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EXECUTIVE SUMMARY 

 

In recent years, the hydroeconomic approach to solve multi-objective problems in 

integrated river basin management receives growing attention. By combining the 

principles of economics and engineering, the hydroeconomic models transform the 

concept of fixed demand into the economic value of water defined through water rights. 

Unfortunately, the management schemes and the policy insight are less likely to be 

easily represented by a hydroeconomic objective function. In Deltares, the necessity to 

explicitly implementing priority ordered by the policy on water resources allocation to a 

conventional hydroeconomic model has been done by combining the particle SWARM 

(PS) optimization with the rule-based simulation tools (RIBASIM).  

The main objective of the study is to compare the application of RTC-Tools 2.0 with the 

RIBASIM-PS approach. The new generation of RTC-Tools 2.0 is currently being 

developed by Deltares for real-time control and optimization of hydraulic systems. This 

study focuses on the reservoir operation strategies to determine the most promising 

water allocation under similar attainment targets by constructing various 

hydroeconomic optimization models for a study case in the RTC–Tools 2.0. 

Similarly to RIBASIM-PS study, the case study of the Citarum cascade reservoirs in 

Indonesia was adopted to provide rounded, detailed illustrations of the policy-based-

management in water resources.  This study aims to provide useful insight to support 

the decision-making in reservoir operation including the trade-offs between the 

conflicting objectives whereas the current reservoir operation rule is derived by 

optimizing of a single objective. The improvement on the reservoir operation rules is 

expected to enhance the social and economic benefit of the reservoirs in the basin. 

This study has been able to demonstrate, for the first time, the possibility to develop a 

similar model network as RIBASIM and to optimize a similar hydroeconomic objective 

as particle SWARM in the RTC-Tools 2.0. The principal theoretical implication of this 

study is that it is possible to transform the algorithm of the simulation model (RIBASIM) 

into the explicit hydrological sequences of objectives in the optimization model in RTC-

Tools 2.0. The finding in this study, while preliminary, suggests that the optimization 

results from RTC-Tools 2.0 present more promising reservoir operation rules in 

comparison with the result from RIBASIM simulation and the RIBASIM-PS study.  

The results from this study indicate that finding an appropriate approach and properly 

formulating the optimization problem are crucial steps in order to derive the most 

promising optimization results. The goal programming approach seems to provide a 

robust, easy-to-build and communicative method to achieve a transparent water 

allocation based on the policy insight. In this approach, specific numeric goals are 

derived based on the priorities to set the sequences of objective functions.  
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One of the more significant finding to emerge from this study is that constructing a 

hybrid hydroeconomic optimization model is a preferable approach to address the multi-

objective problems in RTC-Tools 2.0. The goal programming approach assists the 

optimization algorithm in satisfying the sequences of objectives while it simultaneously 

searches for the highest economic benefit. The results from this optimization present the 

most promising reservoir operation rules that substantially enhance the social benefit 

with a slight reduction in economic benefit for the study case of Citarum cascade 

reservoirs. 

Key words: integrated river basin management, multi-objective reservoir operation, 

hydroeconomic optimization, goal programming 
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1. INTRODUCTION 

eservoir operation in many river basins have to deal with conflicting goals from 

downstream water users, hydropower and flood control. Finding the most promising 

operation is a multi-objective problem. The inter-linkages between these water users 

need to be addressed so that all water users reach sustainable benefits. Improved water 

use efficiency could be accomplished by implementing a set of allocation measures that 

might include priority setting and subsidies. To understand these complexities better, 

many conceptual modelling tools in integrated water resources management are being 

used. Several new modelling tools are becoming available, some of them with innovative 

methods and distinctive advantages. 

1.1 Problem Description 

At this moment, Deltares is applying the RIBASIM software simulation package to 

analyse water scarcity and water allocation problems, including reservoir operation. By 

simulating alternative strategies, the most suitable solution is identified manually. This 

is done in a kind of trial-and-error way which is time-consuming. Van der Vat [1] has 

applied a particle SWARM optimization technique in combination with RIBASIM that is 

able to find the optimal reservoir operating strategy directly. In that approach, the 

parameters of the operation strategy are computerized and optimized based on costs and 

benefits function. From this point, this study of Van der Vat [1] will be referred as the 

RIBASIM-PS study. 

Similar to the RIBASIM-PS study, reservoir optimization might be also possible with 

the new generation of RTC-Tools 2.0. For water system control problems, Deltares is 

developing the RTC-Tools 2.0 package as a simulation and an optimization tool. The 

RTC-Tools is widely applied to real time control situations to optimize the operation of 

pumps and reservoirs. RTC-Tools 2.0 is and upgrade of the present RTC-Tools, 

providing more facilities and finding an optimum solution faster. 

The objective of the study described in the document is to compare the application of 

RTC-Tools 2.0 with the RIBASIM-PS approach. This study mainly focuses on the 

reservoir operation strategies to determine the most promising water allocation under 

similar targets. 

1.2 Objective of the study and research questions 

The objective of this study is to look into the possibility of applying RTC-Tools 2.0 to 

determine the reservoir operation rules in comparison with the RIBASIM-PS study. To 

achieve this objective, the following research questions are formulated: 

R 
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1. Is RTC-Tools 2.0 able to model a similar network as RIBASIM does, using 

allocation rules based on demand priority and reservoir operation rules including 

hedging? 

2. Is it possible to formulate a set of objectives and constraints in the RTC-Tools 2.0 

that will result in optimized reservoir operating rules? 

3. Are the calculations of optimal reservoir operation rules by RTC-Tools 2.0 

different from the operation rules resulting from the RIBASIM-PS optimization 

and, if so, why? 

4. How can we further improve the results of the optimization approaches in order 

to get a better applicability of the reservoir operation rules? 

1.3 Overview of the study 

To answer the research questions, this research is addressing the following three key 

aspects; (i) the way of water allocation is being done in the network model, (ii) the 

practicalities of the optimization procedure and (iii) improvement of the RIBASIM-PS 

study. Figure 1.1 describes briefly the overview of this research while each component is 

further explained below this figure. 

 
Figure 1.1 Overview of the study  

Chapter 2 presents results of the literature on multi-objective problems solving. It 

begins with an extensive literature research on hydroeconomic studies and possible 

optimization approach in integrated river basin management. Chapter 3 describes the 

case study: the Citarum basin and the cascade reservoirs in that basin. 
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Chapter 4 explains the methodology that is applied to address each research question. 

This chapter includes the tools used, data collection and sequences of tasks. Chapter 5 

describes the model structure and technical details of the optimization performed in the 

RTC-Tools 2.0. This includes the model schematization and database management. It 

also covers the assumptions taken and the governing equations in the tools. The 

hydroeconomic valuation analysis of the parameters in the optimization model is also 

defined in this chapter.  

In Chapter 6, the different objective functions in the optimization models are explained. 

This chapter describes the software application in greater detail along with the 

practicalities of building various optimization models in RTC-Tools 2.0. The results and 

findings from each optimization models are discussed and analysed in this chapter. 

Finally, the last Chapter 7 concludes this study by answering research questions along 

with some future recommendations in the study area. 
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2. ADDRESSING MULTI-OBJECTIVE PROBLEMS 

n recent years, there has been an increasing amount of literature on solving multi-

objective problems in integrated river basin management. One of the current 

approaches is hydroeconomic analysis. In his publication, Harou et al. [2] reviewed the 

literature from the past 50 years and described that hydroeconomic models can play an 

important role in addressing the increased water scarcity and conflicts issues due to the 

future challenges. By combining the principles of economics and engineering, 

hydroeconomic models transform the concept of fixed demand into the economic value of 

water defined through water rights, priorities and future projections [3] [4] [2]. This new 

concept of economic water demand is optimized to generate the maximum net benefit by 

driving the water allocation and managing the existing supply-demand. In this way, a 

better operation system in the water management system is developed to avoid 

constructing new supply options [5]. Harou et al. [2] identified the design choices and 

options to construct a hydroeconomic model as model components, time representation 

and sub model integration. Table 2.1 provides an overview of these design choices. The 

highlighted components present the selected design to construct the hydroeconomic 

models in this study.  Each component is further explained in the following section. 

Table 2.1 Summary of hydroeconomic model design choices 

 

2.1 Model components: Simulation and optimization model 

Possible model components for a hydroeconomic model include simulation models, 

optimization models, or a combination between both models. 

A simulation model runs a rule-based algorithm to reproduce the system complexities in 

integrated water resources management, planning and policies [6]. This model is mostly 

driven by a simple mass balance concept. The strategies are simulated with trial-and-

error to identify the best feasible solution. 

