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1  Introduction 

1.1 Background 
 
Ensemble Streamflow Forecasting becomes a well-established technique in operational 
(flood) forecasting centers to assess forecast uncertainty. Currently, these forecasts are 
communicated to decision makers; however, taking decisions is still up to the subjective 
experience of the specific stakeholder. Due to the large amount of information in ensemble 
forecasts, this task is a major challenge in particular when time is limited during ongoing flood 
events. 
 
There is a lack of objective methods to take qualified decisions under consideration of 
forecast uncertainty. Whereas stochastic optimization techniques based on ensemble 
forecasts are applied in other water management domains (e.g. for scheduling hydropower 
assets), they are so far not used in the scope of flood forecasting and early warning systems 
and comparable system for daily operations and droughts. One major reason is probably the 
conceptual difficulty to integrate binary decisions (“Evacuate a region or not”) or logical 
constraints (“Measure A excludes measure B”) into the decision-making under consideration 
of forecast uncertainty. 

1.2 Objectives 
 
This research will assess the application of several multi-stage stochastic and robust 
optimization approaches in combination with a mixed-logical, multi-objective optimization 
setup to model flood mitigation measures under forecast uncertainty. We will investigate the 
potential and applicability of these approaches to provide objective decision support to 
stakeholders in particular in the flood management domain. Where applicable, these 
approaches can also be applied in the general daily water management operations or for 
other purposes. 
 
The conceptual assessment gets completed by a technical evaluation of in-house and 
external software packages with a focus on software features and software architecture. It 
should deliver a clear vision on the most suitable software framework for the requirements we 
identified for representative stakeholders. 

1.3 Report Structure 
 
Chapter 2 provides an inventory of short-term water management applications from the 
decision maker’s perspective. An inventory of individual problem setups from relevant 
stakeholder leads to the definition of a number of representative test cases which serve as 
benchmarks in further research. 
 
Chapter 3 repeats the inventory for the analyst, i.e. the tools which solve the test cases above 
to provide decision support for the decision maker. It treats the representation of the water 
system in a model, the deterministic optimization setup, the treatment of forecast uncertainty, 
the consideration of multiple objectives and finally the setup of a new conceptual and 
technical framework of a refactored or new software package. 
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Whereas chapters 2 and 3 document the inception phase (month 1-6), Chapter 4 includes the 
Statement of Work (SOW) for the remaining 30 months of the project. 
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2 Inventory (Decision Maker) 

2.1 Stakeholders 

2.1.1 Overview 
 
This section summarizes the findings of a workshop for stakeholders held December 8, 2015 
in Utrecht. The objective is to provide an inventory about decision support and real-time 
control applications for the short-term management of Dutch water systems. User stories 
present the motivation of the stakeholders to setup such systems, relevant processes in the 
water system from a management context as well as objectives and constraints of the 
management. 

2.1.2 Rijkswaterstaat (RWS) / Ministry of Infrastructure and the Environment 
 
User Story 1 (RWsOS Rivieren) 
Stakeholder: RWS-WMCN (Eric Sprokkereef, Hendrik Buiteveld) 
 
The operational forecasting system “RWsOS Rivieren” is operated by RWS-WMCN (Water-
Management Centrum Nederland). It computes deterministic and probabilistic forecasts of 
water level and flow for the Rhine and Meuse river basins. Based on these forecasts and 
dedicated post-processing algorithms, RWS-WCMN supplies a validated deterministic 
forecast as basis for the decision making of several public stakeholders. 
 
Stakeholders include the Dutch water boards which use the RWS-WMCN forecast as a 
boundary condition of their own forecasting and decision support systems both for the daily 
management of the water systems and its control during extreme events such as floods. 
Concerning the crisis management during flood events, all stakeholders in a region are 
organized in 25 so-called “Veiligheidsregios” which take over the coordination of crisis 
situation and the related decision making. 
 
Although RWS-WMCN is not directly responsible for the decision-making, their forecasts and 
its related uncertainty is the most important building block for the downstream decision-
making. Therefore, a better insight into the added value of this data is needed to supply the 
stakeholders with better products. As a representative case, we consider the implementation 
of an evacuation measure along the Meuse River. It requires a typical lead time of 3-4 days to 
get implemented. The benefit of such a measure results from the trade-off between the 
implementation costs of the evacuation, its damage reduction and other aspects such as the 
credibility of the forecaster (a high false alarm rate decreases the acceptance of a forecasts in 
the future). 
 
Alternatively we may consider the case of closing the 'Ramspol stormvloedkering'. This 
decision to close this barrier is triggered by the storm surge (wind and wave conditions) on 
the IJssellake side but has negative implications for the ability to discharge fluvial water from 
the river IJssel and the river Vecht. A prolonged closure of this barrier will result in increased 
risk of upstream flooding due to limited drainage capabilities of the rivers. Main sources of 
uncertainty are: 
• the meteorological (precipitation, wind), hydrodynamic (waves and water level rise) and 

hydrological (inflow boundary conditions) forecast uncertainty 
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User Story 2 (RWsOS IWP) 
Stakeholder: RWS-WVL (Wim Werkman, Herbert Berger) 
 
The operational forecasting and decision support system “RWsOS IWP” is developed and 
operated by RWS-WVL (Department Water, Traffic and Environment). It integrates and 
visualizes data of the Dutch national canal network (primarily water levels, flows and 
structural settings), collects or forecasts the fluxes of the water system and supplies decision-
support tools for its daily operation. It is a country-wide, internal application of RWS. In its 
final extend, it will cover approximately 12-13 regional systems. 
 
An appropriate process description of the canal system is achieved either by zero-dimen-
sional models (storage nodes with interconnected structures) or one-dimensional hydraulic 
models including wind forces. Hydraulic structures should consider head-dependencies on 
their capacity and energy consumption. On top of the hydraulics, water quality processes 
such as contamination, salt intrusion and blue algae bloom can be relevant to the operation of 
such systems and should be considered in the decision-support. 
 
A typical application in the RWsOS IWP has a forecast and control horizon of 2 days. It works 
with a time resolution of 10 min if tidal boundaries are present or on an hourly resolution 
otherwise. The control problem is multi-objective including water level setpoints for 
navigation, salt concentration, fish migration, organizational limitations and energy costs. The 
latter can be achieved by i) negotiating dedicated energy prices for example during day and 
night time, ii) requesting a daily energy consumption from a utility which schedules it within 
the day according to its highest financial benefit. 
 
An important aspect of the control is the need to advice both on continuous (for example gate 
settings between min/max range with a maximum rate-of-change) and discrete decisions (a 
pump is either on or off). Furthermore, logical constraints should be considered. Examples 
include: 
• minimum runtimes for a pump if switched on or off, 
• no or only few changes at night (operator-friendly) if possible, 
• the use of a structure only if the head is larger than a threshold. 
 
Main sources of uncertainty in the operation of such system are: 
• errors in the water balance of the canal system due to incomplete or erroneous 

observations (inflows and outflows, lock operations, etc.), 
• the meteorological (precipitation, wind) and hydrological (inflow boundary conditions) 

forecast uncertainty, 
• and the process description of water quality components. 
 
These systems are typically operated by relatively low to medium educated technicians, who 
also have many other duties. An important aspect of the control is to make clear to them why 
a certain decision is taken. The control should not be a black box to them. 
 
User Story 3 (RWsOS Waterbeheer) 
Stakeholder: LCW, RWS-WVL (Wim Werkman, Bert Kort) 
 
The institutes Alterra and Deltares, the Netherlands Environmental Assessment Agency 
(Planbureau voor de Leefomgeving, PBL) and RWS Waterdienst cooperate in the 
development of a integrated surface-groundwater model referred to as the Netherlands 
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Hydrological Instrument (NHI), with a country-wide called LHM. It consists of the models 
MODFLOW, MetaSWAP, DM and Mozart. The last two components represent the surface 
water and will get revised in 2016-2018. 
 
The LHM is embedded into RWsOS Waterbeheer and runs daily. The execution of the overall 
model is slow, useful for an overview of the current and expected water system status but 
less suited for what-if scenario's to support operational decision making. Therefore, a quick-
scan tool based on a multi-objective RTC-Tools model is being developed (pilot completed 
April 2016, final version later in the same year) to support the national water allocation during 
low flows and droughts according to given allocation priorities. An evaluation will assess, 
whether RTC-Tools could replace the DM and Mozart components in the NHI. 

2.1.3 Waterschap Noorderzijlvest / Regional Water Authority Noorderzijlvest 
 
User Story 4 (FEWS Noorderzijlvest) 
Stakeholder: Waterschap Noorderzijlvest (Jan Gooijer, being replace by Arne Roelevink) 
 
The regional water authority Noorderzijlvest (NZV) operates an operational forecasting and 
decision support system in the northeast of the Netherlands. It integrates and visualizes data 
of the regional water system, computes deterministic forecasts by hydrological and hydraulic 
models and implements the real-time control of the water system. A future use of probabilistic 
forecasts (GLAMEPS) is intended. 
 
The required process description for the representation of the canal system is similar to the 
one in User Story 2 except for the need for modeling water quality processes (yet). 
 
The objectives of the decision support component depend on the flow regime. During low and 
medium flows, the system conducts the daily water management under consideration of the 
main objectives of the fulfilment of water level setpoints and the cost-efficient operating of 
pumps with as little energy and energy costs as possible. The full automation of this mode as 
real-time controller is on the way putting an emphasis on the required robustness of the 
optimization approach. Other characteristics of the daily decision support are similar with the 
ones of User Story 2. 
 
During flood events, the system serves as a decision-support component. The single 
objective of the system is the mitigation of flood peaks. Forecast horizon gets extended to 4-5 
days. In this mode, the intended use of probabilistic forecasts in combination with a stochastic 
optimization procedure will increase the robustness of the suggested decisions. It will provide 
a better and more stable forecast and considers the forecast uncertainty explicitly in the 
decision-making procedure. 

2.1.4 Water-Energy-eXchange (WEX)/JIP Slim Malen 
Stakeholders: Waterschap Zuiderzeeland, Hollands Noorderkwartier, Friesland, Rivierenland, 
Brabantse Delta, Hollandse Delta, Rijnland, Scheldestromen, STOWA, Rijkswaterstaat, 
Eneco, Delta, Actility, Aliander/EnergieExchangeEnabllers, Xylem (Deltares: Ivo Pothof)  
 
The project Water-Energy-eXchange (WEX)/JIP Slim Malen, also co-funded by TKI 
Deltatechnology, aims at the optimization of energy consumption and/or energy costs in 
regional Dutch water systems. Initially it considered 4 pilot studies for the regional water 
authorities Waterschap Zuiderzeeland, Hoogheemraadschap Hollands Noorderkwartier, 
Waterschap Rivierenland and Wetterskip Fryslân. By now many other waterboards have 
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joined this project. The typical use case is a modified version of User Story 4 (FEWS NZV) 
with a number of essential differences. 
 
First, the main goal of the decision support component during low and medium flows is 
optimization of energy consumption and/or energy cost. This implies that the water level set 
point will be no longer included in the objective function, but the water level range will be 
treated as a constraint only. 
 
Secondly, the pump model will be extended in order to capture the correct relations between 
the pump discharge, pumping power and pump head over the allowable range of pump 
speeds, since many pumping stations have variable speed drive. 
 
These differences with User Story 4 will allow for more accurate prediction of the power 
consumption of the pumping stations and the flexibility in the pumping station operation. In 
this way, the water boards will be able to sell the available flexibility at different energy 
markets, typically the day ahead market (APX). 
 

2.1.5 Rekenen aan Slim Water Management 
Stakeholders: Witteveen+Bos (Hoogheemraadschap Delfland), Nelen&Schuurmans 
(Hoogheemraadschap Hollands Noorderkwartier), Hoogheemraadschap Rijnland, 
Waterschap Noorderzijlvest (Floris Knot) 
 
The TKI project “Rekenen aan Slim Water Management” aims at the application of innovative 
techniques for the smart water management in regional Dutch water systems. Besides the 
energy- and cost-efficient daily management, it also focuses on decision making during flood 
events. 
 
