use System Objects for streaming data

– Use Database Toolbox, NetCDF and OpenDAP support to

connect directly to databases

– Develop a database component using our Compiler and Builder

JA products

104

Specialized Solutions: takeaways

 Low level parallel programming for achieving total

control on the execution

 Exploit the full capacity of a cluster, without code

changes

 GPU computing also for

 non-experts

 Handle any amount of

 data

105

Three Key Takeaways

 1. If you understand where to put your effort, writing fast

and efficient code becomes easy

 2. You can make the most of your hardware without

becoming a programming guru

 3. If your desktop isn‟t enough, you can easily upscale

to use GPUs or computer clusters

106

Conclusions

107

Earth’s topography on an equidistant cylindrical projection, using the MATLAB Mapping Toolbox

The MathWorks Mission
Accelerating the pace of engineering and science

 2400 employees

 900+ software developers

 Benelux-office in Eindhoven

 >1 mio users worldwide

108

Key Industries

 Aerospace and defense

 Automotive

 Biotech and pharmaceutical

 Communications

 Education

 Electronics and semiconductors

 Energy production

 Financial services

 Industrial automation and

machinery

109

Deeply Rooted in Education

Benefits for Industry:

 Every year, tens of thousands of engineers enter the workforce with

MathWorks product skills and experience.

 Students learn theory and techniques while using MATLAB and Simulink.

 3500+ universities around the world

 1200+ MATLAB and Simulink based books

 Academic support for research, fellowships,
student competitions, and curriculum
development

“Everyone that comes in as a new

hire already knows MATLAB,

because they all had it in

college. The learning curve is

significantly lessened as a result.”

Jeff Corn,

Chief of Engineering Projects Section,

U.S. Air Force

110

 MATLAB Fundamentals (3 days) May 1-3

 Parallel Computing with MATLAB Nov 22-23

 MATLAB Programming Techniques June 5

111

MATLAB Central

 Community for MATLAB and Simulink

users

 Over 1 million visits per month

 File Exchange

– Upload/download access to free files

including MATLAB code, Simulink models,

and documents

– Ability to rate files, comment, and ask questions

– More than 12,500 contributed files, 300

submissions per month, 50,000 downloads

per month

 Newsgroup

– Web forum for technical discussions about

MathWorks products

– More than 300 posts per day

 Blogs
– Commentary from engineers who design, build,

and support MathWorks products

– Open conversation at blogs.mathworks.com

Based on February 2011 data

http://blogs.mathworks.com/

112

Free on-demand Webinars: a useful resource
www.mathworks.nl/webinars

Parallel Computing with MATLAB on Multicore Desktops and GPUs 45:12

Speeding Up MATLAB Applications 53:38

Speeding Up Optimization Problems Using Parallel Computing 55:41

http://www.mathworks.nl/webinars
http://www.mathworks.com/wbnr56334
http://www.mathworks.com/wbnr49643
http://www.mathworks.com/wbnr50746
http://www.mathworks.com/wbnr50746

113

Next Steps…

 Questions: Contact any of us after the seminar

 For more information: look at www.mathworks.nl

 To start evaluating MATLAB in your company:

Rob.Heijmans@mathworks.nl

http://www.mathworks.nl/
mailto:Rob.Heijmans@mathworks.nl

114 © 2012 The MathWorks, Inc.

Thank you for joining

Speeding up MATLAB and

Handling Large Data Sets

 Mathijs Faase

Rob Heijmans

Zoetermeer - 26th April 2012

Please fill out your evaluation form.

