

Global scale water supply and demand: impacts of climate and socio-economic change

Marc F.P. Bierkens^{1,2}, Inge E.M. de Graaf¹, , Ludovicus P.H. (Rens) van Beek^{1,} Menno Straatsma, Edwin Sutanudjaja¹ and Yoshihide Wada^{1,2}

¹Department of Physical Geography, Utrecht University, Utrecht, the Netherlands ²Deltares, Utrecht, the Netherlands ³NASA GISS, Columbia University Campus, USA

Content

- Water availability
- Water demand: local to global
- Global water stress
- Socio-economic and climate change
- Adverse effects of global water stress
- Adaptation and mitigation?

Water Availability

The global hydrological cycle (per year)

simulation by integrated global hydrological models

Wada et al., 2013 (ESD)

Simulation of global terrestrial water by the integrated global hydrological model PCR-GLOBWB 1980-2010 daily time step (time in months) at 5 minutes resolution

Continental runoff: comparison of studies

Continent	Europe	Asia	Africa	North America	South America	Oceania	Global ¹	Time Period
Data based estimates								
Baumgartner and Reichel [1975]	2564	12,467	3409	5840	11,039	2394	37,713	-
Korzun et al. [1978]	2970	14,100	4600	8180	12,200	2510	44,560	-
L'vovich [1979]	3110	13,190	4225	5960	10,380	1965	38,830	-
Shiklomanov [1997]	2900	13,508	4040	7770	12,030	2400	42,648	1921-1990
GRDC [2004]	3083	13,848	3690	6294	11,897	1722	40,533	1961-1990
Average	2925	13,423	3993	6809	11,509	2198	40,857	
Model based estimates								
Fekete et al. [2000]	2772	13,091	4517	5892	11,715	1320	39,319	-
Vörösmarty et al. [2000]	2770	13,700	4520	5890	11,700	714	39,294	1961-1990
Nijssen et al. [2001]			3615	6223	10,180	1712	36,006	1980-1993
Oki et al. [2001]	2191	9385	3616	3824	8789	1680	29,485	1987-1988
Döll et al. [2003]	2763	11,234	3592	5540	11,382	2239	36,687	1961-1990
Widén-Nilsson et al. [2007]	3669	13,611	3738	7009	9448	1129	38,605	1961-1990
Average	2833	12,204	3933	5730	10,536	1466	36,566	
This study (PCR-GLOBWB)	2487	11,397	4515	5040	10,558	2371	36,368	1961-1990
This study (PCR-GLOBWB)	2506	11,364	4439	5028	10,505	2317	36,159	1958-2001

Table 1: Estimates of continental runoff in km3·a-1 based on observations and simulations

2010

Large reservoirs from GRanD, Global Reservoirs and Dams Data base

Reservoirs build since 1900:

10,000 km³ (30 mm of sea-level rise) is stored behind dams

Global water stocks

Total: 1360 10⁶ km³ (=1 360 000 000 000 000 000 000 liter)

Global water stocks

There are huge amounts of water, but not distributed equally

Population growth: people are moving into regions with little renewable water -> result is increasing water stress

Water Demand

Global net water demand (potential consumption)

Livestock densities, Irrigated areas, Population (Total, urban and rural), GDP, Electricity production, Energy and household consumption, Access to water (Total, urban and rural), Climate data (Temperature, radiation, cloud cover, wind speed, etc)

<u>15</u>

The human imprint: Global water consumption (potential abstraction – return flow)

Wada et al., HESS, 2011

Historical Trends

Global water demand more than doubled during the period 1960-2000

Water Stress

Calculating Water stress

Households Households Industry Livestock Irrigation	Demand Water scarcity	River	A Constant of the second secon	QDR QSf QEF QChannel			
Water stress \approx Water Scarcity Index: $WSI = \frac{D}{A} \begin{bmatrix} D: \text{ Surface water demand} \\ A: \text{ Water availability} \approx \text{ River discharge} \end{bmatrix}$							
Degrees of water stress	Per capita water availability (m ³ ·capita ⁻¹ ·year ⁻¹)	Water Scarcity Index: WSI (-)	Definitions of degrees of water stress				
No stress	> 1,700	WSI < 0.1	No water scarcity				
Low stress	-	$0.1 \leq WSI < 0.2$	Potential water scarcity				
Moderate stres	s 1,700 - 1,000	$0.2 \leq WSI < 0.4$	Looming water scarcity				
High stress	1,000 - 500	0.4 ≦ <i>WSI</i> < 0.8	Experiencing water scarcity				
Very high stres	s < 500	0.8 ≦ <i>WSI</i>	Economic development is limited by water scarcity				
			(Falkenmark et al., 1997)				

