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INTRODUCTION 

Digital imagery is a powerful datasource for coastal monitoring, 
maintainance and research. It provides high-resolution 
measurements in both time and space. Remote sensing 
applications makes long-term monitoring feasible, providing 
unprecedented datasets. In the last couple of decades many coastal 
applications of in-situ imagery are developed. Holland et al. 
(1997) uses a generic coastal video system for nearshore 
monitoring. This system inspired many applications, like an 
intertidal beach mapper (Aarninkhof et al., 2003), subtidal 
bathymetry extraction (Holman et al., 2013), rip-current detection 
(Dongeren et al., 2013) and vegetation mapping (Schretlen and 
Wijnberg, 2012). Vousdoukas et al. (2012) uses a similar system 
for run-up monitoring. More advanced algorithms use multiple 
cameras for stereo rectifcation, for example of waves (de Vries et 

al., 2009).  
The size and resolution of long-term imagery datasets provide 

great opportunities, but also poses problems of tractability in the 
data analysis. In order to fully use the possibilities of these 
datasets, reliable classification of images is essential. Traditionally 
classification of coastal images relies on algorithms tailored to a 
specific purpose (e.g. Aarninkhof et al., 2003). By definition such 
algorithms have limited applicability. More generic approaches 
exist, but are often not fully automated, limiting the feasibility of 
handling large datasets (e.g. Quartel et al., 2006). This paper 
discusses a fully automated classification approach based on 
probabilistic graphical networks. In contrast with most coastal 
classification algorithms, we not only use intrisic intensity 
features, but also include a large set of extracted features in our 
discriminative pixel descriptors. Although the approach is generic 
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Figure 1. a) Raw infrared image. b) Arbitrary time-variance image.  c) Spatial gradient in time-variance. 
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for any kind of imagery, we focus on the use of coastal infrared 
imagery. Coastal infrared images are a valueable data source for 
monitoring beach moisture content as supply limiter for Aeolian 
sediment transport. 

 
COASTAL INFRARED IMAGERY 

Coastal infrared imagery provides high resolution and long-term 
information on surface temperatures. We use coastal infrared 
imagery to monitor beach temperatures, which are related to beach 
moisture content (Edwards et al., 2013). Moisture content is 
important for Aeolian sediment transport in supply-limited 
environments (de Vries et al., 2014). Large moisture content 
increases the threshold wind velocity for Aeolian transport and 
hence decreases the sediment transport volumes compared to 
transport-limited environments (Pye and Tsoar, 1990). 

The intertidal area is of particular interest since its moisture 
content changes continuously under influence of tide, solar 
radiation, rain and wind. The intertidal area is also expected to be 
an important source of sediment for Aeolian transport (de Vries et 
al., 2010). The delicate balance between meteorology and tide is 
expected to explain when and what sediment is transported from 
the intertidal area to the dry beach and dunes. 

A long-term monitoring campaign is initiated in the southern 
part of Holland, The Netherlands. The research area includes the 
20Mm3 mega-nourishment known as the Sand Motor (or Sand 
Engine; Stive et al., 2013) that will feed large amounts of 
sediment to the Holland coast in the coming years. In context of 
this campaign we monitor accretional Aeolian processes, amongst 
others, using a thermal infrared camera looking down at the dune, 
beach and sea (Figure 1a). In view of the camera we have about 
120m dry sandy beach, an intertidal area with a tidal range of 
about 1.5m, a relatively low vegetated dune and a small road. In 
summertime a construction of the coastguard is present as well. 
Tide and weather conditions are measured at nearby 
meteorological stations. First results show indeed clear 
correlations between tide, meteorology and the wetting and drying 
of the beach. Tide and rain increase the moisture content in the 
intertidal area, and thereby decrease the temperature. In contrast, 
either high solar radiation or strong winds decrease the moisture 
content and thus the threshold velocity for Aeolian transport 
(Figure 2). These correlations are not obvious in regular CCD 
images that are available at the same site. 

These first results are obtained by tracking individual pixels in 
time. For a full analysis of intertidal moisture content it is 
necessary to know the location of the intertidal area. This location 
varies in time due to variability in tide and morphology. We use a 
generic and automated classification algorithm for coastal imagery 
to recognize the area that is a potential source for Aeolian 
sediment in an infrared variance image. Infrared images are single 
channel, non-normalized and relatively low resolution images that 
provide special challenges for classification that are not widely 
covered in other disciplines. The algorithm is applied in pixel 
space only. Therefore it does not rely on in-situ measurements, nor 
is there a need for image rectification. 