In the project, user stories such as the ones above will be further refined and related 
implementation for the 4 water authorities will show the applicability of innovative techniques 
in a real-world setup. 

2.1.6 Other Parties 
 
Other activities with a relation to this project include: 
 

• Ongoing assessment of the next generation RIBASIM software (MSc. Tiaravanni 
Hermawan under supervision of Peter Gijsbers and Eelco van Beek ) to assess 
suitability of RTC-Tools for strategic planning of water resources and reservoir 
management 

• Co-operation with Hoogheemraadschap Delfland (KlaasJan van Heeringen, Bart 
Dekens) 

• Control of the heat network of TU Delft (contractors: Deltares, Kuijpers, Deerns, Priva 
BV): heat control in TUD buildings, current phase 2 (present – April 2016, reporting 
until September 2016) with feasibility study of predictive controller, potential SCADA 
system integration of predictive controller in phase 3 
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2.2 Selection of Representative Problem Setups 

2.2.1 Overview 
 
In this section, we define a number of representative test cases for further analysis based on 
the stakeholder inventory described above. Since this inventory is primarily conducted for 
typical Dutch water system and does not represent the full range of already existing RTC-
Tools applications, we add a number of complementary cases to broaden the scope of the 
analysis. This includes the use of rainfall runoff and flow routing components within variational 
data assimilation applications and the short-term management of multi-purpose reservoir 
systems. The test cases are summarized in Table 2.1. 
 
Table 2.1 Overview of representative problem setups 
Case Description Application Comments 
HM-FR Hydrological Modeling 

(Flow Routing) with 
various variable-
parameter routing 
schemes 

Hydrological flow routing 
as component in 
distributed hydrological 
models with variational 
data assimilation, flow 
routing between and 
downstream of reservoirs 

Optimization variables << model 
states, therefore, preference for a 
sequential setup, but also need for 
collocated setup between 
reservoirs, 2nd-order derivatives 
required for collocated setup 

RS Reservoir System with 
multi-purpose reservoirs 

Short-term optimization of 
the reservoir systems 
considering multiple 
objectives such as flood 
mitigation, hydropower 
generation, etc. 

Optimization variables in the order 
of the model states, preference for 
collocated setup and 2nd-order 
derivatives, optional extension to 
hybrid systems and stochastic 
optimization, simple upstream to 
downstream routing 

CS-CON Canal System with 
Continuously Operated 
Structure(s) 

Short-term optimization of 
a low-land water system as 
operated by Dutch water 
boards, relevant objectives 
include flood mitigation and 
cost-aware drainage 

Comparable to case RS, but with 
more sophisticated flow processes 
(hydraulic routing), 
pumps instead of turbines, tidal 
boundaries, option for stochastic 
optimization 

CS-DIS Canal System with Barrier 
(Open / Closed) 

According to CS-CON, but 
with discontinuous 
decisions, logical 
conditions etc. 

According to CS-CON, but with 
dedicated mixed-integer 
optimization algorithms, option for 
stochastic optimization 

CS-LES Canal System with Lateral 
Extraction requests under 
Shortage conditions 

Multi-objective water 
allocation 

Priority based allocation using 
sequential goal programming 
optimization algorithm, option for 
weighting factor based LP approach 

EV Evacuation Measure 
Based on Uncertain 
Forecasts 

Decision if and when an 
authority should initiate an 
evacuation measure 

Application beyond the water 
system to address the impact of a 
forecast and its uncertainty on 
decision making 

 
In the order of the cases, the hydrological modeling components above (HM-FR) are applied 
in particular within variational data assimilation methods (aka 4Dvar) to update model system 
states with observed historical data. The hydrological flow routing scheme (HM-FR) may also 
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be used in combination with the reservoir systems model (RS). The latter is primarily applied 
to the short-term optimization of multi-purpose reservoir systems, but may also serve as a 
reservoir component within hydrological models. The main difference between the HM and 
RS cases is the ratio between optimization variables and model states as well as the need to 
constrain these states. Whereas the number of model states is significantly larger than the 
number of optimization variables in the HM cases, these are in the same dimension in the RS 
reservoir model. This favors a sequential1 optimization setup for the HM cases and a 
collocated one for the RS case. Furthermore, the need to constrain states, for example the 
forebay elevation of a reservoir, is more relevant for the RS case and more easily 
implemented in the favored collocated setup. 
 
The cases CS-CON and CS-DIS are derived from the inventory of the previous section. Both 
cover the short-term optimization of a typical Dutch canal or system. CS-CON covers only 
continuous control decisions, for example the control of a crest level in the range of minimum 
and maximum bounds. CS-DIS extends this case to binary decisions (“A pump is either on or 
off.”) and logical constraints (“If pump A runs, gate B cannot be used.”). One of the challenges 
in the WEX use case, is to find the most appropriate problem formulation, which might be a 
CS-CON formulation with the pumping station discharge as the main decision variable or a 
certain CS-DIS formulation. Case EV goes beyond the domain of the water system and 
assesses the application of decision support techniques to the implementation of an 
evacuation measure due to flooding. 
 
All short-term control cases (RS, CS-CON, CS-DIS, CS-LES, EV) have multiple objectives 
and the stakeholders’ input is required as regards the trade-off of these objectives. 
Furthermore, all cases profit from the explicit consideration of forecast uncertainty in the 
decision making process to obtain more robust decisions. 
  

                                                   
1 In a sequential optimization setup, only control variables become optimization variables. Model states such as the 

water level in a reservoir depend on these control variables. In contrary, the collocated setup handles both control 
variables and states as optimization variables and includes the process equations as equality constraints of the 
optimization problem. The pros and cons of each setup are problem dependent. 



 

 

 
1221016-000-ZWS-0010, 25 August 2016, final 
 

 
Multi-stage Stochastic and Robust Optimization of Flood Mitigation Measures under Forecast 
Uncertainty - Inception Report 
 

9  

 

 

2.2.2 HM-FM: Hydrological Modeling (Flow Routing) 
 
Process Description and Schematization 
 
Hydrological routing schemes are frequently used in semi-distributed and distributed 
hydrological models and flow forecasting systems. They achieve accuracy close to full 
dynamic models for rivers with medium and steep slopes (without backwater effects), but 
have a much higher computational performance. 
 
Various hydrological routing schemes can be formulated as a cascade of lumped nonlinear 
reservoirs (Schwanenberg & Alvarado Montero, 2016) according to the ordinary differential 
equation (ODE) given by 

 
( ), ,

0
dS I Q p

I Q
dt

− + =  (1.1) 

where S  is the storage, I  and Q  are the inflows and outflows of the reservoir, and p  are 
parameters. A discrete-time form of Eq. (1.1) is achieved by an application of the θ -method 
to express the fluxes 1/2 1/2,k kI Q− −  as variables of the time steps 1,k k−  by 

 
( )
( )

1/2 1

1/2 1

1

1

k k k
I I

k k k
Q Q
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Q Q Q
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θ θ

− −

− −

= − +

= − +
  (1.2) 

to receive 

 
( ) ( ) ( )

( ) ( )

1 1 1
1, 1,

1 1

, , , ,
,

1 1 0

k k k k k k
k k k k

k k k k
I I Q Q

S I Q p S I Q p
F I Q

t
I I Q Qθ θ θ θ

− − −
− −

− −

−
=

∆
− − − + − + =

 (1.3) 

where F  is a function representing the mass error in the reservoir and ,I Qθ θ  are time 
weighting coefficients with unconditional stability in the range [0.5, 1]. Details of the numerical 
implementation in the existing RTC-Tools package are provided in Schwanenberg & Alvarado 
Montero (2016). 
 
One application of the routing scheme is as a component of a hydrological model. In this 
case, model states significantly outnumber the optimization variables. This favours a 
sequential optimization setup. It requires a time integration by an iterative, reservoir-wise 
solution of Eq. (1.3). The computation of the 1st-order derivatives can be achieved by 
application of the implicit function theorem and the adjoint sensitivity equation (Alvarado-
Montero et al., 2006). 
 
An alternative implementation is a collocated setup by the introduction of Eq. (1.3) as an 
equality constraint of the optimization problem. This is the method of choice for example for 
routing reaches between two reservoirs in case of the short-term management of reservoir 
systems. It enables an efficient use of hard constraints on the forebay elevation of the 
reservoir and other quantities. 
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The test case considers the use of the routing model in a data assimilation setup. This can be 
described by a penalty on the deviation of the true state x  and the simulated state m  as well 
as the observed state o  provided by 

 
( ) ( )2 2

2 2
m ot

x m x o
J dt

σ σ
− −

= +∫   (1.4) 

where ,m oσ σ  is the uncertainty, i.e. error variance, of the simulation and the observation, 
respectively. We introduce the state update x∆  to receive the true state x  from the 
simulated state m  by x m x= + ∆  and receive 

 ( )22
m o

t

J w x w x o dt= ∆ + −∫  (1.5) 

where 2 21/ , 1/m m o ow wσ σ= =  are referred to as weighting factor. 
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Test Case HM-FR1 
 
Table 2.2 Test Case HM-FR1 
Schematization Muskingum-Cunge routing with a trapezoidal channel cross 

section used in Todini (2007) and Schwanenberg & Alvarado-
Montero (2016): 

• 100kmL =  2kmx∆ =  
• 3600st∆ =   
• Trapezoidal cross section with 0 15mB = , slope of 1:5 
• Bed slope of 0.00025, Manning roughness 0.035n =   

Simulation Period 

Boundary Conditions 
Simulation period is [ ]0,100hT =  
The inflow hydrograph is adopted from experiments in NERC 
(1975), Todini (2007) and others: 

     ( ) ( ) exp 1I base peak base
p p

t tQ t Q Q Q
T T

β
  

= + − −      
 

where 16β = , 3 1900m speakQ −= , 3 1100m sbaseQ −=   and 

24hpT = . 

Optimization Setup We assume an observed outflow OQ  at the downstream 
boundary according to the equation of the inflow hydrograph 
above with the modified parameters 3 1700m speakQ −=  and 

38hpT = . 
The objective functions penalizes updates of the inflow boundary 
as well as deviation between observed and simulated (and 
updated) flow at the downstream boundary: 

     ( )22
, ,min

I
n I d O sim O obsQ k

w Q w Q Q
∆

∆ + −∑  

where IQ∆  is the update (optimization variable), , ,,O obs O simQ Q  are 

observed and simulated outflows, 0.1nw =  and 1dw =  are 
weighting factors. 

Validation Criteria of the validation are: 
• Convergence history of the optimization 
• CPU time per iteration 
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2.2.3 RS: Reservoir System 
 
The planning and management of hydropower reservoir systems constitutes a highly relevant 
case for model predictive control. Each reservoir in the system needs to be operated in such 
a way that the system wide objectives are met, given the predicted uncertain inflows and 
system load. These objectives may relate to various strategies and/or obligations of the 
hydropower operator, and are often conflicting. 
 
Process Description and Schematization 
 
A reservoir system is schematized by the following main components: 
1 hydropower reservoir, 
2 routing reach between two reservoirs or downstream. 
 
In this case, the reservoir component is a compact representation of a hydropower facility, 
based on aggregated turbine and spillway characteristics. The component implements 
volume conservation in the reservoir by 

 I O
dS Q Q
dt

= −   (1.6) 

where S  is the reservoir storage, ,I OQ Q  are the total inflows into the reservoir and its 

outflow. The outflow consists of turbine flow TQ  and spillage SQ  according to 

 O T SQ Q Q= +   (1.7) 

The level-storage relation defines the dependency of the storage on the forebay elevation fbz  

 ( )fbS f z=   (1.8) 

Furthermore, the power generation is computed by 

 fb twh z z= −   (1.9) 

 TP g hQη ρ=   (1.10) 

where twz  is the tailwater elevation, h  is head, P  is the power generation and 
3 2, ( 1000kg/ m ), ( 9.81m/ s )gη ρ = =  are coefficient for the turbine efficiency, the density of 

water and the acceleration due to gravity, respectively. 
 