Simulation

Optimization

Combination between simulation and optimization

Deterministic (various hydrological years and implicit 

stochastic optimization)

Stochastic

Dynamic

Holistic

Modular

Goal programming optimization (multi-objective)

Linear deterministic optimization (a single objective)

Hybrid between goal programming and linear optimization

Software 

implementation

Hydroeconomic model

2.4

Time representation2.2

2.3 Submodel integration

2.1 Model components

I 
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An optimization model runs based on the economic objectives and constraints that 

represent the system to identify the most promising operation rules. The objective can 

be formulated as linear or non-linear hydroeconomic functions. Optimization models are 

less suitable to simulate complex water networks and non-linear system dynamics [2]. 

On the other hand, linearity is considered to be too theoretical to represent the system 

in mathematical terms [7]. As finding a global optimum for non-linear objective 

functions is likely to be inconvenient, linearization is often applied to hydroeconomic 

modelling [2] [7]. Linearization can be taken in case the difference in results for both 

formulations is negligible and unimportant [8]. 

2.2 Time representation: Deterministic, stochastic and dynamic model 

The time representation in the hydroeconomic model is classified as a deterministic 

model, a stochastic model, or a dynamic model. A dynamic model could be a 

deterministic model or a stochastic model depending on the input data. 

A deterministic model uses historical or synthetically generated time series to obtain a 

single set of results. An appropriate operating rule under certain condition is mostly 

derived by representing hydrological conditions (wet, normal and dry period) as 

simplistic probabilistic events [9]. Furthermore, the deterministic method is often 

sophisticatedly considered as an implicit stochastic model if the hydrological time series 

data is long and representative enough [4]. Some authors have performed studies 

implementing linear optimization in the hydroeconomic model [4] [10]. This approach 

often termed as linear programming. Hydropower, irrigation, domestic demand, flood 

control, recreation, navigation and environmental flow are reliable to be represented in 

those studies since the deterministic model is relatively simple. Thus far, some studies 

have shown promising results from non-linear reservoir optimization for hydropower, 

irrigation and/or domestic water [11] [12]. Other studies even perform non-linearity in 

the objective functions with some additional constraints such as flood and/or 

environmental flows [13] [14]. 

A stochastic model explicitly incorporates the probabilistic character of model inputs to 

generate the probability results rather than a single, deterministic single set of results. 

In recent years, some authors have explored the stochastic-dynamic model in 

hydroeconomic applications [15] [16]. This method has been successfully applied to the 

reservoir optimization for irrigation and hydropower purpose in various river basins in 

the world. This advanced approach captures the complexity of economic phenomena, 

although it is considered as very computationally intensive. Besides this method often 

suffers from difficulties in representing the stochastic phenomena [4], it tends to create 

some implementation issues since it is harder to explain. 

A dynamic model represents the time–dependent aspects of the model behaviour. Most 

existing models exemplify a static capture of a particular time while the reality is 

constantly changing over time [17]. In this specific context of the hydroeconomic study, a 

dynamic model or a time-varying economic optimization model considers that both 

benefit and cost are time-dependent. The objective function is further defined as a 

function of interest rate and time.   
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2.3 Sub model integration: Holistic and modular approach 

The design choices of sub model integration in hydroeconomic model are a holistic 

approach or a modular approach. User preferences on sub model integration are based 

on the advantages offered by these different approaches. 

In a holistic approach, all components are housed in a single model. It is considered as 

the best approach to identify the unique global optimal solution [18]. The main 

disadvantage of this approach is that it cannot be constructed on existing water 

planning models. The water resources and economic system needs to be recoded and 

simplified. 

In a modular approach, the model components run separately. An advantage of using 

this approach is that it avoids the problem of deriving the operation rules from 

optimized release flows since it can be attached to the existing water planning model 

[18].  

2.4 Software implementation 

A seminal study in hydroeconomic area is the work of Lund & Ferreira [4] which covers 

most of the aspects of the system. They developed a linear deterministic hydroeconomic 

optimization model by assessing economic penalties for various conflicting water uses. 

Lund & Ferreira [4] points out that this simple linear deterministic approach provides 

valuable engineering functions to identify the promising, suitable operating rules. This 

study also concludes that the optimization quality strongly depends on the formulation 

of the objective functions, which are reported to be more influential than simplifications 

such as linearization taking a deterministic approach. 

Van der Vat [1] has successfully applied this approach to optimize the deterministic 

linear hydroeconomic model. His study optimizes the rule curves of the cascade 

reservoirs in the Citarum River in Indonesia with benefit functions based on 

agricultural delivered demand, hydropower generation and flood risk reduction. This 

study did not include domestic water demand and environmental flow. His study 

implemented a fully user defined optimization formulation (Python scripted particle 

SWARM) in a combination with a simple mass-balanced rule-based simulation model 

(RIBASIM). This method is able to identify directly the rule curves instead of released 

flows with less computational efforts. The optimization results from this study are 

somehow limited by the impracticalities of the optimized rule curves. The reservoir 

operation rule curves change the reservoir operation rule curves up to 40 m monthly. 

This high monthly fluctuation may result in the inapplicable reservoir operation. 

Harou, et al. [2] found that a major problem with this kind of hydroeconomic models is 

to explain the economic complexity to the stakeholders compared to existing water 

resources models. Also, achieving a suitable efficiency and transparency in water use 

will be more challenging. One of the reasons is that the management schemes and the 

policy insight are less likely to be easily represented by the benefit or penalty functions. 

In addition, hydroeconomic models often struggle with robustness at the local scale; 

small changes in model parameters could dramatically alter the water allocation in the 
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system [2]. Thus, additional analysis such as a shadows values, the range of basis and a 

sensitivity analysis are mostly required to provide more information on the model 

behaviour. 

The hydroeconomic concepts generally stand in distant from the stakeholders’ 

perspective on priorities and infrastructure projects. In order to assembly these different 

perspectives, a goal programming approach can be chosen. A number of authors have 

considered that this method manages to bridge the gap between research and practical 

application. It avoids the problem of justifying the weighted values that define the 

priorities [19] [20]. In this approach, specific numeric goals are derived based on the 

priorities to set the series of objective functions. The lower and upper limit for each goal 

is restrained as soft constraints [21]. The optimized solution is obtained from the 

minimum sum of deviations of these objective functions. It implies that this approach 

allows violation on its own soft constraints; it creates a blurred boundary between the 

objectives and the soft constraints. On top of these soft constraints, the inviolable hard 

constraints can be also applied. This is one of the more practical ways considering the 

real implementation in the water resources planning. 

Leavesley et al., [22] presented a relevant study using this approach. He demonstrated a 

leading approach using goal programming for a multi-purpose reservoir study. His study 

has revealed the most striking advantages of this approach. It provides a new 

alternative to integrate explicitly the water system with the water-related policies. It 

also shows the flexibility on defining the future changes in the system. Their studies did 

not include an economic analysis. Another significant analysis and discussion on the 

goal programming approach were presented by Eschenbach et al., [21]. Their study sets 

the river flow as a hydrology objective, the income goals as an economic objective and 

the amount of employment as a social objective. Altogether, this model captures more 

realistic phenomena when the inter-linkages and the trade-off between the conflicting 

goals are taken into account; it also explicitly reviews the impacts on water allocation 

changes if different strategies are implemented.  

Concluding Remarks 

The review of literature in this chapter has particularly concentrated in various 

hydroeconomic models to address the multi-objective problem. By combining the 

principles of economics and engineering, the hydroeconomic models transform the 

concept of fixed demand into the economic value of water defined through water rights. 

Unfortunately, the management schemes and the policy insight are less likely to be 

easily represented by a hydroeconomic objective function, notwithstanding a 

comprehensive analysis of economic valuations is accomplished. Collectively, these 

studies highlight the necessity to explicitly implementing the priority ordered by the 

policy on water resources allocation as an alternative to a conventional hydroeconomic 

model. It is possible, therefore, that applying the goal programming approach in the 

hydroeconomic model provides more robust, easy-to-build and communicative method to 

achieve a transparent water allocation based on the policy insight. 
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3. CASE STUDY: CITARUM CASCADE RESERVOIRS 

 

itarum is an intermountain basin located on the main island of Java, Indonesia. As 

one of the largest rivers in Java Island, its river drains an area of 6,080 m2 [23]. 

With 225 kilometres in length, the Citarum River begins from south of Wayang 

Mountain, run through the provincial capital city of Bandung and out into the Java Sea. 

