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a b s t r a c t 

This paper describes the development and application of inflow and outflow boundary conditions (BCs) 

for the material point method (MPM) in order to simulate fluid flow problems. This corresponds to ve- 

locity and pressure controlled BCs. Due to the coupled Lagrangian and Eulerian description of the fluid 

motion in MPM it is necessary to add and remove material points, with appropriate kinematic properties, 

to and from the computational domain. The newly-developed BCs have been used to simulate uniform 

open channel flow and the phenomenon of free overfall in open channels, which is transient conditions 

leading to non-uniform flow due to a sudden bed level drop. It is shown that the numerical results pre- 

dict well the flow geometry including end depth ratio, pressure distribution and accelerations, therefore 

the velocities and displacements. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Free surface fluid flows are common problems in many fields of

ngineering. Several arbitrary Lagrangian–Eulerian (ALE) methods

ave been developed for fluid dynamics in recent years (e.g. [1–4] )

o simulate free surface flow. The material point method (MPM)

5] is a specific variant of an ALE method. 

MPM is a well-suited method for the solution of flow-like prob-

ems involving arbitrary large deformations in continuum mechan-

cs [4,6–10] . In particular, MPM is well suited for the coupled sim-

lation of fluid and solids, where large deformation and history

racking of variables is required. 

The position of the material is traced by the material points

MPs) thus no specific procedure is needed to capture or to trace

nterfaces. MPs can move through a fixed background mesh dur-

ng the simulation and, consequently, in order to model continu-

us flows, MPs must be inserted to and/or removed from the do-

ain at boundaries. This paper describes the development, veri-

cation and validation of velocity-controlled inflow and pressure-

ontrolled outflow BCs for MPM. The implementation has been un-

ertaken in the Anura3D software ( www.anura3d.com ). 

Originally, the modelling approach to simulate quasi-steady

n/outflow conditions in MPM was to use large reservoirs in or-
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er to supply the domain of interest with MPs (e.g. [11–13] ). This

equired a large reservoir, increasing the computational effort, only

pproximated steady conditions and limited the time able to be

imulated. Being able to prescribe in/outflow BCs allows: (i) true

teady-state conditions; (ii) a large reduction of computational

ost; (iii) the simplification of the geometry; and (iv) improving

he general applicability of the method. 

The proposed algorithm allows the enforcement of different

pstream and downstream conditions. For the purpose of model

alidation, the paper applies the new BCs for modelling eventual

teady-state subcritical flow in an uniform open channel and free

verfall, comparing the results with experimental measurements

nd analytical solutions. 

This paper is structured as follows: in Section 2 the theoretical

nd numerical formulation of MPM as implemented in Anura3D

s briefly introduced; Section 3 discusses the development and im-

lementation of the proposed in/outflow BCs; in Section 4 the new

lgorithm is verified by simulating a subcritical flow that requires

roper simultaneous imposition of upstream and downstream BCs;

n Section 5 the numerical results of a free overfall flow are com-

ared with existing analytical and experimental results as valida-

ion; and the conclusions are presented in Section 6 . 

https://doi.org/10.1016/j.compfluid.2018.10.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2018.10.007&domain=pdf
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where ε is the incremental volumetric strain. 
2. Theoretical and numerical formulation 

2.1. Governing equations 

The strong form partial differential governing equations that

describe the motion of fluids are conservation equations of mass

( Eq. (1) ) and momentum ( Eq. (2) ). These are more commonly

known as Navier–Stokes equations in computational fluid dynam-

ics: 

∂ρ

∂t 
+ ρ � ·v = 0 (1)

ρa = � · σ + ρg (2)

where ρ is the fluid density, t is time, v is the velocity, a is the

acceleration, σ is the Cauchy stress tensor and g is the body force

exerted, for example, by gravity. The Cauchy stress tensor can be

decomposed in σ = p + σde v where p is the fluid pressure and the

subscript ( dev ) indicates the deviatoric component of the Cauchy

stress tensor. The dynamic viscosity μ is introduced into the for-

mulation by defining σde v = μ ˙ ε de v , where ˙ ε de v is the shear strain

rate. 