 
CLASSIFICATION ALGORITHM 

Like in normal coastal CCD images, the intertidal is not always 
very distinct in coastal infrared images either. Unlike CCD 
images, however, thermal infrared images are non-normalized. 
Their output is always in degrees of temperature and the frame of 
reference is fixed as long as the view is fixed. Therefore 
subsequent thermal infrared images can easily be compared over a 
fairly long time span and sequences of images can be used for 
classification. Such sequences hold much more information than 

 
Figure 2. Uncorrected infrared surface temperatures with influence 
of 24 hours cycle, tide, solar radiation, wind and rain. Each line 
corresponds to a specific pixel indicated by the raster in Figure 1a. 

 
 

 
Figure 3. Raw infrared image (bottom), time-variance (surface 
height) and spatial gradient (surface color). The red sloped area 
corresponds to the upper part of the inter-tidal area. 

 
 

 
Figure 4. Segmented artificially constructed two-channel infrared 
variance image. 
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single images, which makes classification of the intertidal area 
feasible. 

The classification algorithm is based on Conditional Random 
Fields (CRF), which is a probabilistic graphical model with 
pairwise potentials (Koller and Friedman, 2009). The algorithm is 
based on 3 steps that are explained in the following: 

1. Segmentation 
2. Feature extraction 
3. Model construction and training 

Segmentation 
Building an algorithm that classifies individual pixels will most 

likely result in an intractable algorithm that is very sensitive to 
local scatter. Instead, the image is first segmented into superpixels. 
A superpixel is a cluster of pixels with similar intrinsic features1. 
The classification algorithm subsequently classifies all 
                                                
1 We define intrinsic features as those features directly related to the input 
image and hence to either pixel location or pixel intensity (first 2 columns 
in Figure 5). In the following sections we will introduce extracted features 
that are related to second-order properties of the image, like cluster size 
and shape (last two columns in Figure 5). 

superpixels. All pixels in a superpixel by definition share the same 
class. The algorithm discussed uses four intrinsic features in 
particular for segmentation: 

 
1. Pixel coordinate M 
2. Pixel coordinate N 
3. Time-variance of infrared pixel 
4. Spatial gradient in the time-variance 

 
Figures 1b and 1c show an example of the latter two features for 

an arbitrary 24 hours sequence of infrared images. Figure 3 shows 
both features in a single 3D plot. A part that coincides with the 
upper part of the intertidal area is clearly visible, especially in the 
spatial gradient. Besides, the sea and beach part of the image are 
distinct through their difference in time variance. Vegetation is 
characterized in highly scattered values in both time-variance and 
spatial gradient. The differences in variance related to tide and 
meteorology are also visible from the plain time series depicted in 
Figure 2.  

 From the time-variance and spatial gradient features we 
artificially construct a two-channel infrared variance image. We 
use the SLIC segmentation algorithm (Achanta et al., 2010) for 

Position Intensity Shape Texture 

  
Figure 5. Several features extracted from the infrared variance image in Figure 1b. Low values are white, high values are black. The 
position and intensity features are referred to as intrinsic features, whereas the shape and texture features are referred to as extracted 
features. 
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segmentation of these images (Figure 4). Segmentation consists of 
clustering pixels in a space stretched by the four features listed 
above using a K-means algorithm. The number of superpixels 
(clusters) is given as input. We use approximately 400 superpixels 
per image. A second parameter to the clustering algorithm is the 
compactness, which determines the weight of the pixel coordinate 
features M and N compared to the time-variance features. A high 
compactness results in relatively square and heterogeneous 
superpixels whereas a low compactness results in scattered, but 
homogeneous superpixels. We use a relatively high compactness 
of 40. 

Feature extraction 
In order to classify a superpixel we need features to distinct a 

superpixel of one class from a superpixel of another. For 
segmentation we already used four features regarding location and 
time-variance of the pixels. These features were determined based 
on individual pixels. When dealing with superpixels more features 
can be extracted that help us discriminate between classes of 
pixels. An important property of CRFs is that features are 
independent of each other. Therefore dependent features may be 
used without risking the result to be biased (Koller and Friedman, 
2009). We use 62 features from the main categories shown in the 
columns of Figure 5. This figure shows a subset of the features in 
use.  