This literature review covers the characteristics of case study related to the data applied 

to the constructed hydroeconomic model. As an overview, Table 3.1 summaries of 

literature review on the Citarum cascade reservoirs. Each component is further 

explained in greater details this chapter. 

Table 3.1 Overview of the case study applied 

 

The three segments of the Citarum river are: upper (25km, 750-3,000 m+MSL), middle 

(150km, 200-2,400 m+MSL) and the lower part (70km, >150 m+MSL) [24]. BBWS1 

stated that the basin slope decreases gradually from upstream to downstream [25]. The 

Citarum basin characteristics and schematic map are shown in Table 3.2 and Figure 3.1. 

Table 3.2 The Citarum basin characteristics 

 

                                                
1 BBWS: Balai Besar Wilayah Sungai, the central government agency for riverbasin organization 

Study case Citarum cascade reservoirs, Indonesia

Available model Simplified model of Citarum cascade reservoirs, Indonesia

Modelling scale: space Lumped

Modelling scale: time Monthly

Rule-based simulation RIBASIM schematization and algorithm (Dijkman, 2012)

Time series data (1920 - 2009) Upstream inflow

Time series data (annual) Evapotranspiration rate, water demand and energy firm demand

Reservoir bathymetry Dead level, dam height, relation between water level, area and volume

Turbine characteristics Capacity, friction losses and tail water level

Hydroeconomic optimization Python-coded meta-heurictic SWARM particle (van der Vat, 2015)

Benefit Agriculture (US$/m3), peak and rest hydropower generation (US$/kWh)

Penalty Flood damage at 320 m3/s

Others Hydropower peak fraction

Basin Characteristics Unit Citarum

Elevation m+MSL 0 - 2,400

Rainfall mm/year 1,500-4,000

Soil type Loamy clay

Land use

Agriculture % 60

Forest % 25

Human activities and others % 15

Evaporation mm/day 4.4

Agiculture % 85

Domestic, industries % 10

Others % 5

C 
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Figure 3.1 Schematic map of the Citarum River basin [26] 

To date, several studies have reported that rainfall ranges spatially between 1500 and 

4000 mm/year [27]. BPLHD 2  [28] identified that the basin mostly contains many 

volcanic products of loamy clay basin with the main cover of agricultural area (60%), 

forest-bushes (25%) with the remaining area used for human activities and water bodies. 

The average surface water availability provides an estimate of 44 m3/s [29]. This inflow 

discharge is ranging throughout the year; it drops during the dry season from April to 

September. 

In this basin, the average evapotranspiration reaches 4.5 mm/day. This value is derived 

from the high humidity between 80-92 g/m3 and the high temperature between 15oC – 

27oC. Both parameters are almost constant all over the year but spatially varied 

depending on the elevation. Rejekiningrum [30] identifies the water demands are 

divided into 85% for irrigation and the rest for domestic use of 15 million population, 

fisheries and industrial activities. The cascade reservoirs are installed in the heart of 

this basin to satisfy these target demands and to supply electricity for Java and Bali.  

                                                
2 BPLHD: Badan Pengelolaan Lingkungan Hidup Daerah, the regional environmental agency 
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MPW [29] analyses the most likely changes in the basin are the increased pressure in 

demand from economic development and population growth. Also, climate change is 

forecasted to change the rainfall pattern in the basin. In additional, the possible future 

changes in the Citarum basin are listed below [27]: 

 In the upper Citarum, the basin struggles to control the land use change, 

specifically on the trend of primary forest conversion into the build-up land [31]. 

The trend that the forest has decreased until 40% in 15 years in the upper basin 

[32].  

 In the middle Citarum, the daily domestic waste thrown into the river reaches 

700 m3. This amount of solid waste reduces the capacity of river and reservoirs 

while both already strive with the high level of sedimentation. It also aggravates 

the water quality problem that was previously created from the fisheries 

activities in the reservoir. 

 In the lower Citarum, the risk of downstream flooding mostly happens in the city 

of Karawang and Bekasi is foreseen to be higher due to the land use change. 

Realising the importance of the Citarum basin, the Jatiluhur reservoir was constructed 

as multi-purpose reservoirs in 1957 [33]. After nearly 25 years, another two upstream 

reservoirs, Saguling and Cirata were built mainly for hydropower generation. As shown 

in Table 3.3, the characteristics of each reservoir including the reservoir area, storage 

capacity and turbines capacity of each reservoir are compiled [34] [35] [36]. 

Table 3.3 The Citarum cascade reservoirs characteristics 

 

Figure 3.2 presents the reservoir operation rules based on the trial and error in a 

spreadsheet model produced by NEDECO3 [37]. In 2010, SPK-TPA 4 [38] generated the 

reservoirs rules from the similar spreadsheet with the automatic solver goal-seek. In 

March and May 2010, an exceptionally high inflow and unregulated Jatiluhur released 

discharge resulted in downstream flooding in the city of Karawang and surroundings. 

These repeated flooding events triggered the review the SOP5, including the new annual 

operation procedures and the implementation rules [39]. Additionally, Perwitasari [40] 

reviewed the literature from the flooding events in 2010 and performed a study on a 

decision support tools on the daily basis. 

                                                
3 NEDECO: Netherland Engineering Consultants BV 
4 SPK-TPA: Secretariat of coordination committee on the administration of Citarum water 
5 SOP: Standard Operation Procedure 

Reservoir Characteristics Unit Saguling Cirata Jatiluhur

Purpose
Flood control, 

hydropower

Flood control, 

hydropower

Flood control, hydropower, 

irrigation and public water 

supply

Management

PT PLN

State-owned 

company for 

electricity 

PT PJB

State-owned 

company 

for Jawa-Bali 

Perum Jasa Tirta II

State-owned enterprise for 

management of public 

water supply

Dam name Saguling Cirata Djuanda

Elevation m+MSL 643 220 106.89

Dam height m 99 125 105

Reservoir area km2 30 50 70

Reservoir capacity Mcm 800 3,200 2,600

Hydropower capacity MW 700 1,008 150
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To implement RIBASIM rule curve into The SOP Citarum, it assumed that the firm 

curve represents the dry year and the target curve represents the normal year [39]. The 

RIBASIM has a curved rule on the flood control, while in the SOP it is defined as a 

specified constant level below the spilling level.  

 
Figure 3.2 The Citarum cascade reservoir operation rules [37] 
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A simplified Citarum cascade reservoir schematization in RIBASIM by Dijkman, et al. 

[39] is a favourable reference in this case study. This existing rule-based simulation 

model is a lumped model with the monthly time step, but sufficient for the purpose of 

this study. In this model, the land use, cropping pattern, climate, water demand and 

energy demand are presumed to be similar in this period.  

Most data required in the optimization model in this study are extracted from this 

RIBASIM model. The upstream inflow into reservoir time series data is exported from 

the period 1920-2009, ranging from 600 to 2400 m3/s annually. The monthly agricultural 

water demand (80-200 m3/month) is assumed to be similar each year. The reservoir 

evaporation rate is ranging between 3 mm/day and 5 mm/day. The reservoir 

bathymetries including its turbine characteristics are taken directly from the built 

reservoirs model in RIBASIM. These provided figures are comparable to the literature 

review in this study. 

In the hydroeconomic optimization model in this study, the benefit and penalty cost are 

mostly taken from the RIBASIM-PS study This covers agricultural benefit, flood damage 

cost, the fraction of peak and rest hydropower generation including their distinctive 

benefits. These hydroeconomic valuations, which provide a promising optimization 

result in RIBASIM-PS study, will be modified in this study. 

 



 

Tiaravanni Hermawan    13 

 

4. METHODOLOGY 

 

o date, various methods have been developed and introduced to assess water 

allocation in a river basin. Each method has its advantages and drawbacks. 

Traditionally, the optimum water allocation has been assessed by simulating various 

strategies in a rule-based simulation tool such as RIBASIM. As this method is time-

consuming and not necessarily leads to the most promising result, recent advances in 

optimization techniques have facilitated the possibility to find better results. The 

reservoir optimization is expected to become a possibility in the extended version of 

Deltares software package RTC-Tools 2.0. To address this issue, four research questions 

have been formulated. The tasks allocated to answers these questions are summarised 

from Figure 4.1 to Figure 4.4. 

The development of the methodology for this study is based on a study conducted by Van 

der Vat [1] entitled Optimizing reservoir operation for flood storage, hydropower and 

irrigation using a hydroeconomic model for the Citarum River, West-Java, Indonesia. He 

implemented fully user defined optimization formulation (Python-scripted particle 

SWARM) in combination with simple mass-balanced water allocation model (RIBASIM). 