For weakly compressible fluids, the mass density is related to

the fluid pressure as: 

∂ρ

∂t 
= 

1 

c 

∂ p 

∂t 
; c = 

√ 

K 

ρ
(3)

where c is the compression wave velocity and K is the bulk mod-

ulus of the fluid. 

In MPM, the nonlinear convective term is not present (in

Eq. (2) ) as a result of the Lagrangian framework [14] . Instead, the

positions of the MPs are updated each time step. Heat effects or

any source of thermal energy is disregarded and the mechanical

work is the only considered source/sink of energy. 

2.2. Numerical algorithm 

The Navier-Stokes equations are discretized in space and time

using standard finite element method techniques. A mixed Gauss

algorithm is used in which integration is at the elements’ Gauss

point locations for fully filled element, and at MPs for partially

filled elements, e.g. at fluid surfaces. This leads to smoother stress

fields and mitigates some effects of grid crossing error [6] . Explicit

time integration and tetrahedral elements with linear shape func-

tions are used here. 

MPM requires a second solution domain discretization that con-

sists of a cluster of MPs, each one with a fixed mass. It is assumed

that each MP corresponds to a representative volume of the con-

tinuum body �, with the initial volume V 0 p , where the superscripts

( 0 ) indicates the time step, the subscript ( p ) indicates the MP val-

ues and it is calculated as: 

 

0 
p = 

1 

n ep 

∫ 
d�e 

d� ≈ 1 

n ep 

n eq ∑ 

q =1 

w q | J ( x q ) | (4)

where n ep is the number of points per element, n eq is the number

of integration points (i.e. Gauss points or MPs) per element, d �e 

is the volume associated with the e th tetrahedral element, so that

� = 

⋃ n el 

el=1 
�el , w q is the local integration weight associated with

the integration point ( q ), J is the Jacobian matrix, x q is the position

vector. 

Information can be mapped between points and nodes by lin-

ear interpolation with the same shape functions used for the map-

ping between global and local coordinate systems. This process is

done in fully filled elements to map information to the integration

points location prior to numerical integration. For example, when
apping information between nodes and MPs, a displacement field

 can be written as: 

 p ( x p ) ≈
n n ∑ 

j=1 

N j ( x p ) u j (t) (5)

n which the subscript ( j ) indicates the nodal values, n n is the

umber of nodes per element and N is the interpolation function

from the combination of linear shape functions of the nodes eval-

ated in global coordinate system). The same interpolation can be

pplied for other quantities (i.e. acceleration, mass, stress, etc.). 

The details of the mathematical framework, including a descrip-

ion of the computational cycle can be found in, e.g., [15] . Using

he constitutive equation ( Eq. (3) ) and the standard finite element

ethod (FEM) spatial discretisations, the weak form of the mo-

entum balance equation ( Eq. (2) ) can be written as: 

 

t 
j a 

t 
j = F int ,t 

j + F ext ,t 
j (6)

here M is the lumped mass matrix, F int and F ext are the internal

nd external nodal forces and a is the vector of nodal acceleration.

hese are respectively defined as: 

 

t 
j = 

n e j ∑ 

e =1 

n eq ∑ 

q =1 

N j ( x q ) m q 

∣∣∣
t 

(7)

 

int ,t 
j = 

n e j ∑ 

e =1 

n eq ∑ 

q =1 

B 

T 
j ( x q ) σq V q 

∣∣∣
t 

(8)

 

ext ,t 
j = 

n e j ∑ 

e =1 

n eq ∑ 

q =1 

m q N j ( x q ) g 

∣∣∣
t 
+ f 

ext 
j 

∣∣∣
t 

(9)

here B is the strain-displacement matrix, f 
ext 
j are the prescribed

oundary nodal tractions and m q is the mass associated with the

ntegration point in consideration. The general MPM explicit nu-

erical algorithm for weakly compressible Navier Stokes solution

s as follows: 