For simplicity, the test case considers a linear level storage relation according to 

 0 fbS S Az= +  (1.10) 

where 0S  is a reference storage at 0fbz =  and A  is the reservoir surface area. In addition, 

the tailwater elevation twz  and turbine efficiency η  are assumed to be reservoir-specific 
constants. 
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The routing element is modeled by a simple delay term. The downstream discharge DQ  is 

equal to delayed upstream discharge UQ  according to 
 

 ( ) ( )D UQ t Q t τ= −  (1.10) 

where τ  represents the time delay. 
 
A reservoir system constitutes of linked routing elements and reservoir components, forming 
a network. The reservoir inflow IQ  is equal to externally specified inflows EQ , added with the 

sum of the routed outflows from the connected upstream reservoirs DQ  by 

 I E D
upstream

Q Q Q= + ∑   (1.11) 

For each of the most upstream reservoirs in the network the externally specified inflow ( EQ ) 
is the only source of water. For the other reservoirs, this term represents the accumulation of 
lateral inflows along the upstream river reaches. 
 
In the test case, we consider a reservoir system consisting of three reservoirs and two 
connecting routing elements. Table 2.1 below lists the components in order from upstream to 
downstream. The hydrographs for the external inflows are adopted from case HM-FR1: 

 ( ) ( ) exp 1E base peak base
p p

t tQ t Q Q Q
T T

β
  

= + − −      
 (1.11) 

with parameters as specified in Table 2.3. The simulation period T = [0, 30d]. 
 
Table 2.3 Schematization for RS test cases, listing the components in order from upstream to downstream. 
Component ID Type Characteristics and forcing 
RES_UP Reservoir A  = 5.0 × 107 m2 

twz  = 500 m 
η  = 0.88 

baseQ  = 150 m3/s 

peakQ  = 750 m3/s 

pT  = 6d 

β  = 3 
UP_TO_MID Routing τ  = 12 hr 
RES_MID Reservoir A  = 5.0 × 108 m2 

twz  = 250 m 

S OQ Q= , i.e. no power generation 

baseQ  = 300 m3/s 

peakQ  = 1500 m3/s 

pT  = 6d 
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β  = 3 
MID_TO_DOWN Routing τ  = 24 hr 
RES_DOWN Reservoir A  = 5.0 × 108 m2 

twz  = 0 m 
η  = 0.88 

baseQ  = 150 m3/s 

peakQ  = 1500 m3/s 

pT  = 6d 

β  = 3 
 
 
Test Case RS1 
 
In this test case, a set of constraints is imposed that reflects common operational 
requirements. The constraints may reflect facility characteristics (e.g. turbine capacity), 
environmental obligations (e.g. restricted forebay operating range), and the strategic use of 
water resources (e.g. no spill in the dry season). For each of the three reservoirs, forebay 
elevation is restricted according to 

 ,min ,maxfb fb fbz z z≤ ≤   (1.12) 

In addition, the two facilities with generation (RES_UP and RES_DOWN) need to satisfy 

 ,max0 T TQ Q≤ ≤   (1.13) 

 0 SQ≤   (1.14) 

 max0 P P≤ ≤   (1.15) 

Finally, rate-of-change and average constraints for the total outflow are imposed to ensure 
smooth control by 

 O,min ,max
O

O
dQdQ dQ
dt

≤ ≤   (1.16) 

 
2

,min ,max
1

t

O O O
t

Q Q Q≤ ≤∫   (1.17) 

The objective considers the maximize of the total generation over the forecast horizon by 

 max
projectst

P dt∑∫  (1.17) 

In order to prevent the reservoirs from drafting towards the end of the simulation horizon, the 
forebay elevation fbz  at t T=  is fixed by 

 ( ) T
fb fbz t T z= =   (1.18) 
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Table 2.4 Reservoir characteristics 
 Component ID 
 RES_UP RES_MID RES_DOWN 
Forebay [580, 650] m [300, 303] m [5.5, 10] m 
Outflow rate-of-change [-50, 50] m3/s/h [-300, 300] m3/s/h [-150, 150] m3/s/h 
Outflow average over 
sliding week 

[0, 250] m3/s [0, 1500] m3/s [0, 750] m3/s 

Turbine [0, 300] m3/s  [0, 1000] m3/s 
Generation [0, 300] MW  [0, 55] MW 
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Test Case RS2 (discontinuous spillage) 
 
Test case RS1 constitutes a fully continuous problem formulation. In this test case, discrete 
behavior is introduced by replacing the zero spill flow constraint for RES_UP by a constraint 
of the form 

 0 S SQ a or b Q≤ ≤ ≤   (1.19) 

where the parameters 0 a b< <  define a forbidden spill range in the interval [ , ]a b . 
 
 
Test Case RS3 (unit dispatch) 
 
This test case constitutes another extension of test case RS1. Like in test case RS2, discrete 
behavior is introduced, but now by allowing individual turbine units to be switched on and off, 
and penalizing such switches in the objective function. Instead of the approach based on 
aggregated facility characteristics, the total turbine flow and power generation become a sum 
of their individual units 

 T Ti
i

Q Q=∑   (1.20) 

 i
i

P P=∑   (1.21) 

Furthermore, the turbine efficiency of a unit gets dependent on the flow and head through this 
unit according to  

 ( ),Tif Q hη =   (1.22) 

The turbine efficiency η  has either a piecewise linear relation with turbine flow TQ  and head 
h . Alternatively, the relation can be fitted by a polynomial. 
 
The set of constraints is augmented with constraints on the turbine flow of the individual units, 
which may be switched on in a certain range or off, 

 ,min ,max0Ti Ti TiQ or Q Q Q= ≤ ≤   (1.23) 

 
The objective additionally takes into account the costs for the start-up and shut-down of a 
turbine by 

 max
projects switchest

P dt γ−∑ ∑∫  (1.24) 

where γ  represents the (scaled) cost for switching a turbine on or off. 
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2.2.4 CS-CON: Canal System with Continuously Operated Structure(s) 
 
Process Description and Schematization 
 
An appropriate process description of water levels and flows in low-land canal networks within 
water management applications are the 1D shallow water or Saint Venant equations. In its 
non-conservative form, they read 

 0A Q
t x

∂ ∂
+ =

∂ ∂
  (1.25) 

 
2

f
Q Q zgA S
t x A x

 ∂ ∂ ∂ + = − −   ∂ ∂ ∂  
  (1.26) 

where A  is the flow cross section, Q  is the flow, z  is the water level above reference 
datum, fS  represents friction slope in the dimensions time t  and space x , and g  is the 
acceleration due to gravity. A beneficial simplification of these equations for water resources 
applications on courser computational grids is the inertial wave model we achieve by 
neglecting the convective acceleration term in Equation (1.26) to receive 

 f
Q zgA S
t x

∂ ∂ = − − ∂ ∂ 
  (1.27) 

The set of Equations (1.25) and (1.27) can be schematized on a staggered grid leading to a 
system of Ordinary Differential Equations (ODEs) and Algebraic Equations (AE) according to  

 
( )i i

j
j

dS z Q
dt

=∑   (1.28) 

 ,
j u d

j f j

dQ z zgA S
dt x

− = − − ∆ 
  (1.29) 

 ( ) ( ) ( ),, , ,i i j f j j jS f z A g z S h Q z= = =   (1.30) 

where the indices ,i j  represent the discrete locations for storage and flow, respectively, 
,u dz z  refer to the water level in the upstream and downstream storage nodes from a branch 

perspective, the functions ( ), ( ), ( )f g h  represent the level-storage relation of a node, the 
flow cross section and the friction losses at the branch, respectively. The water level at a 
branch can be expressed either by a central or upwind formulation provided by 

 ( ), ,upwind
1 ,
2j central u d j uz z z z z= + =   (1.31) 

In Dutch canal system with relatively constant water levels, the central formulation is 
preferred due to its higher accuracy. In steeper river reaches with higher Froude numbers, the 
upwind formulation can be advantageous because of its higher numerical robustness. The 
friction slope can be expressed as 
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 , 2 2
j j

f j
j j

Q Q
S

C A m
=   (1.32) 

where C  is the Chézy roughness coefficient and m  is the hydraulic radius. Alternative 
formulations of the friction slope, for example the empirical Manning formula, can be 
implemented by expressing the Chézy coefficient by a Manning coefficient n  according to 

 
1/6mC
n

=   (1.33) 

The test case considers an inland water system according to Figure 2.1. 
 

 
Figure 2.1 Schematization of the canal system in test case CS-CON 
 
Nodes 0-1 represent the inland canal system. Inflow from the surrounding region enters the 
system in the nodes 0 and 1 by inflow boundary conditions. The nodes are connected by two 
flow branches according to the inertial wave model of Equation (1.27). This implies that the 
flow direction in branch 1 may change direction depending on the inflow boundary conditions 
and the drainage strategy at node 2. 
 
Node 3 represents the sea by a water level boundary condition and the related tidal signal. 
The drainage of the canal is achieved by two pumps and an orifice. Pump 1 is an electric 
pump with an installed capacity of 5 m3/s. Pump 2 is a diesel-powered pump of a capacity of 
10 m3/s. We assume both capacities head-independent in the first three cases, then head-
dependent. The orifice can release water by gravity flow, if the upstream water level at node 2 
is higher than the downstream water level at node 3. A return flow of salt water from node 3 to 
node 2 is not permitted. 
 
The flow capacity of the orifice is given by 

 ( )( )
( )

0

2 , if (free flow)
otherwise (submerged flow)

2

down up

s g up s g down s g

s g up down

if h h
Q w d g h z d h z d

w d g h h

µ µ

µ


 >
= − + < +

 −

  (1.34) 

where sw  is the gate width, µ  is the contraction coefficient, gd  is the gate opening, sz  is the 

crest level of the gate, and ,up downh h  are the upstream and downstream water levels, 
respectively. Depending on the definition of the parameter µ  (a typical value is around 0.67), 
the capacity has a discontinuity in the transition from free to submerged flow. 



 

 

 
1221016-000-ZWS-0010, 25 August 2016, final 
 

 
Multi-stage Stochastic and Robust Optimization of Flood Mitigation Measures under Forecast 
Uncertainty - Inception Report 
 

19  

 

Test Case CS-CON1 (energy reduction) 
 
Table 2.5 Test Case CS-CON1 
Schematization Nodes 0-3 have a constant water surface of 2100,000mA =  and 

a level-storage relation of ( )2 mS A z= + . 

The canal reaches of branch 0 and 1 have the following 
characteristics: 

• 10kmL =  
• Trapezoidal cross section with 0 5mB =  at 2 mz = − , 

slope of 1: 2  
• Bed slope of 0, Chezy roughness 30C =  

The orifice has the characteristics: width 10msw = , contraction 

coefficient 0.67µ =  and crest level 1.8msz = − . 

The system is schematized with a time step of 300st∆ = . 
Simulation Period 

Boundary Conditions 
Simulation period is [ ]0,48hT =  
The inflow hydrographs are adopted from case HM-FR1 

     ( ) ( ) exp 1I base peak base
p p

t tQ t Q Q Q
T T

β
  

= + − −      
 

with the branch-dependent parameters: 

• Node 0: 16β = , 3 110m speakQ −= − ,  
3 15m sbaseQ −=  and 24hpT =  

• Node 1: 16β = , 3 140m speakQ −= ,  
3 15m sbaseQ −=  and 12hpT =  

The tidal level boundary conditions is provided by 

     ( ) sin
6htidal mean
tz t z z π = + ∆  

 
 

where 0.5mmeanz = −  and 1mz∆ = . 

Optimization Setup The objective function penalizes the use of pumps (and related 
energy consumption) as well as the deviation of a water level 
setpoint at node 3. 

     ( )2

2, 2,,
min

P g
p p sp sim spQ d k

w Q w z z+ −∑  

where pQ  is the pump discharge (optimization variable), gd  is the 
opening height of the orifice (optimization variable), 

2 2,, z 0.8msim spz = −  is the simulated water level at node 2 and its 
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setpoint, respectively, 0.1pw =  and 1spw =  are weighting factors 
for the use of pumps and the setpoint deviation. 