The study of Van der Vat [1] will be referred as the RIBASIM-PS study. 

The detailed technical user manuals of RIBASIM provide the guidelines to further 

analyse the mechanism of water allocations and the assumptions taken [41] [42]. By 

applying hydroeconomic objective functions, the optimum reservoir rule curves are 

attained from the particle SWARM optimization [43] [44]. For additional information, a 

number of important reviews of the standard operation procedures of the Citarum 

cascade reservoirs are presented in a project report prepared for Indonesian Ministry of 

Public Works [39]. 

RIBASIM (https://www.deltares.nl/en/software/ribasim/) is a software package by 

Deltares [45] that provides sources of analysis in water distribution pattern together 

with water quality and sedimentation for integrated river basin management. This 

software has been applied in more than 20 countries since 1985 in many river basins in 

the world mainly to evaluate alternative measures in infrastructure as well as for 

operational and demand management questions. The RIBASIM technical details can be 

retrieved from its user manual [42]. 

RTC-Tools (https://www.deltares.nl/en/software/rtc-tools/) are an open-source toolbox for 

hydraulic systems developed by Deltares [46]. The RTC-Tools 1.0 Tools, which was 

published in 2007, are widely applied to optimization problem by coupling the tools with 

a rule-based simulation tool. It is widely applied to real-time control operation of 

hydraulic structures such as weirs, reservoirs, and pump stations. The tools used in this 

study will make use of the new generation of RTC-Tools 2.0. 

T 

https://www.deltares.nl/en/software/rtc-tools/
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RTC-Tools 2.0 tools offer various approaches to address optimization problems, ranging 

from single to multi-objective problems. The new RTC-Tools 2.0 employs Modelica user 

interface inside their software architecture. Modelica is an open source object-oriented 

language developed by Modelica Association [47]. It is widely applied to cyber-physical 

systems modelling in automotive or aerospace industries. Modelica is primarily designed 

for simulation while its application for optimization is noticeable. 

A case-study approach was adopted to provide rounded, detailed illustrations of the 

policy-based-management in water resources. The case study chosen is a simplified 

water network of the Citarum basin in West Java, Indonesia. As many types of research 

have been conducted in this basin, Deltares could provide the detailed information 

needed for this study. 

Research question 1: Is RTC-Tools 2.0 able to model a similar network as RIBASIM does, 

using allocation rules based on demand priority and reservoir operation rules including 

hedging? 

 
Figure 4.1 Network development in the RTC-Tools 2.0 

The first step in this study is to fully comprehend the formulation of the nodes and links 

in RIBASIM. This has been done by developing a spreadsheet model based on the 

RIBASIM user manual as the main guidelines. Once the water allocation rules in 

RIBASIM have been evaluated, similar technical details and visualisation are 

reproduced in Modelica. Some differences are expected in certain components, such as 

surface water reservoirs.  

The datasets used for constructing a new optimization model in RTC-Tools 2.0 is 

extracted from the existing RIBASIM model without any additional data collection. 

Prior to importing this dataset, the data are classified whether they are the parameters 

of physical characteristics or the rules in the model algorithm. In addition to the 

physical characteristics of infrastructure, the physical data also cover time series input, 

such as the upstream inflow into three reservoirs and evaporation rate. The rules in the 

model algorithm include the water demand and the firm energy demand. Other 

important information that must be highlighted are the reservoir operation rules and 

allocation rules based on demand priority setting.  

Research question 2: Is it possible to formulate a set of objectives and constraints in the 

RTC-Tools 2.0 that will result in optimized reservoir operating rules? 

 
Figure 4.2 Sequences of objectives definition in the RTC-Tools 2.0 (RIBASIM proxy) 
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As pointed before, the goal programming approach requires the sequences of objectives 

to optimize the reservoir operation rules. These sequences of objectives are defined 

based on the demand priority setting and reservoir operation including rule curves and 

hedging rules in RIBASIM model. The datasets of rules in the model algorithm are 

defined as soft constraints. These soft constraints refer to the lower and upper limit for 

each objective in the form of time series taken from the RIBASIM datasets. The data 

management and the result analysis are performed in the spreadsheet. 

As the deterministic approach is applied in this study, a note of caution is due to the 

presumption of the perfect knowledge of the future events. However, in the application, 

the upstream inflows into the reservoir and the water demand should be considered as 

the major sources of uncertainty. 

Research question 3: Are the calculations of optimal reservoir operation rules by RTC-

Tools 2.0 different from the operation rules resulting from the RIBASIM-PS 

optimization and, if so, why? 

 
Figure 4.3 Hydroeconomic optimization approach in the RTC-Tools 2.0 (RIBASIM-PS) 

In order to gain the comparable results with the particle SWARM optimization, a 

similar hydroeconomic objective function is applied in this study. This requires a deep 

analysis on the particle SWARM optimization and the RIBASIM algorithm that may 

impact the optimization results. The maximum benefit as hydroeconomic objective 

function is set in RTC-Tools 2.0. Other hydroeconomic formulations that build this main 

objective function are declared in Modelica. In the next step, the downstream target 

demand in RIBASIM algorithm is set as soft constraints in RTC-Tools 2.0. The target 

demand consists of the firm energy generation and the agricultural water demand. As 

RTC-Tools 2.0 has a more distinctive optimization solver than the particle SWARM 

optimization, a comparison of the two results could reveal the applicability of the 

reservoir operating rules based on the case study applied. The optimization results from 

both tools are presented as the actual water level of reservoirs and the fulfilment of 

downstream target demands. 

As hydroeconomic models often struggle with robustness at the local scale, small 

changes in economic valuation may dramatically alter the water allocation in the system 

[2]. Thus, the optimization results strongly depend on the objective functions, which is 

likely to be the most expensive and time-consuming part of the hydroeconomic study. In 

particular, the analysis of economic valuation in this study is limited considering that it 

should be conducted by an expert with a strong economic background. To address this 

issue, the sensitivity analyses are performed to identify the changes in the water 

allocation if the economic valuation differs from what was previously assumed. 
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Research question 4: How can we further improve the results of the optimization 

approaches in order to get a better applicability of the reservoir operation rules? 

 
Figure 4.4 Reservoir operation rules improvement 

The RIBASIM-PS study of the Citarum cascade reservoirs optimization has not dealt 

with detailed constraints and hydroeconomic valuations since it mainly focused on the 

coupling and optimization process. That can be improved by conducting the 

hydroeconomic analysis by reanalysing the economic valuations and formulation, such 

as an additional penalty functions. This could be partly linked to the results of the 

sensitivity analysis on the economic valuation.  

Comprising more hydrological factors into account could improve the RTC-2.0 Tools 

optimization model. To assess agricultural water demand better, the seasonal cropping 

of paddy and nuts are further analysed. Other prioritized water demands, such as 

domestic water demand and environmental flow are also included in the optimization 

model although they are not quantified economically. More constraints related to the 

applicability of reservoir operation rules are added to find a more suitable solution in 

the case study. A minimum water level should be set to be higher than the dead level to 

ensure the reservoir stability. The maximum water level fluctuation in a month is also 

taken into account. Improving the hydroeconomic model can be also achieved by 

following the operational procedure for Citarum cascade reservoirs by the operators. 

This requires some knowledge on the current Indonesian government policy directive for 

cascade reservoirs.  

The results of the optimization models are compared by data post-processing to obtain 

the quantity of annual benefit. The economic benefit is calculated based on the economic 

valuation by Van der Vat [1]. The social benefit is based on the number of events (in the 

monthly time step) per year. 
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5. MODEL STRUCTURE 

 

o reproduce the RIBASIM-PS study in the RTC-Tools 2.0, identical datasets are 

used to obtain comparable results. The schematic presentation of the optimization 

model constructed in this study is depicted in Figure 5.1. The technical details of the 

RIBASIM-PS study are briefly explained in Section 5.1. Section 5.2 elaborates the 

software architecture and features of the RTC-Tools 2.0. Next, Section 5.3 describes the 

model schematization and database management in greater detail. This section also 

covers the application of the hard constraints which consist of the parameters of 

physical infrastructures in the model schematization. At last, Section 5.4 delineates the 

derivation of the hydroeconomic valuations in this study.  