1. Map the information carried by the MPs to the background

mesh using linear shape functions; 

2. Determine the lumped mass matrix ( Eq. (7) ), the internal force

F int ( Eq. (8) ) and external force F ext ( Eq. (9) ) vectors at the

nodes; 

3. Compute the nodal acceleration field from ( Eq. (6) ), imposing

zero acceleration at the inflow nodes (see Fig. 1 a); 

4. MP velocities are updated using the nodal acceleration as: 

v t+1 
p = v t p + �t 

n n ∑ 

j=1 

N j ( x p ) a 
t 
j (10)

5. The MP positions are updated: 

x 

t+1 
p = x 

t 
p + �t 

n n ∑ 

j=1 

N j ( x p ) v 
t+1 
j 

(11)

6. The incremental MP strains are calculated as: 

�ε t+1 
p = B ( x p )�u 

t+1 
j 

(12)

7. The stresses are derived from the constitutive relation ( Eq. (3) );

8. Determine the density of MPs, which is used to update the MP’s

volumes, as: 

ρt+1 
p = 

ρt 
p 

1 + �ε t+1 
vol ,p 

(13)

t+1 

vol ,p 
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Fig. 1. Illustration of the BCs: (a) Inflow BC, with inflow elements (green) and (b) 

outflow BC, with outflow elements (red). (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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In order to solve the system of governing equations, it is possi-

le to distinguish three kinds of BCs: essential (Dirichlet, acceler-

tion), natural (Neumann, force) or a combination of the two (e.g.

ewton/Robin). Other state variables, i.e. acceleration, velocitiy and

ressure in this case, also need to be initialised. Further, strain and

ressure smoothing procedures are used to mitigate the stress os-

illations due to grid crossing [16] . 

To ensure the stability of the explicit scheme, the critical time

tep should satisfy the so-called Courant–Friedrichs–Levy (CFL) con-

ition [17] , meaning that the time increment should not exceed a

ertain value depending on material density, stiffness and the min-

mum size of the elements. 

t crit = 

l e 

c p 
(14) 

here �t is the critical time step, l e is the minimum length of

he element. In our study, a reduction factor αCourant is intro-

uced in the above expression to obtain the time step size (i.e.

t = αCourant × �t crit ), where αCourant is fixed as 0.98 in our study.

. In/outflow boundary conditions 

Fluid flows are problems of practical interest for many engi-

eering applications. Their simulation requires accurate and effi-

ient numerical methods in versatile numerical tools that can be

urther used to study real industrial problems [18] . As opposed to

olid mechanics problems, in problems which consider fluid flow-

ng, mass generally enters and leaves an area of interest. For exam-

le, this may be the flow over a weir or dyke overtopping where

he area of interest is fixed around the structure (the weir or dyke)

nd water flows into and out of the area. This may also apply

n, for example, porous media or in erosional or depositional pro-

esses. Therefore, to make an efficient computational solution, BCs

llowing this mass to enter or leave the domain under realistic

onditions are essential. The novel contribution here is the descrip-
ion of well-posed problems able to simulate flows, with special

mphasis on BCs. 

BCs exist in nature as natural boundaries. Due mainly to lim-

tations in computational power, large domains are often trun-

ated and confined between artificial boundaries (ABCs). The lo-

ation of the required ABCs can be fabricated by intuition, expe-

ience, asymptotic behaviour and numerical experimentation [19] .

learly, the minimal necessary requirement of ABCs is to ensure

he solvability of the truncated problem, but this does not ensure

 physcially reasonable response. 

To simulate a segment of a flow, the BCs must allow mass to

nter and leave the domain at a predefined flowrate, and to con-

rol the pressure imposed from the water outside the boundary.

or a solvable governing equation, all boundaries must only have

ne of these ABCs. However, this would not necessarily (i) impose

 prescribed flow, or (ii) ensure mass enters and leaves the domain

etween timesteps. To ensure a segment of flow is achieved, a spe-

ific combination of ABCs to solve the governing equation along

ith a strategy on how to consistently add and remove mass (to

nsure mass continuity and thus satisfying Eq. (1) is needed. These

re here termed inflow and outflow BCs. 