Furthermore, the use of the hydraulic structures is constraint by its 
physical bound given by 

     
30 15m /s

0 1.0m
p

g

Q
d

≤ ≤

≤ ≤
  

The water levels at nodes 0-2 is hard-constraint by a minimum 
water level according to 

     1.0m gd− ≤  

Validation Criteria of the validation are: 
• Convergence history of the optimization 
• CPU time per iteration 

 
Test Case CS-CON2 (energy cost reduction) 
 
Whereas we try to minimize the pump energy in case CS-CON1, this case considers the 
minimization of energy costs versus the deviation from water level setpoints. Modification 
related to case CS-CON1 are only present in the optimization setup 
 
Optimization Setup In comparison to case CS-CON1, we consider the pumps 

separately and penalize its use individually by considering a time-
dependent weighting factor which represents the instantaneous 
energy price. 

     ( )
1 2

2

1 1 2 2 3, 3,, ,
min

p p g

k k
p p p p sp sim spQ Q d k

w Q w Q w z z+ + −∑  

Both pumps get constrained separately by 

     
3

1

3
2

0 5m /s

0 10m /s
p

p

Q

Q

≤ ≤

≤ ≤
 

Optimization variables are the individual pump discharges 

1 2,p pQ Q  and the opening height of the orifice gd  . 

 
Test Case CS-CON3 (trade-off analysis) 
 
Up to this point, the two objectives pumping energy / costs and level setpoints in test cases 
CS-CON1 and CS-CON2 have been combined by a scalar weighting function. The main 
criticism of this technique from a user’s perspective is the difficult interpretability of the impact 
of weighting factor changes on the trade-off between the objectives. The focus of this test 
case is to explore different techniques to define, assess and visualize the trade-off between 
the two objectives above to a user. 
 
This covers: 
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• The assessment of the pareto front of pumping energy / costs and the setpoint 
deviation in combination with the scalar weighting function approach to quantify and 
visualize the trade-off between the objectives. 

• The application of alternative multi-objective optimization approaches to find more 
user-friendly ways for the system operator to define his preferences by priorities: 

o Put priority on decreasing the maximum water level regardless of pumping 
costs until an acceptable threshold is reached. 

o Use remaining flexibility in the water system to reduce pumping costs in 
combination with a reasonable bandwidth of setpoint deviations. 

 
The further enhancement of this case will closely depend on the numerical techniques 
addressed in the next chapter. 
 
Test Case CS-CON4 (operational flexibility for energy utility) 
 
A promising future business model for regional water boards is the operation of pumps in 
collaboration with energy utilities. In this setup, the water board requests its predicted daily 
energy demand for the pumps and the utility schedules this demand dependent on balancing 
requirements and the energy price. The energy consumption will vary depending on the 
starting time of pumps, since head will vary due to tidal dynamics. Hence the water board 
should provide information to the utility on this flexibility and associated extra pumping power 
requirement. Further the water level set-point should be shifted from the goal function to a 
boundary condition in this test case. 
 
The operation of the water system inherits two main sources of uncertainty, namely 

• the forecast uncertainty in the inflow prediction of the water system and 
• the scheduling of the utility. 

 
Both can be represented in a probabilistic ensemble. 
 
The purpose of the test case is the setup of a stochastic optimization procedure to schedule 
the daily demand of the water authority in such a way, that 

• the overall use of energy / energy costs is minimized, 
• the setpoint deviations are minimized, 
• the chance for unscheduled use of pumps (and its related penalty) is minimized. 

 
The further enhancement of this case will closely depend on the numerical techniques 
addressed in the next chapter. 
 
Test Case CS-CON5 (forecast uncertainty during flood events) 
 
Similar to the base case CS-CON5, but with a forecast horizon of 5 days and a probabilistic 
forecast and a focus on flood mitigation 
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2.2.5 CS-DIS: Canal System with Barrier (Open / Closed) 
 
Process Description and Schematization 
 
The process description as well as the schematization of the water system is identical with 
the one in the CS-CON case. 
 
 
Test Case CS-DIS2 (energy cost reduction) 
 
This test case is based on case CS-CON2 with the following modifications: 

• Both pumps can be only on or off. The operation of the orifice stays either continuous 
or gets replaced by a number of discrete settings. 

• If a pump is switched on or off, it is required to stay in this position for at least 2 hours. 
 
Test Case CS-DIS2b (energy cost reduction) 
 
This case is identical to case CS-DIS2 with the difference of fixed steps for the pumps 
discharge. 
 
Test Case CS-DIS3 (trade-off analysis) 
Test Case CS-DIS4 (operational flexibility for energy utility) 
Test Case CS-DIS5 (forecast uncertainty during flood events) 
 
The test cases are based on cases CS-CON3 - CS-CON5 with the modifications above. 
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2.2.6 CS-LES: Canal System with Lateral Extraction requests under Shortage conditions 
 
 
Process Description and Schematization 
 
Water allocation problems generally are represented by a network of connected water 
balance elements with laterals to accommodate extractions. Objectives are the request for 
lateral extraction or instream flows. Control variables are the allocated extractions and 
allocated flows in the network. Under shortage conditions, not all requests can be met. This 
multi-objective problem can be formulated in a priority based approach using sequential goal 
programming techniques (see section 3.4.3) where all requests (i.e. objectives i) have been 
assigned a priority or goal order. The algorithm sequentially solves all objectives by priority 
order. 
 
 
Test Case: CS-LES (priority based) 
 
Test case considers a simple situation where the a channel has two lateral intakes (QLat2 
and QLat3). The channel itself has a downstream flow request (Qin1). 
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Table 2.6 Test Case CS-LES1 
Schematization  

• 1QIn  = 3, priority = 1 

• 2QLat  = 10, priority = 2 

• 3QLat = 5, priority 3 

 
Simulation Period 

Boundary Conditions 
Simulation period is [ ]0,48hT =  

inflowQ  = variable between 2 and 20 

 

Optimization Setup The optimum solution is attained when the sum of deviation 
( 𝑓𝑘(𝑥)) from all variable in all-time series reaches the minimum 
value. Nevertheless, the optimum solution must be inside the 
bounds of the inviolable hard constraints( 𝑔(𝑥)). It is also 
important to note that the sum of deviations of the higher goals 
� 𝑓𝑖(𝑥𝑜𝑝𝑡,𝑖)� must remain constant or smaller after the lower goals 
( 𝑓𝑖(𝑥)) are solved. 
 

     ( ) ( ) ( )1 2min , ,..., ix
f x f x f x   subject to 

( )
( ) ( ),

0

              

g x

i kε ε

≤

= ∀ < =i i i i opt i    f x f x
 

 

Validation Criteria of the validation are: 
• Allocation logic given order of priorities 
• CPU time per iteration 

 
 
 
  



 

 

 
1221016-000-ZWS-0010, 25 August 2016, final 
 

 
Multi-stage Stochastic and Robust Optimization of Flood Mitigation Measures under Forecast 
Uncertainty - Inception Report 
 

25  

 

 

2.2.7 EV: Evacuation Measure Based on Uncertain Forecast 
 
Process Description and Schematization 
 
We assess the implementation of an evacuation measure with a required minimum lead time 
of 4 days. In a simple deterministic setup which serves as a reference, it is triggered by the 
up-crossing of a forecasted flow above a threshold at this specific lead time. It neglects 
forecast uncertainty both in the meteorological and hydrological forecast. In the 
corresponding probabilistic setup, we make use of a probabilistic forecast in the form of an 
ensemble or as a probability density distribution. 
 
The costs of the evacuation measure are provided by 

 ( )min( , ) baseC t C c t tδ δ= + −     (1.35) 

where ( )C t  are the costs of the evacuation measure initiated at lead time t , baseC  are the 

costs initiated at the minimum lead time mint , c  is a discount on the costs of the evacuation 
measure when getting implemented with a larger lead time, δ  is a binary variable which 
indicates if the evacuation measure is implemented (in case of 1δ = ). 
 
The flood damage is reduced by the evacuation measure by 

 ( ) ( ) ( )max max
max

if 1
, , ,

0 otherwise
base th th thD d Q Q Q Q t t Q

D t Q
δ

δ
 + − > ∧ = ∧ <

= 


  (1.36) 

where ( )maxD Q  is the peak flow dependent damage reduction, baseD  is the damage 

reduction at the inundation threshold thQ  by the evacuation measure, and d  is the increase 
of the damage reduction for an increasing peak flow. This means that the evacuation 
measure has only a positive impact i) if the peak flow maxQ  is above the inundation threshold 

thQ  (no damage reduction without damage and damage appears only when the threshold is 
up-crossed), ii) the evacuation measure is implemented and iii) it is implemented before the 
inundation threshold is reached. 
 
 
Test Case EV1 
 
Table 2.7 Test Case EV1 
Schematization Parameters of evacuation costs and damage reduction functions: 

• baseC  = 1 M€, c  = -100 k€/d, mint  = 96h 

• baseD  = 10 M€, d  = 1 M€/d 

• thresholdQ TBD=   

Simulation Period The deterministic forecast has a lead time of 10 days, the 
probabilistic one has a lead time of 15 days. 
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Boundary Conditions An archive of actual deterministic and probabilistic flow forecasts 
is provided from the operational flood forecasting system of RWS. 

Optimization Setup The objectives functions in its deterministic version represents the 
overall benefit of the decision by 

     ( ) ( )max,
min

t
C t D Q

δ
−   

and can be extended to a stochastic optimization by a probability 
weighted sum according to 

     ( ) ( ),max, 1
min

n

j j j jt j
p C t D Q

δ
=

 − ∑  

Optimization variables are the binary decisions to evacuate or not 
and when. 

Validation Criteria of the validation are: 
• Performance of the probabilistic / stochastic setup in 

comparison with the deterministic one in terms of the  
o benefit of the decision J   
o false alarm rate of the evacuation measure 

 
 
This case is subject to a sensitivity study on the following parameters: 
• ratio between the costs for the evacuation measure and its  

damage reduction /base baseD C   
• discount on the evacuation measure c   
• increase rate of the damage reduction d   
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3 Inventory (Analyst)  

3.1 Model Library 

3.1.1 Overview 
 
In the context of water resources related real-time control and decision support, the main 
purpose of a model library is to provide simulation components for the prediction of processes 
and its optimization. This includes: 
 

1. the availability of core library components for the most frequently used process 
models such as reservoirs and hydraulic cannel networks, related tests and 
application examples, 

2. the easy extensibility of the library to dedicated processes, 
3. configurable schematization options related to the time integration (explicit or implicit 

schema) and the level of collocation (collocated, multiple shooting or single shooting), 
4. the robust and simple integration of the model library in optimization algorithms (for 

example by supplying derivatives or a symbolic model representation), 
5. an easy and if possible GUI-supported model setup procedure. 

3.1.2 RTC-Tools 
 
The existing version of RTC-Tools 1.X supplies a model library on the level of C++ classes 
and configuration by XML. It includes a number of frequently used components such as 
several reservoir models and simplified hydraulic models, but also incorporates a number of 
dedicated, custom made components. 
 
The integration of new components require: 

• the implementation of a C++ class including functions for simulation and an adjoint 
mode (this means that the 1st order derivative needs to be coded by the developer) 

• the implementation of a XSD schema for the configuration of the component as well 
as a data binding components to call the class constructor by the XML-embedded 
information. 

 
The advantage of the approach is the high flexibility to implement arbitrary models in 
combination with any dedicated schematization. On the other hand, it implies a number of 
disadvantages such as: 

• the error-prone manual implementation of the 1st-order derivative and the lack of 
higher-order derivatives, 

• a relatively high effort to implement new components and the incapability to isolate 
dedicated, custom-made components from the core components and 

• the lack of GUI-supported setup tools. 