The successful classification depends on the distinctive quality 
of the different features. Several features show a strong 
correspondence with the upper intertidal zone. The example 
features of position and intensity are computed using trivial 
functions. The shape and texture definitions are computed as 
follows. Holeyness is defined as the superpixel convex hull area 
divided by the total pixel area. The eccentricity is the ratio of the 
minor and major axis of an ellipsis fitted to the shape of the 
superpixel.  The Euler number is computed as one divided by the 
number of holes. Shape is defined as the area divided by the 
squared perimeter.  

The Gaussian filter (5) and (7) correspond to the variance left in 
a superpixel after a Gaussian filter with sigma 5 and 17 has been 
applied. The grey correlation correspond to the correlation with a 
Grey Level Co-occurrence Matrix (GLCM; Haralick et al., 1973) 
with interval of 5 and 17 pixels. In the full feature set the angles of 
the grey patterns vary by angle. Figure 5 shows that the Gaussian 
filter textures feature correspond to both intertidal and vegetation, 
whereas the GCLM texture corresponds with vegetation only.  

Model construction and training 
The final step of the algorithm is the construction of a model 

that classifies all superpixels (and thereby all pixels) in a new 
unseen segmented infrared variance image. The output of the 
model is thus an assignment for each pixel to a single class taken 
from a set of predetermined classes. The set of predetermined 
classes we use is: sky, sea, intertidal, beach, vegetation, object. 

The model we construct is a Conditional Random Field (CRF). 
A CRF is a probabilistic graphical model. A probabilistic 
graphical model is a type of Bayesian network and constructed as 
a graph: with nodes and edges (Figure 6). The nodes represent 
(discrete) conditional probability distributions. The graph as a 
whole represents the joint conditional probability function. We use 
a node for each superpixel. Each node represents the discrete 
probability of the assignment of that superpixel over all classes. 
We define the class with the largest probability to be the 
assignment of that superpixel. 

The nodes are connected by edges. The edges represent 
dependencies of the nodes. We use a two-dimensional grid as 

graph. Each node is connected to its neighboring superpixels: two 
at the corners, three at the edges and four elsewhere. The 
dependencies of adjacent superpixels are governed by pairwise 
potentials. Potentials are located in between ordinary nodes. Like 
ordinary nodes, potentials are a factor in the joint probability 
function of the graph, but unlike ordinary nodes, potentials do not 
host a probability distribution itself. Potentials in a CRF are used 
to increase the probability of adjacent superpixels to be assigned 
an equal class. The reasoning behind this is that the probability of 
a superpixel next to a superpixel classified as “sea” is more likely 
to be sea itself. Also the probability of a superpixel to be classified 
as “dune” is less likely when their neighbors are all classified as 
“sea”. The class “beach” or “sky” is more likely to be appropriate. 
In order to stimulate adjacent superpixels to be of equal class, 
potentials penalize the difference between adjacent superpixels by 

 
Figure 6. Impression of partial Conditional Random Field for 
segmented infrared variance image. Each node (red dot) is 
connected to a specific superpixel. All nodes are connected to 
adjacent nodes by edges. Each of those edges hosts a potential 
function (blue squares) that penalizes differences between the nodes 
connected by the edge. For the middle node a small number of 
feature nodes are shown (green dots). 

 

 
Figure 7. Infrared variance image classified using trained 
Conditional Random Field. 
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adding a simple energy function to the joint probability 
distribution, for example: 

 
𝜓!"#$%#&'( =   𝑒! !!!!!

!
 

 
Where xi and xj are classes assigned to two adjacent superpixels. 

The final step in constructing a CRF is to add the feature nodes. 
These nodes are used to condition the graph based on input (e.g. 
an unseen segmented infrared variance image). The probability 
distribution of each node is, besides its neighbors, dependent on 
the extracted features of that particular superpixel. Therefore each 
superpixel node is also connected to multiple feature nodes. 
(Figure 6). The feature nodes are observed (i.e. extracted from the 
input image) and thus these nodes are deterministic. 