One of the BCs must control the kinematics, i.e. fix the accel-

ration or velocity. If both the inflow and outflow conditions con-

rol kinematics, physically impossible situations may arise, e.g. not

nough mass in the domain to satisfy the ABC, this could be con-

idered to be over-defined. If neither BCs controls the kinematics,

he problem is not well-posed. Many flow segments finish in ei-

her subcritical hydraulic conditions or zero pressure conoditions

nd therefore a pressure boundary is more appropriate for the out-

ow boundary. Therefore, the inflow boundary has been selected

o control the kinematics. 

A steady inflow is considered here for the inflow boundaries,

lthough it would be straightforward to update this procedure for

 temporally varying inflow. A fixed pressure is considered for the

utflow boundaries; again it would be straightforward to update

his procedure to change in time. To consistently add and remove

ass, an ad-hoc element layer is attached to the computational

omain where the ABCs are applied. 

The steady inflow BC, i.e. constant velocity and zero accelera-

ion, is applied to the boundary shown by the dotted line in Fig. 1 a.

he ad-hoc element layer, called here inflow elements (shown in

reen in Fig. 1 a), is added to the computational domain (shown in

lue). At the beginning of the computational cycle, MPs are placed

n the inflow elements with appropriate Initial Conditions (ICs),

.e. the prescribed velocity and zero acceleration. The inflow nodes

hat are shared with the elements of the computational domain

highlighted in Fig. 1 a by red ellipses) have a prescribed acceler-

tion (zero) so as to maintain the prescribed velocity field at the

oundary, applied to the solution of the governing equation by up-

ating a in step 3 of Section 2.2 . When an inflow element is empty,

ew MPs will be introduced in the inflow elements at the same

ocal position as material which is initially discretized inside the

omain, i.e. the Gauss point locations. Since the mass of the MPs

s initialized according to the initial (inflow) element volume and

t is constant throughout the calculation, it is straightforward to

mpose a velocity such that the MPs move by the length of one el-

ment before a new set of MPs can be introduced, i.e. at every n th 

ime step, defined as: 

 = 

�L 

v 0 �t i 
(15) 

here �L is the element size in direction parallel to the prescribed

elocity vector, v 0 is the prescribed input velocity and �t i is the i th 

ime step size. 

In order to impose on the outflow BC, a fixed pressure is re-

uired at the boundary. This is achieved by fixing the external
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Fig. 2. (a) Computational mesh of a rectangular channel and application of in/outflow BCs for the simulation of a subcritical flow. Representation of the fluid flow converging 

to a steady solution enforced by the downstream BC: (b) Pressure field; (c) Velocity field at different time steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

e  

s  

A  

i  

i  

d  

p  

n  

c  

f

5

 

c  

n  

a  

a  

b  

g

5

 

z  

w  

u  

t  

t  

I  

a  

l  

w  

b  

b  

s

 

i  

t  

n  

s  

d  
forces at the nodes of the background grid at the boundary. Again

a strategy of removing mass is needed: MPs are removed from the

computational domain as soon as they enter an outflow element.

If one desires to model the outflow of a steadily flowing fluid, it is

reasonable to assume a hydrostatic distribution of the pressure on

the outflow nodes when solving the momentum balance equations,

although any pressure distribution could be applied. 

For the outflow BC, additional elements, called outflow ele-

ments, are also introduced ( Fig. 1 b). The fixed pressure BCs are

assigned on the nodes shared with the computational domain in

step 2 of Section 2.2 . As soon as a MP enters an outflow element

it is removed from the computation. The target level of accuracy of

the numerical solver can be systematically achieved adjusting time

and space discretization. 