3.1.3 Modelling Languages (Modelica / JModelica) 
 
Traditional languages for formulating generic optimization problems are AMPL and GAMS. 
AMPL originated in the 1980s, whereas GAMS dates as far back as the late 1970s. Having 
arisen well before the maturing of the ideas of object oriented software development in the 
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1990s, AMPL and GAMS require the specification of the combined model and optimization 
problem in a single, monolithic file, in which the physics, model, discretization, and 
optimization problem are all jumbled together. 
 
Starting from the late 1990s, a group of researchers from the University of Lund in Sweden 
started to work on the object-oriented language Modelica for writing down mathematical 
models as differential equations. Using Modelica, one writes an ODE as such, instead of 
writing down a discretized solution. This separation of model and discretization leads to lean 
models. Furthermore, the models are kept well-structured by separating different model 
components into their own object classes. 
 
Modelica compilers take a model - which may contain a hierarchy of child models - and flatten 
all the contained equations into a single system of equations. This single system of ordinary 
differential and algebraic equations may then be imported into a simulation or optimization 
engine. The open source JModelica.org compiler, for instance, compiles a Modelica model 
directly into an in-memory symbolic representation, available through an API. 
 
The Modelica standard is open, and consequently many software packages are compatible 
with it. Modelica is now in heavy industrial use around the world at corporations such as 
Airbus, BMW, but also at DHI in the water sector, where it is used as the engine for MIKE 
WEST. 
 
Modelica has been primarily used to model technical applications and did not receive a lot of 
attention in the hydrological community or for the modeling of environmental systems. The 
application of the framework to this kind of applications will be subject to further analysis in 
this project. The standard does not address schematization options, however, various time 
integrators for Modelica models are widely available in tools implementing the Modelica 
standard. Partial differential equations (PDEs) are not supported at this point and its 
consideration depends on a reformulation of the PDE as a system of ODEs. 

3.1.4 Algorithmic Differentiation (CasADi) 
 
For numerical optimization, the availability of first and second order derivatives of the 
objective function and constraints are beneficial and increase the efficiency of the 
optimization algorithm. Consequently, first and second order derivatives of the underlying 
system model are also desirable. Algorithmic Differentiation (AD) refers to a technique which 
supplies the derivatives of a given function. 
 
The simplest automatic differentiation technique is to use operator overloading, i.e., to 
override the definitions of the mathematical operators (multiplication, additional, 
exponentiation, and so forth). The automatic differentiation operators don’t only compute the 
result of the operation, but also apply the rules of calculus to a second value representing the 
numerical value of the derivative. The advantage of this technique is its simplicity, whereas its 
principal downside is that the compiler is unable to optimize the derivative computations.  
 
An alternative technique is the conversion of the source code of a function to code that 
computes the function as well as its derivatives. This technique, known as source code 
transformation, is not always practical in that it requires all functions that will ever be required 
for the optimization to be known at compile time. 
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The in-memory symbolic representation is done in the open source software library CasADi. It 
implements a variation of the source code transformation technique. In CasADi, one 
constructs a symbolic representation of one’s mathematical function. The resulting symbolic 
function can be differentiated - as a whole - an arbitrary number of times, resulting in new 
symbolic functions. The original symbolic function may then be merged with its derivative 
functions, in a way that common sub-expressions, such as evaluations of trigonometric 
functions and logarithms, are shared. Finally, the combined symbolic function can be written 
to a C file, compiled using an optimizing C compiler, and loaded back as a shared library. The 
resulting C function provides accurate derivatives at high speed. 
 
The JModelica.org framework provides a compiler back end that compiles Modelica models 
to in-memory symbolic CasADi representations. Furthermore, CasADi may supply the 
framework to re-implement the RTC 1.X model library and merge it with models originating 
from Modelica. 

3.2 Deterministic Optimization Setup 

3.2.1 Overview 
 
The continuous form of an arbitrary process model can be either a system of ordinary 
differential equations (ODEs), differential-algebraic equations (DAEs) or partial differential 
equations (PDEs). Under the assumption that its discrete-time version is schematized by a 
single step method, it reads 
 
 ( )1, , ,k k k k kx f x x d u−=   (2.1) 

 ( ), ,k k k ky g x d u=   (2.2) 

 
where , , ,x y d u  are vectors for the states, model outputs, disturbance (forcing) and the 
control input, respectively, and the index t  denotes the time index. Depending on the 
existence of the term kx  on the right-hand side of Eq. (2.1), the equation becomes either an 
explicit or implicit function. The latter requires an iterative solution. 
 
The deterministic version of the optimum control problem can be defined as 
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where J  is the objective function, h  is a set of inequality constraints and *x  is the subset of 
states which become independent optimization variables and which corresponding state 
equations become equality constraints of the optimization problem. 
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3.2.2 Linearization Options 
 
The most generic setup of the optimization problem above is achieved by the assumption of a 
nonlinear process model in combination with arbitrary constraints. However, many problems 
in water resources applications may be either linear or only slightly non-linear. In this case, a 
linearization of remaining nonlinear components leads to linear optimization model, for which 
dedicated optimization algorithms are available with significant better performance than the 
one of general nonlinear problems. The same aspect will hold for mixed integer (MI) 
problems. 
 
One of the most frequently met nonlinearities in water resources models is the power 
generation of a turbine (or power consumption of a pump) according to 
 
 TP g hQη ρ=   (2.4) 
 
where P  is the power generation, η  is the turbine efficiency (potentially head and flow 
dependent), ρ  is the water density, g  is the acceleration due to gravity, h  is head and TQ  
is the turbine flow. 
 
A typical approach for the linearization of Eq. (2.4) is its conversion into a separable model. 
The introduction of the auxiliary variables 1 2,u u  according to 
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u h Q

u h Q

= +

= −
  (2.5) 

 
where 2u  becomes a free variable of the LP problem which is not restricted to non-negative 
values. Then, Equation (2.4) gets transformed into 
 
 ( )2 2

1 2P g u uη ρ= −   (2.6) 

 
The squared terms are separable functions and can be approximated by piecewise linear 
fashion. Without making any assumption on the convexity of the function, the piecewise linear 
representation is referred to as a special ordered set of type 2 (SOS2) according to: 
 
 1 1 2 2 3 3 4 4y y y y yλ λ λ λ= + + +   (2.7) 

 1 1 2 2 3 3 4 4x x x x xλ λ λ λ= + + +   (2.8) 

 1 2 3 4 1λ λ λ λ+ + + =   (2.9) 
 
where , yi ix  are pairs of the nonlinear function ( ) 2y f x x= =  for 1 2,u u  in Eq. (2.6). Mixed 
integer (MI) programming is required to ensure the interpolation condition that either one 
lambda or two adjacent ones are non-zero. 
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A primary research question in this project is, if linearization contributes to a better 
performance of an optimization under conservation of the model accuracy. 

3.2.3 Logical Constraints 
 
Operators in many water systems face logical constraints. Examples include a discontinuous 
spill range of a dam assuming that a ski jump spillway is not able to operate in a range [ ]a,b  
(Case RS2) or a pump which can be off, or operate between minimum and maximum 
capacity. 
 
A procedure for the RS2 case is presented in Williams (2013) on pages 169-172. The 
schematization reads 
 
 0SQ ≥   (2.10) 

 SQ M M aδ+ ≤ +   (2.11) 

 (1 )SQ M M bδ− + − ≤ −   (2.12) 
 
where δ  is a binary indicator variables and M  is a sufficiently large number we choose as 

,maxSM Q= . The indicator variable makes sure that only one of the indicator variables is 
active implying that either Equation (2.11) or (2.12) gets activated. 
 
Further research in this project will address the feasibility of adding such logical constraints in 
comparison to the alternative approaches such as the post-processing of continuous 
optimization results. 

3.3 Representation of Uncertainty and Stochastic / Robust Optimization Setup 
 
A suitable representation of uncertainty in the model forcing, model processes as well as 
objectives and constraints are an essential element of model predictive control applications. 
This is in particular important in application to water resources systems which uncertainties 
are usually much higher than in technical applications. 
 
A common way to represent meteorological uncertainty is by probabilistic ensemble forecasts 
and derived hydrological products. The uncertainty in these forecasts is correlated in time. An 
example is the uncertain magnitude of a forested precipitation event which may impact the 
streamflow over many days. A suitable method to process the probabilistic forcing is by a 
scenario reduction of the ensemble as input for a multi-stage stochastic optimization. This 
method has been already implemented in the existing RTC 1.X software and successfully 
validated in real-world test cases. 
 
Other uncertainty may not have less time-correlation at the time scale of interest. Examples 
are contingencies in a hydropower system with potential unit outages of turbines or generator. 
These may occur at any time step and often do not have a long lasting impact. The research 
question in this project is to better classify different sources of uncertainty and address the 
most suitable representation in the optimization problem. This will include an assessment of 
techniques such as security and chance constraints, (adjustable) robust optimization 
techniques among others. 
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3.4 Multi-objective Optimization 

3.4.1 Overview 
 
The management of most water systems fulfills multiple management objectives such as 
flood mitigation, water supply for domestic use or irrigation, environmental obligations, hydro-
power generation, among others. The corresponding optimization problem is referred to as 
multi-objective optimization according to the formulation 
 
 ( ) ( ) ( )1 2min , ,..., ix

f x f x f x    (2.13) 

 
where ( ) ( ) ( )1 2, ,..., if x f x f x  represent the multiple objectives. 
 
An important step in the definition of the multi-objective optimization problem is the 
implementation of individual objective function terms and its interaction or trade-off in the 
overall objective function. Furthermore, we may formulate individual objectives as constraints 
of the optimization and vice versa. This section intends to introduce and discuss basic imple-
mentation options and addresses research within this project. 

3.4.2 Weighting Method 
 
The weighting method is a classical approach for multi-objective optimization problems and 
implements a weighted sum of the individual objective function terms to receive a scalar 
objective function f  according to 
 
 ( ) ( ) ( )1 1 2 2 ... i if w f x w f x w f x= + + +  (2.14) 
 
where 1 2, ,..., iw w w  are weighting factors.  
 
The approach is a logical choice, if the objective function terms represent the same quantity, 
f.e. if all represent operating costs and f  describes the total operating costs of the system. 
On the other hand, the methods gets nontransparent from an operator point of view, if the 
objective function terms are nonlinear and represent quantities in different units. This is due to 
the fact, that the operators often find it difficult to correlate and quantify the importance of an 
objective with the weighting factor. 
 
Furthermore, all objective function terms are traded off against each other. If one objective is 
much more important than the other, the corresponding implementation will require a much 
higher weighting factor for the more important objective. This can lead to badly scaled 
optimization problem in which the lower priority objective gets neglected by the optimizer due 
to numerical issues. 
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3.4.3 Goal Programming (Lexicographical Ordering) 
 
Goal programming is an alternative approach to multi-objective optimization. Its basic version 
is referred to as lexicographical ordering. This means that the multi-objective optimization 
problem is solved stepwise starting with high-priority objectives, then moving to lower priority 
ones by keeping the prior function values as constraints. 
 
For a simple example with two objective function terms, this reads 
 
Step 1: ( )1min

x
f x  (2.15) 

Step 2: 
( )2

1 1,min

min

optional relaxation
x

f x

f f≤ +
 (2.16) 

 
where 1f  is a high priority objective and 2f  is a low priority objective. 
 
From an operator point of view, a lexicographical goal programming approach is often easier 
to apply than the weighting method, because of the transparent prioritization of the objectives. 
On contrary, it is computationally more expensive due to the solution of several optimization 
problems depending on the number of priority levels. Furthermore, it does not consider trade-
offs between objectives. 
 
The lexicographical goal programming can be easily combined with the weighting methods. In 
this case, the latter is used within a goal programming approach to summarize similar 
objective function terms, e.g. terms related with pumping costs. This reduces the number of 
sequential optimization problems and enables trade-off between objectives of the same 
priority level. 