 
Figure 5.1 Schematic presentation of modular optimization approach 

5.1 RIBASIM Rule Based Algorithm and particle SWARM Optimization 

To obtain comparable results to the RIBASIM-PS study, the nodes and links of the 

RIBASIM model are replicated in the RTC-Tools 2.0. The RIBASIM technical details are 

retrieved from its user manual [42]. The governing equations of the surface water 

reservoir in RIBASIM are shown in ( eq. 1 ) to ( eq. 6 ).  

The target demand               defines the quantity of downstream water demands 

        and the minimum discharge                     to generate firm energy demand in 

the dry period. 

                                         ( eq. 1 )  

T 
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The maximum energy generation or maximum turbine flow is calculated by iteration 

since it has implicit relation of the net head                     . It is formulated from the 

intake level          , the friction losses                      and the tail level (                  )). 

The power capacity                 , efficiency    , plant load factor ( ), gravity     and 

water density (   are taken into account. The conversion factors         are constant 

values based on the units of the parameters. 

              
                

                                 
                   

 
  ( eq. 2 ) 

The energy generated depends on the released discharge         and the net head. The 

maximum energy generated from the reservoir is capped by the maximum turbine flow. 

The auxiliary energy consumption     is considered in this calculation. 

                               ( eq. 3 ) 

                                       ( eq. 4 ) 

The spilling from the main gate            happens if the actual released discharge is 

bigger than the maximum turbine flow. The spilling from the top of the reservoir only 

happens if the water level is higher than the reservoir height. 

                           ( eq. 5 ) 

Whereas the target released discharge is driven by the downstream demands, the 

quantity of released discharge         is determined by the rule curves. The provisional 

water level pinpoints a particular zone which determines a specific action for the next 

time step. It is necessary to clarify exactly what RIBASIM specified as the provisional 

water level. It is defined as an actual water level in the reservoir after calculating the 

actual inflows       , all release targets        , rainfall       , evaporation        and other 

losses. By changing the released discharge, the concept of mass balance between the 

reservoir storage at the current (    ) and the next time step        is satisfied by an 

iterative procedure. 

                                    ( eq. 6 ) 
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Figure 5.2 RIBASIM reservoir operation rule curves 

Figure 5.2 illustrates the zones that determine the reservoir operation rules. The set of 

rules for each zone are: 

The flood control curve indicates the maximum water level in the reservoir to provide 

some storing capacity in the case of a flooding as the consequences of high upstream 

inflow. If the provisional water level is above this curve, the firm target discharge and 

the maximum discharge for an extra energy generation are released first from the 

turbine gates. If the water level still higher than the flood control curve, extra water is 

forced to spill in order to reach the flood control curve at the end of time step. 

The target curve reflects the reservoir water level that generates the maximum 

hydropower generation. If the provisional water level lies between the flood control 

curve and the target curve, the firm target discharge and the discharge for an extra 

energy generation are released until the provisional water level reaches the target curve 

at the end of time step. 

The firm curve reflects the minimum level required to fully supply the firm target 

discharge. If the provisional water level is between the target curve and the firm curve, 

the firm target discharge is released. 

The hedging curves indicate the zone between the firm curve and the dead storage. In 

the RIBASIM algorithm, the area between the firm curve and the dead storage are 

divided into 5 zones. These zones determine what percentage of the firm target 

discharge is released if the provisional water level drops into this zone. 
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The online adjusted gate option is available for the cascade reservoirs simulation. This 

option, which is employed in the RIBASIM-PS study, forces the upstream reservoir to 

release a higher released discharge if the water level of the downstream reservoir is 

below the firm curve.  

In the RIBASIM-PS study, a global optimization approach termed the particle SWARM 

is combined with the rule-based simulation tools (RIBASIM). This recent approach 

identifies the optimized parameters by initializing them by random values that generate 

the whole range of possible solutions [43]. Those parameters are later updated to reach 

the detected best solutions. Inspired by the synchronized move of the bird flocks, these 

parameters move to search the best solution. The best neighbouring solutions attract 

the other particles by adjusting the velocity vector of these particles. The optimization 

converges if most updated values of the parameters already generate the approximate 

best solutions. In this way, the particle SWARM optimization is able to cope with the 

local minima from non-linearity and non-convexity of the objective function. It is also 

independent from the initial values given as long as the particles cover the entire 

solutions. 

5.2 RTC-Tools 2.0 Software architecture 

A modular optimization model has been set up to optimize the sequences of objectives. 

Figure 5.3 depicts the architecture of the software along with their interaction during 

the optimization runtime. Each component is further explained in this section. This 

figure also captures the graphical user interface of the software. 

 

Figure 5.3 The architecture and graphical user interface of RTC-Tools 2.0 
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Modelica 

The reproduced network of the Citarum cascade reservoirs is defined in Modelica. In 

this study, the use of Modelica is limited to the visualization purpose and the equation 

declaration. It can also store the physical parameters of defined objects. In Modelica, a 

physical infrastructure is defined as an object which stores some equations. Modelica 

also opens a possibility to define the detailed components inside an object. This can be 

illustrated briefly by representing two turbines, a main gate and a spilling gate as sub-

model components inside a reservoir object. Then, this object can be connected to the 

other objects to create an integrated network. 

One of the key features of Modelica is the declarative equation-based language. This 

language eliminates the step in implementing the algorithms explicitly [47]. It leads to a 

shorter, more understandable code which directly corresponds to the mathematical logic. 

Some examples of the declarative equation can be seen in Section 5.3. Following is a 

brief explanation how this declarative equation is used to solve an optimization problem. 

The declarative equations in Modelica language are compiled by a compiler called 

JModelica. This compiler converts Modelica models into a symbolic mathematical 

representation that is accessible in the Python language using a framework called 

CasADi. RTC-Tools 2.0 then discretizes these equations, injects time series and lookup 

tables, and interfaces the resulting optimization problem with a non-linear 

programming solver called IPOPT. 

RTC-Tools 2.0 

The new generation of the RTC-Tools 2.0 is a toolbox for the control and optimization of 

environmental systems. RTC-Tools 2.0 is the modular optimization tools in the Python 

language [46]. The Python language is known as an effective programming language 

since the type of variable is implicitly defined. The RTC-Tools 2.0 is responsible for the 

data management and the linkages between the software during the optimization 

runtime. It mainly handles the non-physical input data such as lookup tables, initial 

conditions and the time series input. The constant physical parameters can be also 

managed. 

The conventional linear programming approach is applied by the substantial assistance 

from the RTC-Tools 2.0. As shown in the ( eq. 7 ) this optimization model searches a 

local minimum of an objective function     . Therefore, applying an appropriate initial 

condition and a formulating a suitable objective function are the most crucial steps in 

this type of optimization. 

     

  
   ( eq. 7 ) 

In the goal programming approach, several goals can be set together although they have 

different scale and unit. The goals are numbered depending on their priorities; a smaller 

number defines a higher priority while several goals can be set as the same priority level. 

Each goal in the sequences of objectives is directly linked to the variables in Modelica. 

The possible range of the optimized value for each goal is described in the time series of 

the upper and lower bounds. These bounding values are further termed as the soft 
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constraints. They compel the optimization search space to shrink in the lower number of 

priority goal.  

In the RTC-Tools 2.0, the algorithm satisfies the highest priority goals first on all-time 

series. The lower priority goals are solved afterward. As shown in the ( eq. 8 ), the 

optimum solution is attained when the sum of deviation          from all variable in all-

time series reaches the minimum value. Moreover, the optimum solution must be inside 

the bounds of the inviolable hard constraints       . It is also important to note that the 

total deviations of the higher goals (           ) must remain constant or smaller after the 

lower goals          are solved.  

                        

{
      

                                         
  ( eq. 8 ) 

The time series data and the sequences of objectives are handled by the RTC-Tools 2.0. 

Both are imported from the comma separated files that are linked to the variables in 

Modelica object. The optimization process is entirely successful when the lowest goals 

are solved.  

In RTC-Tools 2.0, a value of satisfaction tolerance between 0 and 1 could be assigned to 

all goals. The current goal is considered to be fully satisfied if a satisfaction variable is 

above 1 – satisfaction tolerance. While smaller number indicates tighter criteria, the 

satisfaction tolerance could be set as 1 to disable this option. In RTC-Tools 2.0, setting 

tight criteria might result in an unsolvable goal within the maximum number of 

iterations. If RTC-Tools 2.0 is unable to solve a goal, it terminates the runtime at the 

latest solvable goal. Furthermore, a value of constraint relaxation  ) between 0 and 1 

could also be assigned to control how much the soft constraints could be violated        

depending on the range of value between upper and lower soft constraints    . This 

relation is described in ( eq. 9 ) 

            ( eq. 9 ) 

5.3 Model schematization and Database management 

As previously mentioned, the variable in Modelica object is directly connected to the 

hard constraints, the sequences of objectives and the time series data. Table 5.1 

presents the overview of hard constraints applied which are further described in this 

section. The time series data injected to the variable are also discussed while the 

sequences of objectives are outlined in Chapter 6. 