4. Verification of boundary conditions 

In order to verify the application of the in/outflow BCs a sim-

ple case is simulated. An initially empty domain is considered of

0.15 × 0.15 × 0.01 m, in x-, y-, z-direction, with frictionless walls,

a prescribed horizontal inflow velocity of 1.0 m/s and a zero ac-

celeration along the inflow boundary as indicated in Fig. 2 a. The

three-dimensional domain is discretised by linear tetrahedral el-

ements and has a thickness of one element with only the front

face shown in Fig. 2 . A band of outflow elements is attached to

the right side of the computational mesh with a prescribed hy-

drostatic pressure. Outflow elements and their BCs are only acti-

vated when MPs enter the adjacent elements. The water is mod-

elled by a Newtonian compressible constitutive model. It has an

initial density ρ0 = 10 0 0 kg/m 

3 , dynamic viscosity μ = 1 × 10 −6 

kPa · s and bulk modulus K = 20,0 0 0 kPa. The water bulk modulus

was reduced by a factor of 100 from reality in order to increase

the time step as an explicit integration scheme is adopted. It was

pointed out in Liang [20] that, as long as the modelled water has

a speed of sound over 10 times larger than the maximum flow ve-

locity, the increased compressibility of water does not significantly

affect the results. The minimum time step is obtained as described

in Section 2.2 . 

Fig. 2 shows the simulation results in terms of pressure (b) and

velocity (c) at different time steps. After an initial time interval of

transient moving water front, a steady uniform flow is achieved. It

is worth mentioning that the prescribed traction BC at the outflow

boundary nodes causes unreasonably high pressures near the bot-
om when the flow is not yet fully developed, which is especially

vident at 0.15 s and 0.20 s. This is caused by the prescribed hydro-

tatic pressure which is initiated based on the final water depth.

s the calculation continues, and the outlet water level keeps ris-

ng, this inconsistency vanishes. This phenomenon can be avoided

f the hydrostatic pressure at the outflow elements would be up-

ated during calculation based on the water depth. However, the

urpose of present simulation is to verify the capabilities of the

ewly proposed in/outflow BCs. After 0.8 s it can be seen that a

onstant velocity, a hydrostatic pressure and a horizontal free sur-

ace is achieved, which proves the correctness of the applied BCs. 

. Validation benchmark 

In order to validate the theoretical formulation and numeri-

al implementation of in/outflow BCs, a well-known open chan-

el flow problem has been simulated. This is the situation where

 fluid flow encounters a sudden drop at the bed, also known as

 free overfall. The free overfall simulation is chosen as validation

enchmark for the in/outflow BCs since the rapid change in bed

eometry is considered a stringent validation case. 

.1. Existing free overfall studies 

Rouse [21] measured the pressure distribution in a steady hori-

ontal rectangular free overfall using wall and bed piezometers. It

as observed that a free overfall in rectangular channels could be

sed as a simple flow measuring device that required no calibra-

ion. Since then, due to its practical importance, many investiga-

ors have studied free overfall in various channels (e.g., [22–24] ).

n [24] , water was provided from a constant head tank supplied by

 pump and was measured by means of a calibrated orifice meter

ocated in the supply line. At the end of the channel, the side walls

ere continued beyond the brink so that the nappe was confined

etween the side walls. The water surface profile was measured

y means of a point gauge. The pressure distribution at the end

ection, as well as in the upstream region, was measured. 

When the free overfall enters the air, there is no reverse curve

n the water surface until it strikes the bottom at a lower eleva-

ion. According to the momentum conservation law, provided that

o external energy is added to the system, the water surface will

eek its lowest possible energy configuration. The theoretical flow

epth for parallel flows with a rectangular cross-section is then
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Fig. 3. Free overfall problem. 

Fig. 4. Computational mesh of a rectangular channel for free overfall simulation. 