3.4.4 Treatment of Constraints 
 
Another aspects in water resources optimization problems is the existence of hard constraints 
according to the formulation 
 
 ( )L Ug g x g≤ ≤  (2.17) 
 
where the bounds ,L Ug g  impose minimum and maximum bounds on the function ( )g x . A 
feasible solution needs to fulfil Eq. (2.17). In contrary, the optimization problem has no 
solution, i.e. is infeasible, if Eq. (2.17) gets violated. 
 
From our experience, the definition of hard constraints only on physical limits is not critical 
and always leads to feasible solutions. Examples include the minimum and maximum 
capacities of hydraulic structures such as pumps, turbines and weirs or the enforcement of 
mass balance in a reservoir or canal reach. 
 
The feasibility may become an issue, if hard constraints get defined for operational limits. As 
an example, we refer to the maximum water level in a river reach an authority wants to 
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maintain due to flood protection. Under the assumption of an extreme inflow and a limited 
storage capacity of the water system, there is probably no other option than to violate the 
level threshold. In this case, the definition of the level threshold as a hard constraint will result 
in an infeasible optimization problem without a solution. 
 
If infeasibilities become an issue, we may i) relax the hard constraint or ii) reformulate the 
hard constraint as a soft constraint (Table 3.1). Both options lead us back to feasible 
problems, but differ in its specific implementation. Whereas the relaxed hard constraint looks 
for the minimum relaxation to make the optimization feasible again, the soft constraint 
penalizes the up- and down-crossing of bounds, for example by a quadratic least-square 
norm. 
 
Table 3.1 Implementation of system constraints 
soft constraint hard constraint with 

relaxation 
hard constraint 

( )( )
( )( )

2

2

max ,0

min ,0
U

L

g x g

g x g

−

−
 

( )min

0
Uc

g x gε

ε

− ≤

≥
 

( )L Ug g x g≤ ≤  

 
In both cases, the former hard constraint becomes part of the objective function and therefore 
it is subject to a trade-off with other objective function terms. This is often not a desirable. As 
an example, we refer to the minimization of operating costs of pumps in a Dutch regional 
water system. Pump actions can be shifted by a tactical use of storage in the water system, 
but water levels are not allowed to leave a pre-defined range. A definition of the level range 
as soft constraint may trade in a violation of this range to further decrease pumping costs. 
This appears unacceptable to most operators. 
 
The potential solution to this issue to a procedure to test a constraint by a soft constraint or a 
hard constraint with relaxation, then fix it by a hard constraint if feasible. The approach may 
become part of the goal programming procedure described above. 

3.5  (Re-)Design of a Conceptual and Technical Framework 

3.5.1 Overview 
 
In this section, we will discuss requirements, design principles and implementation choices of 
the next generation RTC-Tools 2.0 (RTC2) version. 
 
It has been based on the experience with existing resources: 
• existing version of RTC-Tools 1.X, 
• Matlab + TOMLAB Optimization Toolbox, 
• GAMS (base package), 
 
and an evaluation of software packages: 
• Modelica / JModelica (for generic modeling) 
• CasADi as algorithmic differentiation for 1st and 2nd order derivatives and interface to 

NLP solvers 
• SWIG for interfacing C++ to Python and Matlab, 
• support of MILP and MINLP solvers via NEOS 
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Regarding the availability of optimization algorithms, Deltares has access to IPOPT both 
embedded into RTC-Tools 1.X and available via Matlab or GAMS. SNOPT and several other 
NLP solvers become available by the TOMLAB toolbox under Matlab. 
 
Furthermore, problem definitions in GAMS can be solved online on the NEOS website. This 
will be a useful option to prototype and compare solution strategies for Mixed Integer 
problems. A summary of available solvers is presented in Table 3.2. 
 
Table 3.2 Selected solvers with GAMS input on http://www.neos-server.org  
 Global LP MILP NLP MINLP 
BARON1 x    x 
Bonmin2     x 
CONOPT    x  
Couenne2,3 x    x 
CPLEX  x (QCP) x   
Gurobi  x (QCP, QP) x (MIQCP, 

MIQP) 
  

IPOPT2    x  
KNITRO    x x 
LINDOGlobal x    x 
MOSEK  x x   
scip x  x  x 
SNOPT    x  
XpresMP  x x   
 
1 Solver allows only a limited number of nonlinear functions, e.g. exp(x), ln(x), but currently does not support other 
functions including trigonometric functions sin(x), cos(x), see solver documentation on http://gams.com  
2 open-source solvers 
3 require algebraic model description via GAMS 
 

3.5.2 Requirements 
 
RTC2 aims to provide infrastructure to facilitate a wide range of applications, ranging from 
variational data assimilation, short-term management of reservoir systems, canal networks 
and urban water systems to water allocation studies and long-term policy analysis. To this 
end, a highly flexible software architecture is required. In particular, the software will need to: 
 
• accommodate any 0- or 1-dimensional model, including a core library of flow models and 

application-specific custom elements. Higher-dimensional models may be considered for 
RTC3; 

• facilitate the integration within a higher-level logic, such as multi-objective optimization 
using goal programming, rule-based water allocation, or any other application-specific logic; 

• read and write parameters and time series from and to standardized file formats. 
 
The first two requirements open up possibilities for interdisciplinary studies, for instance by 
taking an integral approach to questions surrounding water, energy, and food. At the same 
time, it is recognized that RTC2 should be able to run existing configurations with little or 
no modification. Furthermore, remove redundancies in the existing configuration. 

http://www.neos-server.org/
http://gams.com/
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The software architecture must accommodate mathematical re-interpretations of an 
optimization problem. A modeler may, for instance, want to assign uncertainty to certain 
inputs, parameters or the model structure. RTC2 must be able to assign ranges or discrete 
sets to parameters (leading to robust optimization), or ensembles of input time series 
(leading to stochastic optimization). To facilitate this, an internal symbolic representation of 
the optimization problem is required. Similarly, the internal symbolic representation will 
allow for various techniques of mixed-integer optimization, including automated derivation 
of convex relaxations and possibly even techniques of interval analysis for a general, non-
convex branch-and-bound method. This requirement is key to facilitate the research 
envisioned within the present research project. 
 
Last but not least, integration with other software packages must be provided for. These 
packages include: 
• RIBASIM. The possibility of sharing the same computational core between RTC-Tools and 

RIBASIM 2.0 is being investigated. RIBASIM uses rules to allocate water from sources to 
end users, based on water distribution models. Ideally, RIBASIM 2.0 models should be 
compatible with RTC-Tools, so that RTC-Tools can apply optimization and distribution rules 
to them. 

• WANDA. Model predictive control of pipeline networks as used in, e.g., district heating 
systems is an application being studied at Deltares. Use of WANDA pipe network models 
within RTC-Tools, with or without an intermediate conversion step, would be highly 
desirable. Along the same lines, optimization of lock schedules to minimize salt intrusion 
requires a strong coupling between the models available in WANDA Locks and RTC-Tools. 

• W-Flow. Provision of upstream boundary conditions for RTC-Tools models from a W-Flow 
model is to remain supported through a BMI interface. Representation of W-Flow routing 
networks in RTC-Tools to make integrated models of reservoir systems and downstream 
routing reaches. 

• SOBEK. A time step-based coupling of SOBEK and RTC-Tools feedback controllers is to 
remain supported through an OpenMI interface. 

• Delft3D Flexible Mesh. A time step-based coupling of Delft3D Flexible Mesh and RTC-
Tools feedback controllers is to remain supported through a BMI interface. 

• Delta Shell. Using RTC-Tools 1.x, only feedback controllers can be set up inside Delta 
Shell. For the new architecture, we also want to open up the possibility of creating model 
schematizations from within Delta Shell. 

• Delft-FEWS. It is to remain transparent to use RTC-Tools as an adapter from FEWS. A 
FEWS time series format (PI XML or NetCDF CF2) is to remain supported by the RTC-
Tools core. 

• Third party optimization solvers. RTC-Tools 1.x provides a MATLAB interface to the 
optimization problems generated by RTC-Tools, allowing them to be interfaced with 
alternative optimization packages through, e.g., TOMLAB. This interfacing capability is to be 
maintained in RTC2. 

• Python. RTC2 is to be extensible and scriptable in Python, in line with other Deltares 
software such as Delta Shell and W-Flow. 

 
For completeness, the most important technical requirements are presented below: 
• Time step independence. By changing the time step, the rest of the configuration should 

not need to be changed. 

                                                   
2 CF (Climate and Forecast) - http://cfconventions.org/ 
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• Simulation and optimization mode including a co-simulation option via OpenMI and BMI 
interfaces 

• Decouple the simulation and optimization time steps and enable dedicated 
aggregations (equidistant, non-equidistant, tree-based) for optimization variables 

• Enable decoupling of optimization horizon (e.g. daily) from full time series horizon (e.g. 
month) 

• Support for single, multiple, and hybrid shooting optimization methods. 
• Support for ensemble execution with support for scenario trees and variations of the 

model parameters and structure in the ensemble members 
• Support for smooth lookup tables using, e.g., B-splines. 
• Computation of first and second order derivatives. 
• Internal use of Sparse matrices for the computation of derivatives. 
• Parallel execution whenever possible. 
• Performance equivalent or better than that of RTC-Tools 1.x. 
 
Fine-grained requirements were also derived and documented in a model-based systems 
engineering tool. Discussion of all fine-grained requirements, many of which are mathematical 
in nature, is beyond the scope of this document. Interested readers may contact the authors 
for access to the full set of requirements. 

3.5.3 Design principles 
 
The requirements of the previous section are more easily facilitated if a set of more general 
design principles are formulated. Five design principles are proposed in the present section. 
 
• Independent innovation is facilitated in modeling, in the formulation of optimization 

problems, and in the embedding of optimization problems in higher level logic. Valuable, re-
usable innovations are integrated back into the main code base. 

• The physical models are separated from their temporal discretization whenever 
possible. In other words, temporal integration is, generally speaking, the domain of RTC-
Tools, and not of the modeler. Spatial discretization is explicit in the modeler’s choice of 
nodes and branches, like it is in packages such as SOBEK. 

• Existing tools are used as much as possible to reduce the workload of developers and 
modelers alike. These tools may be modeling tools like Delta Shell. 
 

• The scope of RTC2 is limited to zero- and one-dimensional systems. 2D and 3D models 
are left for future developments towards RTC3, where they will become relevant for 
applications such as optimal dredging or water quality management. 

• The use of high-level programming languages is preferred to enable agile development.  
Core components of the software are implemented in C/C++ and equally available in 
Python and Matlab through SWIG to enable rapid prototyping and custom applications. 
Core components are optionally implemented in Python before migrating them to C/C++. 

• Easy deployment as an operational system. The software should come bundled with all 
third party dependencies. 
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•  

3.5.4 Implementation choices 

3.5.4.1 Modeling 
 
RTC2 aims to support a much larger class of applications than RTC1. In addition to providing 
a fixed model library that can be changed or extended only in code, as RTC1 does, the aim is 
now to allow users to include any custom models that they may need. To achieve this, RTC2 
will need to allow the specification of models in a generic modeling language. 
 
From the model description, it will, as mentioned in the requirements, be necessary to be able 
to generate a symbolic representation. Using the symbolic representation, it will be possible 
to compute derivative information. Derivative computation will be discussed in the next 
section. 
 
As a proven technology, fitting our requirements for a generic, user-friendly modeling process 
and compilation to a symbolic representation, Modelica is a natural choice for RTC2. 
 
In order to make the modeling process as user-friendly as possible, RTC2 may be bundled 
with a Modelica library of hydraulic and hydrodynamic standard components. A Modelica 
graphical user interface, such as Wolfram SystemModeler or OpenModelica, may then be 
used to compose a full system model using drag and drop. 
 
Furthermore, to facilitate GIS integration, a plug-in may be developed for Delta Shell that 
exposes the components contained in a Modelica package as a network schematization 
toolbar. In this way, geospatial Modelica models could be built directly on top of a map in 
Delta Shell. By developing such a Delta Shell plugin in a generic way, modelers could make 
their own, new Modelica components available instantaneously within Delta Shell as well, 
streamlining the innovation process in- and outside of Deltares. 
 