Table 5.1 The hard constraints of the optimization model 

 

Modelica object Minimum Maximum

Reservoir water level Elevation Dam height

Reservoir relesed discharge 0 Gate capacity

Reservoir energy generation 0 Turbine capacity

River inflow discharge 0 ∞
Canal inflow discharge 0 Canal capacity
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The Modelica object can be easily reproduced and redefined by modifying the declarative 

equation and the icon visualization. The symbolization of nodes and links in Modelica 

and RIBASIM are shown in  

Figure 5.4. Furthermore, the declarative equations for each object are shown in ( eq. 10 ) 

to ( eq. 14 ). These equations are declared to be similar to the governing equations in 

RIBASIM except for the surface water reservoir node. In Modelica, the conversion factor 

is not necessary since the variables are always defined in the standard international 

unit. Figure 5.5 depicts the model schematization for the Citarum cascade reservoir 

while the detailed object specifications are explained in a greater detail in this section. 

 
Figure 5.4 The symbolization of the nodes and the links in RIBASIM and RTC-Tools 2.0 

 
Figure 5.5 Modelica model schematization of the Citarum cascade reservoirs 

Node/ link RIBASIM RTC 2.0 Tools

Inflow

Terminal

Demand

Conjuction

Bifurcation

Surface water reservoir

Channel
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Inflow  

The upstream boundaries of the network are specified as the time series discharge. 

These time series data are mostly obtained from the data pre-processing on the rainfall-

runoff simulation. In this study, the inflows time series are obtained from Perum Jasa 

Tirta I, the Indonesia state own enterprise for water resources management sector. The 

inflow discharge in the Saguling reservoir is obtained from the observed upstream 

monthly average discharge         . However, the inflow data from other two 

downstream reservoirs are calculated based on the mass balance concept by reviewing 

the observed reservoir released discharge and water level. 

            ( eq. 10 ) 

Terminal 

A terminal node represents the end of a natural channel without any restriction on the 

flow rate         , for example, a river estuary. It can also symbolize the end of the 

canal which delivers a target discharge        . To avoid flooding, the maximum flow to 

the canal is generally constrained based on the target demand. 

            ( eq. 11 ) 

Conjunction and bifurcation 

This node represents the splitting of a channel into two or more parts. A physical 

example of this node is the main river diversion into a canal. The diversion is regulated 

or allocated based on the target demand. The mass balance concept as a function of the 

total inflows          and the total outflows           is enforced. This node could 

also define a confluence where two or more water bodies meet in the river tributaries. 

                  ( eq. 12 ) 

Surface water reservoir 

The surface water reservoir represents a surface water storage that controls the 

downstream released discharge. Hence, the reservoir operation rules are the key factor 

in satisfying the downstream target demands. These demands could be consist of 

domestic water demand, environmental flow, agriculture, hydropower release and flood 

control. The inviolable hard constraints or the physical constraints of the reservoir are 

represented by the reservoir height, gate capacities and turbines capacities. On the 

other hand, the reservoir operation rules such as the rule curves and the hedging rules 

are specified as soft constraints. 

Similar to the common reservoir model, the changes in the reservoir volume           is 

a function of the total upstream inflows into the reservoir          , the downstream 

released discharge            and the reservoir actual evapotranspiration. This 

function ensures the mass balance in the surface water reservoir.  

                                                      ( eq. 13 ) 

The relation between water level and reservoir storage is explicitly defined by a look up 

table to represent the reservoir shape better. This relation provides better information 

for the overall mass balance calculation. The relation between the water level and the 

reservoir area also explicitly defined to calculate the reservoir evaporation. In RIBASIM, 
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this relation is defined by a piecewise linearization that divides a nonlinear function into 

several linear sections. As these discontinuities often cause a problem for the 

optimization solver in RTC-Tools 2.0, the relation of water level and reservoir storage is 

defined as a function derived by B-Spline interpolation. Furthermore, a curve fit option 

can be specified in RTC-Tools 2.0 to ensure that the first and the second derivation of 

this function are always positive. Although the optimization solver in RTC-Tools 2.0 is 

able to handle non-linearity, a monotone function could substantially help the solver to 

find the optimal solution faster with slight modification to the physical representation. 

The surface water reservoir covers the hydropower generation     in the model 

components. The energy generation is calculated from the relation of the released 

discharge via turbine gate             and the net head. The net head depends on the 

intake level, the friction losses and the tail level         ). The released discharge from 

the turbine gate can be utilized for the consumptive water demand. Adapting to the 

RIBASIM model, the efficiency  plant load factor             , gravity 

                         and water density (   ) are taken into account.  

                                                                               ( eq. 14 ) 

Channel 

The connection between two or more objects represents an open channel, for example, a 

river or a canal. In this study, the connection ensures the mass balance between the 

connected objects and opens the possibility to model the losses in energy and water. This 

connection allows the water to flow in both upstream and downstream directions. Since 

the backwater event less likely presents in this case study, the minimum capacity of the 

open channel is set as 0 in the inviolable hard constraints. 

5.4 Hydroeconomic valuations 

Adapting to the RIBASIM-PS study, the economic benefit functions are formulated 

based on the agricultural delivered demand, the hydropower generation and the flood 

risk reduction. These functions formulate a single hydroeconomic objective function as a 

linear and convex optimization problem. The economic valuation of each function is 

expressed in 2010 US Dollars. A table of the summary of the hydroeconomic valuations 

applied in this study is presented for each section. In each of this table, the 

hydroeconomic valuations adapted from Van der Vat [1] are highlighted. 

5.4.1 Downstream water demands 

In this study, the fundamental demands that must be satisfied are not estimated 

economically.  As shown in Table 5.2, the domestic water demand and environmental 

flow is set as the minimum constraints. On the other hand, the agricultural delivered 

demand is formulated as one of the hydroeconomic benefit functions. 
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Table 5.2 Summary of constraints and objective functions (water demand) 

 

5.4.1.1 Domestic water demands and environmental flow 

As shown in ( eq. 15 ) and  ( eq. 16 ), the domestic water demand        is estimated 

based on the population and the water use per capita in the Citarum basin. The 

population in the basin in 2010 is around 16 million people and the average water use 

               is 190 l/capita/day [29]. The value of the average water use is reasonable 

for the city with more than 1 million inhabitants. In 2010, the estimation of the 

domestic water demand is 35.12 m3/s. In 2010, the minimum environmental flow 

       in the Citarum River is 1.4 m3/s with a slight annual increment [30]. As the model 

constructed is a non-dynamic optimization model, both values are assumed to be similar 

for the whole period. Both domestic water and environmental flow demand are defined 

as priority discharge          that must be released.  

                   ( eq. 15 ) 

                  ( eq. 16 ) 

5.4.1.2 Agriculture 

The report published by the Indonesian MPW [29] stated that the total rice paddy field 

area is 348,704 Ha. The net agricultural water demand generated from the RIBASIM 

simulation model is presented in Figure 5.6. This figure shows that the value of the 

agricultural water demand shows comparatively greater quantity than the data used in 

the RIBASIM-PS study. The most likely cause of this difference is that the Indonesian 

MPW [29] performs more detail analysis on the cropping season. This difference could be 

helpful to capture the sensitivity of the firm rule curve to the agricultural water demand. 

 
Figure 5.6 The agricultural water demand in the Citarum basin (Data source: MPW, 2012) 

 

Constraints
Quantity 

(m 3 /s)

Benefit 

(US$ /m 3 )

Penalty 

(US$  /m 3 )

Agriculture (van der Vat, 2015) 88 - 197 0.02

 - Paddy (October - May) 87 - 322 0.02 0.016

 - Nuts (June - September) 8 - 190 0.043

Drinking water 35.1 - -

Environmental flow 1.4 - -

Water demand

Objective functions
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Paddy 

As shown in ( eq. 17 ) and ( eq. 18 ), the irrigation benefit       
   is defined as the 

economic benefit gained with the presence of reservoir operation      
  . The agriculture 

delivered demand is valued         as US$0.02/m3. The annual      benefit is calculated 

by adding the monthly     economic benefit of agricultural delivered demand       
     

This delivered demand must be less or equal to the agricultural water demand       
   . 