The in/outflow BC elements are highlighted respectively in green and red. At the 

overfall brink two cross sections (A-A and B-B) are investigated. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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qual to the critical flow depth y c , as shown in Fig. 3 [25] , where

 is the total water head. The critical flow depth y c is expressed as

 c = 

3 
√ 

α( ̄v h i ) 2 /g , where v̄ is the mean flow velocity of the cross-

ection, h i is the initial flow depth and α is the velocity coefficient

hich can be approximately taken as 1.0 . 

For the free overfall flow and rapidly varied bed geometry prob-

ems, the actual surface follows the profile represented by the solid

lue line in Fig. 3 . Rouse [21] experimentally found that for almost

orizontal geometries, the computed critical depth based on paral-

el flow assumption y c is about 1.4 times the brink depth y b . 

Montes [26] proposed an analytical solution for the analysis

f open channel flows near a discontinuity of the bed geometry

i.e. free overfall). Assuming the flow in each terminal section to

e nearly parallel with the bottom, negligible viscous effects, ir-

otational flow and energy conservation, it is possible to use a

otential-flow solution of the inverse type (a variant of Stokes in-

erse mapping [27] ). The solution of the potential-flow equations
Fig. 5. Comparison of open channel simulations with different mesh sizes. a) �
as solved numerically by a finite difference grid (successive over

elaxation method), and the unknowns (free-surface location, ve-

ocity and pressure fields) were determined by an iterative proce-

ure. This solution is used as reference for the numerical solution

s shown in Figs. 7 and 8 . 

Readers are referred to Dey [28] for a comprehensive review of

he research on free overfall in rectangular open channels flows. 

.2. Computational setup 

In Fig. 4 , an initially empty section of the computational domain

f 0.60 × 0.21 × 0.01 m in x-, y-, z-direction represents a rectangu-

ar open channel with a sudden discontinuity of the bed on the

ottom right part represented by an additional section of the com-

utational domain of 0.15 × 0.28 × 0.01 m in x-, y-, z-direction. A

.15 m deep inflow BC with horizontal velocity of 1.213 m/s is pre-

cribed as indicated in green in Fig. 4 . All contact surfaces of the

omain are frictionless. As in the subcritical flow case ( Section 4 ),

he three-dimensional domain is discretised by linear tetrahedral

lements and has a thickness of one element with only the front

ace shown in Fig. 4 . An outflow BC is prescribed to the right and

ottom right boundaries of the computational mesh (outflow ele-

ents shown in red), with zero traction prescribed at the nodes.

he cross section for the analysis of the result around the brink

re shown in Fig. 4 . Frictional effects are neglected for all contact

urfaces. The material properties (e.g. density, viscosity and bulk

odulus) are as assigned in Section 4 and the time step is calcu-

ated as in Section 2.2 . In the following section, the dependencies

f the simulation results on the number of material points per el-

ment and mesh size are evaluated. 

.3. Results 

.3.1. Effect of mesh size and number of material points per element 

A sensitivity study of the free overfall simulations by varying

he computational mesh size and the initial number of material

oints per element (PPE) is given in this section. Figs. 5 and 6

how results of open channel flow simulations with initial water

epth of 0.15 m and velocity of 1.213 m/s. Three mesh sizes are

sed: 0.03 m, 0.01 m and 0.005 m when studying the effect of the

esh size, and 4 PPEs are used as first approximation ( Fig. 5 ). 

It can be observed that there are frequent pressure fluctuations

hen using finer meshes which are attributed to grid-crossing er-

ors. It is discussed in Guilkey et al. [29] and Al-Kafaji [6] that

sing a finer mesh causes more frequently migration of MPs be-

ween elements and therefore, the grid-crossing errors are more
L = 0.03 m; b) �L = 0.01 m; c) �L = 0.005 m for different time instants. 
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Fig. 6. Comparison of open channel simulations with different PPEs. a) PPE = 4; b) PPE = 8; c) PPE = 10; d) PPE = 20 for different time instants. 

Fig. 7. Pressure distribution at brink in rectangular overfall. 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Fluid velocity at the brink. Comparison of analytical solution with MP veloc- 

ity for steady state flow conditions. 