Yet we also want to support existing RTC1 models in the new framework. To this end, the 
RTC1 model library and configuration parser will be part of the RTC2 framework. 

3.5.4.2 Derivative computation 
 
The manual coding of the first order derivatives in RTC1 is a process prone to error. This has 
previously resulted in some bugs that were hard to find. Therefore, for RTC2, it was decided 
to make use of algorithmic differentiation. Algorithmic differentiation is a family of techniques 
to automate the computation of derivatives of pieces of code.  
 
RTC2 will make use of CasADi to compute first and second order derivatives. A 
parallelization of the CasADi function execution is intended to be implemented in the future. 

3.5.4.3 Optimization 
 
RTC-Tools needs a mechanism to define the objective function and constraints. In RTC-Tools 
1.X, an XML file was used that allowed the modeler to compose a number of weighted 
objective terms and constraints using pre-defined elements. 
 
For RTC2, the aim is to provide the modeler with the freedom to innovate. To this end, a 
generic mechanism for specifying the objective function and constraints is needed. Several 
options exist: 



 

 

 
1221016-000-ZWS-0010, 25 August 2016, final 
 

 
Multi-stage Stochastic and Robust Optimization of Flood Mitigation Measures under Forecast 
Uncertainty - Inception Report 
 

39  

 

 
1. An unofficial extension to the Modelica language, called Optimica, allows one to formulate 

optimal control problems. 
2. Dedicated Modelica classes could be used to specify objectives and constraints. 
3. The constraints and objectives could be written as CasADi symbolics directly. 
 
Integrating an unofficial language extension into an unaffiliated product is not desirable. This 
leaves options two and three, both of which have their attractions. The use of Modelica 
classes suits well to the choice of Modelica as modeling language. On the other hand, a 
common use case is to script the generation of objectives and constraints. A typical example 
is the implementation of a goal programming approach to multi-objective optimization, where 
the list of objectives and constraints changes at every iteration of the goal programming 
algorithm. 
 
Without a clear-cut advantage of 2 over 3 or the other way around, it is suggested to support 
both options and backwards compatibility to the existing XML layer for the definition of 
objectives and constraints in RTC1. 
 
Due to the generic nature of Modelica models, an optimization solver that is able to solve 
non-linear optimization problems is required. The open source interior point optimizer IPOPT 
fulfills this requirement. IPOPT is already in use as the optimizer of choice in RTC-Tools 1.x. 
 
At the same time, it is planned to keep the optimizer interface generic, so that alternative 
solvers may be interfaced as required by the application through Python / CasADi or Matlab. 

3.5.4.4 Data formats 
 
RTC-Tools is commonly used in conjunction with Delft-FEWS. Consequently, support for 
Published Interface (PI) XML files, or alternatively for the Climate & Forecast NetCDF format, 
is required. RTC-Tools 1.x supports PI XML files. Delft-FEWS, on the other hand, is steadily 
moving towards NetCDF. 
 
For compatibility reasons, it is suggested to keep supporting PI XML. NetCDF support will be 
added in the future. 
 
Furthermore, support for other file formats may be implemented on a case-by-case basis. For 
instance, for the Quick Scan Tool under development for Rijkswaterstaat, CSV data I/O with 
Excel is required. The software framework must be set up such that new file formats can be 
implemented without recompilation of the core. 

3.5.4.5 Ensembles 
 
RTC-Tools is to continue to support the importing, processing and export of ensembles of 
model pools and predictions. It must continue to support the generation of scenario trees to 
formulate efficient stochastic optimization set-ups. 
 
The implementation should continue to support parallelization options in the function 
evaluation and the computation of derivatives. 
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3.5.4.6 Programming languages 
 
Every control or decision support system has its peculiarities. This calls for an extensible 
software framework, where highly application-specific functionality can be developed without 
burdening the RTC-Tools core. 
 
At Deltares and in the Dutch water sector in general (e.g., Nelen & Schuurmans and Deltares’ 
W-Flow) the scripting language Python enjoys increasing popularity. A large number of 
engineers and hydrologists know how to use Python at least to some extent. This stands in 
contrast to the classical programming language C++, knowledge of which is generally 
reserved to a select few.  
 
Another scripting language that is widely known and popular for prototyping is MATLAB. 
MATLAB, however, is a commercial package, which makes deployment of scripts written in 
its language cumbersome. Furthermore, Python’s object system is better designed and 
consequently easier to use. 
 
There are two options to enable extensibility using Python. One is to develop RTC2 itself in 
Python, using Cython-precompilation, or embedded components written in C/C++, to 
guarantee a level of computational performance equal to that of software written in pure C. 
This has the advantage of introducing the compactness, readability, and agility of Python 
code to the entire RTC software stack. 
 
The alternative is to write the core in C or C++, and to expose the various C++ classes 
through a SWIG Python / Matlab layer. Relative to a pure Python implementation, a C++ 
implementation requires more code, and requires explicit memory management. On the other 
hand, using C/C++, code can be hand-optimized to be more efficient. Furthermore, using the 
C++11 standard, much of the traditional boilerplate code prevalent in C++ code may be 
avoided.  
 
RTC2 aims to be malleable and adaptable, so that it can be used and extended for years to 
come. C++11 in combination with a SWIG Python / Matlab layer is therefore a natural choice. 
 
With Python, however, deployment is not always trivial. Python 3 scripts often don’t work with 
Python 2 interpreters and the other way around. One should therefore bundle the appropriate 
Python interpreter version, together with the required packages, with one’s Python scripts. 
There are several ways to do this, one of the cleanest ways being to use the virtualenv 
package. Using virtualenv, one creates a directory, in which the application lives, together 
with the interpreter executable, the Python dependencies, and any additional DLLs the 
application may need. This directory can be set up to be completely independent from the 
system-wide Python installation. 
 
Alternatively, a full container system, such as Docker, may be used to bundle the application 
with all its dependencies. 
 
The use of a cross-platform compiler such as Clang will be evaluated and used. 
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3.5.4.7 Deployment 
 
When deploying a piece of software, such as RTC-Tools, one often runs into subtle 
incompatibilities between computers. A client’s computer system may, for instance, have a 
slightly older Windows version than the one used at Deltares. Such discrepancies can, and 
generally speaking will, cause small changes in behavior than can be very hard to trace. 
 
Static linking may be considered to reduce the number of dependencies to shared libraries. 
 
In recent years, and in recognition of this problem, so-called containers have become 
popular. A container is, conceptually speaking, a minimal filesystem containing a piece of 
software, and particular versions of the software’s dependencies. The container is then 
typically run on the host OS, sharing its kernel, but operating solely (sandboxed) within the 
container’s own filesystem. Regardless of the underlying hardware and operating system 
version, the software will then use exactly the same versions of its dependencies. This 
minimizes the chance of library incompatibilities, and reduces the burden of the 
troubleshooting process.  
 
Containers are also used to ease deployment of software in the cloud. A container can be 
cloned any number of times, and so may be used to scale the number of running processes 
on the fly. While out of scope for the present research project, a cloud-based decision support 
service will likely be of interest in the long term. 
 
The most widely used container technology at this point in time is Docker. Docker originates 
from Google, where over 2 billion containers (The Register, EVERYTHING at Google runs in 
a container, May 2014) are launched every week. It has since also been adopted by 
Microsoft, which plans to launch native Docker support in Windows Server 2016 (Docker 
Blog, August 2015), a technical preview of which is already available. On older versions of 
Windows, Docker makes use of a Linux virtual machine under the hood. In this case, the use 
of a virtual machine does cause a performance penalty. 
 
In RTC-Tools, one can distinguish two tasks. The first is to set up a model and an 
optimization problem, and to generate a symbolic CasADi function representing the entire, 
discretized optimization problem. The second task is to take this symbolic function, to 
interface it with the optimizer, and to let the optimizer locate an optimum solution. 
 
The first task involves either the RTC1 library, or the JModelica.org compiler. Especially the 
latter comes with a string of dependencies. To ease installation, Docker may be a good 
choice. 
 
The second task is the one that runs live in an operational system. The use of a Linux virtual 
machine on older Windows versions may be undesirable in an operational context. In this 
case, Docker is not the best choice. Instead, a Python virtualenv environment may be used. 
Or, alternatively, the second task may be so limited in scope and easy to isolate that a pure 
C++ implementation would not limit innovation. In that case, native executables could be 
provided for older systems, while a Docker container is delivered to customers running 
Windows Server 2016 or newer. 
 
For the time being we will support both options and reassess its use in the future. 

http://jmodelica.org/
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3.5.5 Control flow 
 
This section illustrates show how a control flow may be synthesized from the considerations 
discussed in the preceding sections. 
 
Figure 3.1 shows how a dedicated shared library containing the entire discretized 
optimization problem may be generated either from RTC1 components, or from a Modelica 
model. 
 

Figure 3.1 Compilation of the model and optimization problem to a dedicated shared library. 
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Figure 3.2 shows how the resulting symbolic function can have its parametric and time-
dependent unknowns filled in from FEWS, before being interfaced with the optimization 
algorithm. 
 

Figure 3.2 The provision of data to and optimization of the precompiled optimization problem. 
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4 Statement of Work 

4.1 Overview 
 
The project is executed in the period July 2015 – June 2018. The first 6 months are dedicated 
to an inception phase in Work Package 1. It was executed in the period July – December 
2015 and is documented in this report. Work Package 2 starts at the end of the inception 
phase (WP1) and includes the design, implementation and feasibility assessment of novel 
optimization techniques. Work package 3 starts in July 2016 and covers the exploitation and 
dissemination of results. 
 
The work packages are described in the following sections. Furthermore, we summarize the 
deliverables of the project and the related time schedule. 

4.2 Work Package 1 – Inception Phase (Month 1-6) 
 
Activities in WP1 include: 
 

1. Inventory of the need for decision support in the flood management domain in 
collaboration with several stakeholders and the definition of a number of 
representative academic test cases 

2. Inventory of state-of-the-art approaches in the field of stochastic and robust 
optimization and the representation of mixed-logical systems as well as the design 
of a new conceptual framework to support water managers. 

 
Results of the inception phase are documented in this report. 

4.3 Work Package 2 – Design, Implementation and Feasibility Assessment 

4.3.1 Design Phase (Month 7-9) 
 
Task 2.1: Design Phase 
Resources: Deltares (Baayen, Schwanenberg), N&S 
 
The objective of the design phase is the definition of a next generation software architecture 
of RTC-Tools, referred to as RTC2, based on the requirement of the inception phase. This 
architecture will be the basis for further research and development effort within this project. 
 
The design phase started January 2016 and has been finalized until the end of March 2016. 
This report provides a high-level summary of the results. Further details on the architecture 
have been documented in the product management tool of RTC-Tools and become available 
to interested readers on request. 
  



 

 

 
 
 
 
 

 
Multi-stage Stochastic and Robust Optimization of Flood Mitigation Measures under Forecast 

Uncertainty - Inception Report 
 

1221016-000-ZWS-0010, 25 August 2016, final 
 

46  
 

 

4.3.2 Implementation and Assessment Phase (Month 10-24) 
 
The implementation and assessment phase includes the following activities: 
 
Task 2.2: Software Architecture RTC2 (together with RTC-Tools PM) 
 
Activities: 
• CasADi Integration RTC1 (Schwanenberg, Baayen) 

Enhancement of RTC1 regarding by introduction of algorithmic differentiation by 
CasADi, support of 2nd order derivatives, removal of redundancies in configuration 
related to constraints 

• Python Prototyping RTC2 & Modelica Library (Baayen, den Toom) 
RTC2 prototype in Python with focus the tool chain Modelica/JModelica/CasADi, 
Modelica library of the TKI test cases 

• Modelica Model Library (RTC-Tools PM) 
The extension of the Modelica Model Library is continued under the RTC-Tools PM 
project 

• Cases: Academic Tests (Deltares, N&S) 
Assessment of RTC1 / RTC2 by implementation and assessment of selected academic 
test cases of chapter 2 starting with the application of the hydraulic model. 