     
      

         
   ( eq. 17 ) 

    
   ∑           

     
         

          ( eq. 18 ) 

Van der Vat [1] 

As the reduced amount of agricultural delivered demand may result in the economic loss 

to the farmers, the penalty function that represents the drought impact in the 

agricultural area is formulated. The drought penalty cost       
     

  is obtained by 

defining the cost function as the average yield reduction. A report by International Rice 

Research Institute [48] concludes that the total drought reduces by nearly 80% of the 

yield (  
     

) over the entire season in the South and Southeast Asia. It provides an 

estimated value of US$0.016 /m3 as the agricultural drought penalty cost       
     

 . These 

relations are formulated in the ( eq. 19 ) and ( eq. 20 ). It is important to note that this 

method has not yet covered different drought damages based on the stage in the growing 

season.  

     
     

      
     

   
     

  ( eq. 19 ) 

     
     

  ∑             
     

         
        

     
  ( eq. 20 ) 

Secondary crops 

To reduce significantly the water demand during the dry season, the cultivated crops 

are mostly replaced by the non-rice crops [49]. The usual secondary crop during the dry 

season in the Citarum basin are nuts, corn, soybeans or cassava. Retrieved from the 

official website of the Indonesian Ministry of Trade [50], the peanut price in September 

2010 is IDR14,900/kg (US$1,030/ton). As a comparison, an overview of the rice market 

price in 2010-2011 provides an average rice price        
       

  of US$475 /ton. Combining 

both values, the agricultural delivered demand in the secondary cropping season could 

be estimated as US$0.043 /m3. This relation is formulated in the ( eq. 21 ). Since nuts 

are less prone to drought, the formulation of penalty cost is therefore considered as not 

necessary.  

     
     

     
       

      
             

     
  ( eq. 21 ) 

5.4.2 Hydropower generation 

The economic benefit function of the hydropower generation depends on the water level 

and released discharged from the reservoir. In the RIBASIM-PS study, the constraints 

in the physical characteristics are directly defined in the RIBASIM model. In contrary, 

the physical characteristics are included as the hard constraints in RTC-Tools 2.0. The 
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objectives and constraints related to the hydropower generation that must be specified 

in the RTC-Tools 2.0 are shown in Table 5.3. 

Table 5.3 Summary of constraints and objective functions (hydropower generation) 

 

The economic valuation of hydropower generation is divided into peak load       , 

US$66/MWh) and base load        , US$32/MWh). The operational and maintenance 

cost of the hydropower can be neglected since it is relatively small. The RIBASIM-PS 

study simplifies that the rest of the electricity produced is valued as a base load if the 

hydropower generation      produces higher electricity than the firm energy 

demand       
  . On the other hand, if the hydropower generates less electricity than the 

firm energy demand, the whole hydropower generation are valued as the peak load. As 

shown in the ( eq. 22 ), the economic benefit        
   mainly depends on the actual 

hydropower generation. All of the power generated in Cirata and Saguling are valued as 

the peak load while Jatiluhur only produces around 21% of the peak load. 

      
  ∑ [[   (        

 )       ]  [   (          
 )       ]]

    
     ( eq. 22 ) 

Van der Vat [1] 

Some constraints on the hydropower generation aspects are described below: 

Penalty on energy shortage 

Cirata and Saguling reservoirs aim to fulfil the electricity demand peak on Java and 

Bali during 18.00 – 22.00 [39]. The drop in the firm energy demand in both reservoirs 

operation could bring about three hours power cut in several locations [51]. This 

shortage costs higher than the energy price itself because it could result in high 

economic losses, especially in the industrial production. In the case of this energy 

shortage, a high penalty value is assumed as two times higher than the peak energy 

value. The penalty value of US$ 132 /MW is applied to both upstream reservoirs when 

each of them generates lower electricity than the firm energy demand. On the other 

hand, most electricity generation in the Jatiluhur reservoir is valued as the base load 

since it mostly generates an extra energy. The penalty function is not necessary to be 

applied to this reservoir. The firm energy demands for each reservoir are 69.7 GWh for 

Jatiluhur, 60 GWh for Cirata and 100 GWh for Saguling.  

Jatiluhur Cirata Saguling
Peak 

load

Base 

load

Benefit for generated energy 

(van der Vat, 2015)
US$ /MWh

66 32

Penalty on energy shortage US$ /MWh

Fraction of peak generation 

(van der Vat, 2015)
% 21 100 100

Minimum level power generation m+MSL 75 205 623

Strategic level power generation m+MSL 82 206.5 625

Tail level hydropower plant m+MSL 27 102 252

Head loss m 1 4 28

Turbines efficiency % 87 87 87

Monthly firm energy demand GWh 69.7 60 100

Maximum turbines capacity MW 187 700 1,008

Constraints and Objective functions

2x66

UnitHydropower Characteristics
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Strategic minimum level 

To deal better with the energy shortage, the reservoir should be operated higher than 

the strategic minimum water level [38]. The advised values on this water level are +82 

m+MSL for Jatiluhur, +206 m+MSL for Cirata and +625 m+MSL for Saguling. These 

values are 2 m – 5 m higher than the minimum level of reservoir power generation. 

Limiting electricity generation based on the turbines capacity 

At some point, a higher potential water level could not produce more electricity since it 

is capped by the turbine capacity. The maximum turbines capacities are 700 MW for 

Saguling, 1,008 MW for Cirata and 187 MW for Jatiluhur [39]. 

5.4.3 Flood risk reduction 

It is expected that the damage of the downstream flooding depends on the upstream 

released discharge. As summarised in Table 5.4, the RIBASIM-PS study applied a 

binary flood damage function. In this study, a linear flood damage function is 

formulated. The flood reduction benefit is calculated from the flood damage reduction 

after the application of the optimized reservoir operation rules. 

Table 5.4 Summary of constraints and objective functions (flood damage) 

 

As shown in ( eq. 23 ), the economic benefit        
   is obtained from the difference 

between the flood damage if the cascade reservoir is not constructed        
   and the 

flood damage after the reservoir construction with the optimized reservoir operation 

rules      
  . The flooding in the downstream area is expected if the released discharge 

from Jatiluhur reservoir      passes 320 m3/s. Although the released discharge is much 

higher than the threshold, the similar flood damage cost of US$ 14 million is applied. 

This value is based on the flood damage cost estimation for the affected household and 

agricultural area in the downstream cities of the Citarum basin. 

      
        

   ∑     
     

         ( eq. 23 ) 

Van der Vat [1] 

As depicted in Figure 5.7, a flood damage cost based on the index-based flood insurance 

is assumed to be linear in the Citarum Basin [52]. It is important to note that this study 

should estimate the social damage from the flood event apart from the insurance 

purpose; thus, this curve should be modified. The penalty function is presumed to be 

linear to the released discharge from Jatiluhur reservoir if it releases a higher discharge 

than the maximum monthly agricultural water demand. The starting point of the flood 

damage penalty function should be adjusted if the downstream water demand increases. 

Constraints Objective functions
Discharge

(m 3 /s)

Damage

( million US$ /m 3 )

Constant (van der Vat, 2015) 320 14

Linear Interpolation

Q=Qmax agriculture 200 0

Q (van der Vat, 2015) 320 14

Qmax agriculture<Q x

Flood reduction
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Figure 5.7 Index-based flood damage function (left) and flood social damage penalty function (right) 

It should be realised that this method is a simplification since the flooded area depends 

on the water level of the downstream cross sections. Modelling a simplified hydrological 

routing could be a handy approach to analyse of the severities of the downstream 

flooding damage. This analysis is not carried out due to the monthly time stepping used 

in this study.  

5.4.4 Applicability of optimized rule curves 

Some additional constraints are applied to find more applicable reservoir operation rules. 

The optimized parameters are bound to the values based on the characteristics of 

physical infrastructures and the stability of the reservoirs. These constraints are 

presented in Table 5.5. 

Table 5.5 Summary of constraints (rule curves applicability) 

 

The water level, area and discharge relations of the Citarum cascade reservoirs are 

slightly different in the various reports. These relations in Figure 5.8 are referred to the 

2010 Standard Operation Procedures and its review [39].  

Jatiluhur Cirata Saguling

Physical characteristic

Bottom gate level (Dead storage) m+MSL 45 180 623

Spilling level m+MSL 106.89 220 643

Volume at spilling level McM 2,448 1,827 560

Live storage capacity 

(Turbine intake to spilling level)
McM 1,325 768 560

Minimum elevation for reservoir stability m+MSL 87.5 - -

Rule curves applicability Unit
Constraints
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Figure 5.8 Citarum cascade reservoirs’ storage and water level relation (Data source: Dijkman, et al, 2012) 

Dijkman, et al. [39] found that there has been a reduction in the capacity of the 

reservoirs since its completion (60% for Saguling, 90% for Cirata and 75% for Jatiluhur). 