Table 1 

Relative error of brink depth estimation using meshes 

with various sizes (8 PPE) . 

Mesh size Time y b Analytical Error 

(m) (s) (s) (m) (%) 

0.03 2 0.1109 0.10725 3.44 

0.01 2 0.1093 0.10725 1.90 

0.005 2 0.1093 0.10725 1.88 
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p

pronounced. The problem is more severe when the PPE is low

[6] and the stiffness of the material is high. However, the mesh

resolution plays an important role for the accuracy of the results:

decreasing the mesh size the brink height in the numerical solu-

tion converges to the analytical one (see Table 1 , where 8 PPE are

used). 

Fig. 6 shows the comparison of simulations of open channel

flow with four different values of PPE: 4, 8, 10 and 20 MPs per

element, respectively for a mesh size of 0.03 m. It can be observed

that 4 PPE is a too coarse discretisation as it emphasises the grid

crossing error while simulations with 8, 10 and 20 PPE produce

much better results in terms of pressure distribution. 
These results led to the conclusion that the nodal density os-

illations are the main cause of pressure fluctuations due to the

eakly compressible behaviour of the fluid. The change in cal-

ulated nodal density in this method is directly due to the pro-

ortional change in PPE in the elements surrounding the node,

nd therefore by increasing the PPE the oscillations are reduced.

able 1 gives a quantitative analysis of the brink depth relative er-

or combining different mesh sizes and using 8 PPE. In this paper,

e propose to use a finer mesh because that improves the depth

t the brink and the drawback of more pressure oscillation is com-

ensated by introducing a higher number of PPE. 
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.3.2. Pressure distribution at brink 

The pressure distribution with the numerical solution provided

y MPM are compared with laboratory measurements ( Section 5.1 )

nd the analytical solution. The pressure distribution at the brink

cross-section A-A in Fig. 4 ) is plotted with data from literature

n Fig. 7 , where γ is the water unit weight and y is the height

f the MP above the brink. Note that the MPs selected for analy-

is are actually located within a thin area (about one fifth of the

lement size) in the flow direction containing the chosen cross-

ections. From the comparison, it can be seen that near the free

urface, the numerical pressure distribution in both cross sections

gree relatively well with experimental data obtained by other re-

earchers. For the region near the bed, the numerical simulations

eem to over-predict the pressure in cross section A-A. This may

e attributed to the vertical fixities applied on the corner nodes

f the brink, which prevent the material points from leaving the

esh. This vertical fixity also restricts the material point from

oving freely downward once they pass the brink, within one el-

ment, causing the pressure near the bottom to increase. This can

e shown by selecting MPs one element away (cross-section B-B in

ig. 4 ), where the influence of the vertical fixity is negligible, and

he pressure distribution near the bed is significantly closer to the

xperimental results. 

.3.3. Velocity distribution at brink 

Fig. 8 shows the comparison of the velocity distribution with

he results calculated by semi-analytical solution given in [26] ,

here v and v c are the velocity and critical velocity, respectively.

aterial points are chosen in the same manner as in Fig. 7 . It can

e seen that the velocity close to the channel bed is slightly un-

erestimated in cross-section A-A. Several factors may contribute

o that: in experiments there is a slight contraction of the flow

t the brink where the water detaches from the bed which is not

ccurring in the numerical simulation; the low order shape func-

ions produce a slightly over stiff behaviour that reduces the ve-

ocity where the largest deformations occur. Last but not least, the

mpact of the fixity mentioned above also adds to underestimation

f the velocity in cross-section A-A. 

. Conclusions 

In/outflow BCs suitable for MPM simulations of open channel

ow have been developed. These have been applied to the sim-

lation of eventually steady subcritical flow and free overfalls in

ectangular open channels to effectively validate the BCs. The brink

epth, pressure distribution and velocities have been analysed for

everal geometries and flow velocities and a good agreement be-

ween the MPM results, analytical solutions and experimental re-

ults is seen. The BCs are considered validated and can be used to

imulate a wide range of flow conditions. 
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