• API Definition RTC2 (cooperation RTC-Tools PM) 
Design of the new C++/SWIG/Python/Matlab software architecture 

• Implementation of Release Candidate RTC2 (cooperation RTC-Tools PM) 
 
Task 2.3: Multi-objective Optimization 
 
• Implementation of several multi-objective optimization approaches in application to the 

academic test case defined in chapter 2 
• Assessment of the pros and cons of every technique in terms of performance and 

transparency for the user 
 
Task 2.4: Hybrid System (in cooperation with WEX project) 
 
This task is executed in close cooperation with the WEX project. 
 
Activities include: 
• Implementation of several techniques to linearize nonlinear systems, model hybrid 

system and consider logical constraints 
• Assessment of the pros and cons of these techniques in application to regional Dutch 

water systems 
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Task 2.5: Stochastic / Robust Optimization 
 
• Classification and quantification of sources of uncertainty in Dutch water systems, i.e. 

large-scale, highly time correlated meteorological uncertainty, uncertainty and risk 
resulting from contingencies and outages, etc. 

• Implementation of several techniques to represent these uncertainties in optimization 
problems to generate robust management decisions, we will address multi-stage 
stochastic optimization, (adjustable) robust optimization, the use of security and chance 
constraints etc. 

• Assessment of the performance of these methods in application to the academic test 
cases and outlook to its application for real-world cases 

4.3.3 Selection and Refinement Phase (Month 25-36) 
 
Task 2.6: Selection and Refinement 
 
The last year is dedicated to the conceptual and technical refinement of a selected approach 
of Tasks 2.3 – 2.5. It is intended to apply these to more integrated and larger-scale problem 
setups to increase its maturity level and validate its applicability to real-world problems. 
 
Results of this task will be published in a manual “Best Modeling Practice with RTC-Tools”. 

4.4 Work Package 3 – Exploitation and Dissemination (Month 13-36) 
 
Task 3.1: National Exploitation and Dissemination (N&S) 
 
The national exploitation and dissemination of results will be closely coordinated with the TKI 
project “Slim water management” and the WEX project. Both are applied research project and 
include a number of pilot applications to regional Dutch water systems. Both are downstream 
users of the techniques developed in this project. 
 
Further exploitation and dissemination activities will be conducted by N&S. This includes the 
presentation of results at national conferences, workshop or software days (national software 
days Delft-FEWS). This includes the organization of two dedicated events to present results 
of this project to stakeholders. 
 
Results will be published in Dutch journals such as H2O or comparable. 
 
Task 3.2: International Exploitation and Dissemination 
 
The international exploitation and dissemination is led by Deltares. 
 
Scientific results will be published in international, peer-reviewed journals. We expect at least 
3 publications. Furthermore, results will be presented at scientific conferences such as AGU, 
EGU or the HEPEX meetings as well as at software days (international software days: Delft-
FEWS Users Meeting). 
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4.5 Deliverables 
 
• Prototype of the new RTC2 software architecture in October 1, 2016 (working prototype 

and documentation) 
In the following, new software features will be released and documented together with 
the standard RTC2 release schedule 

• 2 national publications 
• 3 international publications in peer-reviewed journals related to the results in Tasks 2.3-

2.5 
• Best Practice manual as a result of Task 2.6 
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4.6 Time Schedule 
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A Appendix 

A.1 Derivatives for NLP 
 
This section summarizes the required derivative information of several optimizers (IPOPT, 
SNOPT, CONOPT, KNITRO) to solve an optimization problem according to 
 
 ( )min

x
f x   (2.18) 

 ( ) 0ig x ≤   (2.19) 
 
The summary of user-supplied derivative information for several state-of-the-art optimizers is 
provided in Table 5.1. 
 
Table 5.1 User-supplied derivative information for several state-of-the-art NLP approaches 
 1st order derivatives 2nd order derivatives 
IPOPT objective function gradient 

( )f x∇  
constraint Jacobian 

( )Tg x∇   

option “limited-memory” 
- 
option “exact” (Hessian of Lagrangian) 

( ) ( )2 2
f i i

i
f x g xσ λ∇ + ∇∑  

where ,f iσ λ  are provided 

SNOPT see above - 
CONOPT see above Hessian of Lagrangian 

( ) ( )2 2
f i i

i
f x g xσ λ∇ + ∇∑  

directional derivative* (Hessian vector 
product) 

( ) ( )2 2
f i i

i
f x u g x uσ λ∇ + ∇∑  

where u  is the direction 
KNITRO see above either Hessian of Lagrangian or 

Hessian vector product, see above 
* directional second derivatives are used when the expected number of iterations in the SQP 
sub-solver is low and the Hessian is used when the expected number of iterations is large 
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Table 5.2 provides an overview about existing constraints and objectives in RTC1 and 
addresses its contribution to the 2nd order Langrangian Hessian matrix. 
 
Table 5.2  
constraints and objectives 
in RTC-Tools 

treatment in (IPOPT) 
optimizer 

contribution to Lagrangian 
Hessian (to be implemented) 

   
constraints   
bounds on optimization 
variables: 

min max
kx x x≤ ≤   

dedicated definition as 
variable bounds 

0 

rate-of-change constraints on 
optimization variables: 

1
min max

k kx x x x−∆ ≤ − ≤ ∆  

(linear) constraint 0 

average constraint on 
optimization variable: 

1
min max1

k k
i k

x
x x

n
= −≤ ≤
+

∑
 

(linear) constraint 0 

bounds on states or model 
outputs: 

( )min max
ky y x y≤ ≤  

(nonlinear) constraint non-zero depending on the 
process model 

   
objective function terms   
penalty of setpoint deviation: 

( ) pk
spx x−  

no distinction between 
terms related to 
optimization variables, 
model states or model 
outputs, 
 
treatment as nonlinear 
objective function term 

no contribution for linear term, 
constant contribution in 
combination with non-linear 
process model for quadratic terms rate-of-change penalty of 

setpoint deviation: 

( )1 pk k
spx x x−− − ∆  

average penalty of setpoint 
deviation: 

1

pk i
i k n

sp

x
x

n
= −

 
 −
 + 

∑  

reformulation for large n  by 
introduction of additional 
optimization variable kz  to avoid a 
dense Hessian: 

1

k i
k i k n

x
z

n
= −=
+

∑
 (linear constraint) 

( ) p

spz x−  
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A.2 Algorithmic Differentiation Options for 1st and 2nd Order Derivatives 
 
This sections presents the forward-over-reverse algorithmic differentiation to compute 2nd 
order derivatives. 
 
The input x  and the tangent x  for the derivative computation are given. The variables x  and 
x  denote the first-order and second order adjoint vectors, respectively. The functions ( )F x  
represents the dependency of the model output y  on x . Then, the 2nd order derivative is 
computed stepwise with the procedure below: 
 
 first-order derivative second-order derivative 
step 1: 
forward 
sweep 

( )y F x=  ( )y F x x′=   

step 2: 
reverse 
sweep 

( )T Tx y F x′+ =  ( ) ( )T T Tx y F x y F x x′ ′′+ = +     

 
Initialization is required for the tangent or search direction x  and the adjoint vector y . 
 
As an example, the procedure is applied to the scalar-valued function: 
 

 

( ) ( )

( ) ( )
( )

( ) ( )
( )

1 2

1 2 1 2 1

1 1

sin

cos sin cos
, ( )

sin cos 0

y F x x x

x x x x x
F x F x

x x

= =

−   
′ ′′= =   

   

  (2.20) 

 
where ,F F′ ′′  are the 1st and 2nd order derivatives of y  with respect to x . Then, the forward-
over–reverse mode becomes 
 
 first-order derivative second-order derivative 
step 1: 
forward 
sweep 

( )1 2siny x x=  ( ) ( )1 2 1 1 2cos siny x x x x x= +    

step 2: 
reverse 
sweep 

( )
( )

1 1 2

2 1

cos

sin

x y x x

x y x

+ =

+ =
 

( )
( ) ( )

( ) ( )

1 1 2

1 2 1 1 2

2 1 1 1

cos

sin cos

sin cos

x y x x

y x x x x x

x y x y x x

+ =

+ − +  
+ = +

 

 

  

 

 
If y  is an objective function and we want to compute its gradient and Hessian for 

( )1 2, Tx x x= , we initialize 1y = , 0y =  and execute the procedure above with ( )1,0 Tx =  

and ( )0,1 Tx =  to receive the first and second column of the Hessian, respectively. 
 
In case of a directional Hessian, the procedure is executed once with the related search 
direction or tangent. If a full Hessian is required for larger problems with n  dimensions, graph 
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coloring techniques can significantly reduce the computational effort for a sparse Hessian by 
less than n  execution of the procedure above. 

A.3 Algorithmic Differentiation of Implicit Functions 
 
In case of an implicit function, the computation of derivatives relies on the application of the 
implicit function theorem in combination with the adjoint sensitivity equation. We present a 
simplified procedure from Griewank & Walther (2008), pp. 370-373 with ( ),y f z x z= =  in 
application to a simple implicit reservoir model (fixed crested spillway with the uncontrolled 
spillage ( ) 2 3

SQ FB FB=  and a controlled turbine flow TQ ). 
 
The index * denotes a solution at a root or sufficiently close to it. Enhanced methods and 
derivative quality criteria are presented in Griewank & Walther (2008). 
 
 
 general formulation example 
independent 
variables 

x  1 Tk k k
I Ox Q Q FB − =     

dependent variables 
(system states) 

z  kz FB =    

system of nonlinear 
equations 

( ), 0w F z x≡ =  ( ) ( )

( )

1

2 3

, k k

k k k
I T

AF z x FB FB
t

Q Q FB

−= −
∆

− + +
 

   
 

( ) ( )

( ) ( )

, ,

, ,

xF z x F z x
x

F z x F z x
z

∂
=
∂
∂′ =
∂

 ( )

( ) ( )1 2

1
, 1

3,
2

x

k

F z x
A t

AF z x FB
t

− 
 =  
 − ∆ 
 ′ = + ∆ 

 

adjoint sensitivity 
equation 

( )
( )

* *

* *

0 , , ,

, T

F z x w y

F z x w z

= ≡

′ −
  ( )1 2

*
3
2

kA FB w z
t

 + = ∆ 
 

scalar function, requires the solution of a 
linear equation system for vector functions 

adjoint of 
independent 
variables 

* * ( , )T T
xx w F z x= −   

( )
* 1 2

1
13

2

T

k

zx A FB A tt

− 
 = −  

+  ∆ ∆
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A.4 Features of Software Packages 
 
 RTC-Tools GAMS CasADi 
Model Library discrete schematization and 

integration, so far only 1st order 
derivatives (all coded by the 
user), Modelica integration by 
FMI in progress 

discrete schematization by user 
but no integration, framework 
automatically generates 1st and 
2nd order derivative information 

discrete or continuous equations 
in AD formulation or via Modelica 
(user), framework computes 1st 
and 2nd order derivatives by 
algorithmic differentiation 

Deterministic Optimization Setup collocated, direct single and 
multiple shooting setup 
depending on the model 
implementation 

hybrid system via Matlab and 
Python interfaces (both need 
extensions) and scripts with 
solvers in Matlab/Python 

only collocated setups 
 
 
 

native support of binary and 
integer variables as well as 
dedicated embedded solvers 

collocated, direct single and 
multiple shooting setup 
independent of the model 
 

no support for hybrid systems this 
point (integration with 
C++/Python/Matlab interface ?) 

Representation of Uncertainty 
and Stochastic Optimization 
Setup 

scenario tree generation and 
tree-based optimization 
embedded 

scenario tree generation (?) and 
tree-based optimization 
embedded 

no support at this point 
(integration by 
C++/Python/Matlab interface ?) 

Multi-objective optimization scripting in Matlab and Python 
(will require interface extensions), 
embedded features in a later 
stage 

direct GAMS scripting based on 
available examples of the model 
library 

no support at this point 
(integration by 
C++/Python/Matlab interface ?) 
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