Socio-economic and climate change

Climate versus socio-economic change

Socio-economic change dominant in the last 50 years Projections: climate change dominant factor

Irrigation water demand 2080: climate change only

Wada et al., GRL 2014

Adverse effects of water stress

Sustainability view 1: The groundwater footprint

Global groundwater footprint = 3.5 times the global area of productive aquifers

Gleeson, et al., Nature, 2012.

Sustainability view 2: Contribution to food production

20% of the global groundwater consumption for irrigation comes from non-renweable groundwater

GRACE and groundwater depletion

GRACE Hydrological estimates for small basins: Evaluating processing approaches on the High Plains Aquifer, USA

Laurent Longuevergne,1,2 Bridget R. Scanlon,1 and Clark R. Wilson2

36° N-

33° N.

30° N

27° N

Satellite-based estimates of groundwater depletion in India

0

0

0

0.

0.

July 2008

nature

lan, 2008

LETTERS

Matthew Rodell¹, Isabella Velicogna^{2,3,4} & James S. Famiglietti²

Satellites measure recent rates of groundwater depletion in California's Central Valley

200

150

100

50

-50

-100

J. S. Famiglietti,^{1,2} M. Lo,^{1,2} S. L. Ho,^{2,3} J. Bethune,⁴ K. J. Anderson,² T. H. Syed,^{2,5} S. C. Swenson,⁶ C. R. de Linage,² and M. Rodell⁷

GEOPHYSICAL RESEARCH LETTERS, VOL. 38, L03403, doi:10.1029/2010GL046442, 2011

Detrimental effect: salinisation and subsidence

Land subsidence in Jakarta in period 1974-2010

0 M

Past reconstruction and future projections: 1900-2100

Next step: Global groundwater modelling

De Graaf et al. (to be submitted to WRR); objective: analysing global groundwater over-exploitation

Next step: Global groundwater modelling

Cumulative Groundwater depletion (1960-2010)

De Graaf et al. (to be submitted to WRR); objective: analysing global groundwater over-exploitation

Adaptation and mitigation

Local solutions: Adaptation

Local adaptation:

Water management and water technology

- Rainwater harvesting
- Enhanced and/or artificial recharge
- Artificial recharge and recovery
- Conjunctive groundwater and surface water use
- Re-use, cascading and re-circulation

National and international economic measures

- Water pricing
- Subsidies
- Investment: financial arrangements (e.g. ppp)
- Investment: tax arrangements

Questions?

Validation streamflow

Verification

FAO AQUASTAT								
Sector		1970	1975	1980	1985	1990	1995	2000
Agriculture	R ²	0.98	0.98	0.96	0.97	0.97	0.99	0.98
	α	1.12	1.08	0.96	0.92	0.99	0.90	1.01
Industry	R ²	0.98	0.99	0.98	0.97	0.97	0.92	0.98
	α	1.03	1.06	1.20	0.99	0.99	1.20	1.10
Domestic	R ²	0.97	0.98	0.95	0.97	0.98	0.96	0.95
	α	0.85	0.98	0.95	0.88	0.90	1.10	0.92
Total	R ²	0.96	0.98	0.99	0.96	0.96	0.98	0.96
	α	0.85	1.09	0.89	0.95	0.99	0.91	0.99

Large deviations

≥ +50%

Greece

Iraq

≤ -50%

Mali

10

100

1000

Turkmenistan

Validation

Natural situation: P < E_{pot}

Net Contribution from TWS Change to Sea Level 1900-2100