So far we constructed the structure of the joint probability 
function over all classes in the form of a graph. In order to classify 
images we need to fill the conditional probability distributions by 
training the graph with data. There are several methods available 
for structured learning, like message passing or structured Support 
Vector Machines. We use the latter because of its efficiency and 
availability (Andersen et al., v1.1.5). The learning algorithm 
iteratively approximates the maximum a-posteriori (MAP) class 
value for each node in the grid. This is the class assignment for all 
nodes with the largest joint probability. 

The data we use for training are 24 hours infrared variance 
images from Kijkduin, The Netherlands. These images are 
segmented and manually classified. We used about one month of 
data for training (27 images).  

 
RESULTS 

Figure 7 shows an example of a classification result of the 
trained Conditional Random Field (CRF). The major parts of the 
image are well recognized. This is mainly due to the use of 
pairwise potentials and a large set of extracted superpixel features 
like shape and holeyness. Figure 8 shows a classification result 
where only intrinsic intensity features and no pairwise potentials 
are used. Vegetation and intertidal area, beach, surfzone and sky 
and even constructions and vegetation are easily interchanged if 
we only rely on intensity related features. This shows the great 
potential of structured learning of segmented images with 
extracted features. 

Unfortunately we didn’t obtain distinctive results as shown in 
Figure 7 for every image. Solving a 7-class classification problem 
with only 3 or 4 intrinsic features (and many extracted from the 
segmentation result) appeared to be an extremely complex task. 
Even manual classification was sometimes difficult. Compared to 
regular CCD image classification, infrared images are very scarce 
datasets for several reasons: 

 
• Only two channels (time and spatial variance) compared to 

many channels in CCD images (RGB, HSV, LAB, etc.). 
• Single view at single station for a couple of months 

compared to many views over many stations for years in a 
row. 

• Low resolution (380x290) compared to high resolution 
(2000x1500 or more). 
 

Since the purpose of developing an automated classification 
algorithm was to spot potential sources for Aeolian sediment, we 
trained another, simpler model that better fits the amount of data 
available and limits the risks of overfitting. This model 
distinguishes between two classes only: the upper intertidal area 
and all other areas. This model appears to be very robust (Figure 
9). Still, on rainy days no clear distinction can be made between 

wet sand due to rain and wet sand due to tide, but then no potential 
source of Aeolian sediment is found, which is adequate behavior. 

 
CONCLUSIONS 

Image segmentation using Conditional Random Fields (CRF) 
appears to be a very generic and versatile approach also for coastal 
imagery. The segmentation and feature extraction routines used 
are generic and can be used in any classification algorithm based 
on CRFs. Both the segmentation and feature extraction are likely 
to perform even better with full color images and larger 
heterogeneous datasets, which in turn will increase the 
applicability and robustness of the approach. 

A very specialized application on coastal infrared variance 
images for monitoring of intertidal beach moisture content and 
morphology appears to benefit from this general approach. 

 
Figure 8. Infrared variance image classified using trained 
Conditional Random Field with intrinsic features only and no 
pairwise potentials. 

 

 
Figure 9. Four examples of classifying the upper part of the 
intertidal area as a potential source for Aeolian sediment. All 
classification is based on 24 hours infrared variance images, except 
the lower right image. The latter is based on a 14 days variance 
image and consequently shows a larger area as potential sediment 
source. 
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However, the limitations of the data available for this specialized 
application are reflected in the complexity of tasks the model can 
perform. 

For more extensive validation and comparison of classification 
algorithms for coastal images, a large and heterogeneous 
benchmark dataset of coastal images is needed. This benchmark 
dataset should contain a variety of coastal images from different 
locations, seasons and view angles. Currently we are working on 
such benchmark dataset by manually classifying a large number of 
coastal images.  

 
OPEN SOURCE 

The three main steps of the classification algorithm 
(segmentation, feature extraction and model construction and 
training) are part of an open-source toolbox for coastal image 
analysis hosted by the OpenEarth repository (van Koningsveld et 
al., 2010). The toolbox relies on the Scikit Image toolbox (Scikit-
image, v0.7.2) for segmentation and feature extraction and on the 
PyStruct toolbox (Mueller, v0.1) for model construction and 
training. The toolbox also provides a tool for efficient manual 
classification. 
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