It could partly be explained by the high sedimentation in these reservoirs [53]. 

Furthermore, substantial differences on the storage and water level relation from the 

various reports are observed [39] [37] [38]. As this study conducts a deterministic 

approach, the uncertainty on the storage and water level relation is neglected. 

To have a better applicability of the optimized rules, limiting the minimum water level 

in reservoirs is important to avoid the damages to the physical infrastructure. Both 

upstream reservoirs are relatively stable since they were made of rock fill dam. [25]. 

Since the Jatiluhur reservoir was made of a rock fill dam with an inclined clay core, the 

crack along the crest may occur if the water level is below a certain level. Srihadi, et al. 

[54] stated that the strategic minimum level for Jatiluhur should be higher than 87.5 m 

due to the dam stability. A clay core reservoir is well-known for its instability during the 

water level fluctuation. The rapid change in the hydraulic head often leads to the 

drawdown effect6. Since there is no specific limitation in the water elevation fluctuation, 

it is assumed that the Jatiluhur reservoir is always stable when the water level is 

higher than 87.5 m. 

The Citarum cascade reservoirs are central of the freshwater fisheries in the basin. The 

fluctuation in water level has less influence on this activities due to the temporary 

floating structure used for fisheries. It is likely that the water level changes may have 

more influences on the fishing boats and recreational boats.  

                                                
6 Drawdown effect: A reduced stability in the upstream face of the reservoir due to the sudden 

drop of the water elevation [61]. 
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5.5 Indonesian governmental policy directive 

This section describes and discusses the development of the methodology based on the 

procedure carried out by the reservoir operators. The operators should implement the 

governmental policy directive no Pd T-21-2004-A regarding operation rules of the multi-

purpose cascade reservoirs [55].   

As presented in Table 5.6, some additional constraints applied in this section refer to the 

Indonesian governmental policy directive. Three alternatives of the reservoir operation 

rules are attained by processing the historical data that determines various hydrological 

years. These inputs are assessed separately with a trial and error in the NEDECO 

spreadsheet model resulting three different reservoir operation rules. These rules are 

further termed as (i) wet curve, (ii) normal curve and (iii) dry curve depending on the 

input data [37]. The most suitable curve for the reservoir operation rules is later decided 

based on the weather forecast. 

Whereas the agricultural water demand must be set as a constraint in the NEDECO 

spreadsheet model, the RTC-Tools 2.0 provides more flexibility on defining the target 

demand. RTC-Tools 2.0 offers a possibility to assign agricultural target demand to one of 

the sequences of objectives in the goal programming while defining this target demand 

as a hard constraint is rather straight-forward. 

Table 5.6 Summary of constraints (governmental policy directive) 

 

Equal sharing principle 

The distributions of the total effective volume 7in the Citarum cascade reservoir should 

be around 21% for Jatiluhur, 29% for Cirata and 50% for Saguling. This system is 

expected to avoid the involvement of the reservoir operators in the conflict of interest. 

Annual deficit prevention 

To avoid an annual water deficit within the Citarum cascade reservoirs, the water level 

at the end of the year (31 December 2000) is constrained to be greater or at least equal 

than the initial water level of the same year (1 January 2000). The evaluation of the 

derived rule curves from 2005 to 2010 reveals that the reservoir operation often violates 

this policy, especially during the dry year. 

Operational constraints 

For practical reasons, the operation rules for the cascade reservoirs are constrained by 

the operational water level. Retrieved from Figure 3.2, the operational water level for 

each reservoir must be between these elevations: 

                                                
7 Total effective volume: Reservoir live storage [55] 

Jatiluhur Cirata Saguling

Equal sharing of effective volume % 50 29 21

Minimum operational water level m+MSL 87.5 206 623

Maximum operational water level m+MSL 106.5 219.5 642.5

Governmental directive constraints Unit

Constraints
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- Saguling : 623.0 and 642.5 m+MSL 

- Cirata : 206.0 and 219.5 m+MSL 

- Jatiluhur : 87.5 and 106.5 m+MSL. 

5.5.1 Determination of various hydrological years 

Adapting to the Indonesian governmental policy directive, a classic statistical method 

for inflow prediction is employed. The probability distribution Log-Normal and a 

simplified stochastic prediction ARIMA8 are used to forecast the input. The applied 

inflow data is further selected based on the weather information from BMKG9. The 

definition of a hydrological year corresponds to a specific probability of exceedance 

shown in Table 5.7. The measured inflow data obtained from the current year 

observation are included in the statistical analysis for the next year inflow prediction. 

Table 5.7 Hydrological year classification based on the probability of exceedance 

 

As shown in the ( eq. 24 ), the probability function of the Log-Normal distribution 

depends on the standard deviation     and the mean     of the logarithmic value of the 

time series data. This function is suitable for the analysis of the upstream inflow 

discharge since it always has a positive value. Figure 5.9 illustrates the probability 

distribution for Saguling historical inflow in January between 1920 and 2009.  

   |     
 

  √  
 

{
          

   }
 ;      ( eq. 24 ) 

 
Figure 5.9 Log-Normal distribution for Saguling historical inflow (January 1920-2009) 

                                                
8 ARIMA: Autoregressive Integrated Moving Average 
9 BMKG: Indonesian Agency for Meteorology, Climatology and Geophysics 

Year Classification
Inflow discharge 

probability of exceedance

Very dry <10%

Dry 10% - 40%

Normal 40% - 60%

Wet 60% - 90%

Very wet >90%
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As shown in Table 5.8, the calculation based on the Indonesian government policy 

directive is adapted to obtain the expected monthly upstream inflow for three reservoirs. 

The cumulative normal distribution represents the probability of exceedance as 

previously discussed. A specific Log-Normal distribution function is generated for each 

specific month in each reservoir. It means that the analysis of the very dry inflow in 

January 2010 is derived from the Log-Normal distribution of January upstream inflow 

between 1920 and 2009. In particular, this statistical procedure is somehow problematic 

since the probabilities of the very dry months occur simultaneously in a year is very 

unlikely. As a consequence, the forecast upstream inflow as the main input in the 

optimization model may lead to an extreme, less practical optimization results. 

This study found a marked difference in the input data between the NEDECO 

spreadsheet model and the data used in this study. During the dry year, the objectives 

tend to be easier to satisfy in the NEDECO spreadsheet model due to smaller difference 

between the monthly average inflow of the cascade reservoirs (RIBASIM: 77 m3/s, 

NEDECO: 121 m3/s) and the monthly average target demand (RIBASIM: 158 m3/s, 

NEDECO: 137 m3/s). For consistency reasons, the time series data used for the 

statistical analysis in this optimization study are extracted from the existing RIBASIM 

model.  

Table 5.8 Simplified stochastic inflow predictions (Log-Normal distribution) 

 

5.5.2 Simplistic stochastic forecast ARIMA 

The Indonesian policy directive applies ARIMA (0,0,1) (Autoregressive Integrated 

Moving Average) as a stochastic approach to predict the inflow into the reservoir. Figure 

5.10 present the result of the inflow time series analysis that has been done in the 

spreadsheet model produced in this study. The stochastic optimization analysis is not 

carried out since this study is limited to the deterministic model. 

The 90 years data is applied to define the ARIMA model parameters. Moreover, the 

monthly data from the period 2000 and 2009 are used to forecast the upstream inflow in 

2010. Although this stochastic forecast is not included in the optimization model, it 

provides practical information that this inflow forecast has a high level of uncertainty. 

The Citarum cascade reservoirs operator often addresses this issue by assessing the 

meteorological data to identify the best estimation of a single deterministic forecast 

value. An advance option is applying a stochastic optimization approach. While 

stochastic optimization is considered as a very expensive approach, it is a widely held 

view that it offers a better insight into more probable outcomes. 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Dry 4.3 4.3 4.2 5.1 4.5 4.4 4.5 3.8 2.8 2.8 3.1 3.5

Normal 8.9 9.3 9.8 11.6 10.6 10.1 9.9 9.0 6.7 6.4 7.2 7.5

Wet 26.3 29.5 36.6 41.1 41.6 37.2 33.3 36.1 28.1 23.7 27.0 24.6

Dry 34.7 36.3 40.6 47.2 45.3 40.2 35.8 41.2 37.5 35.1 29.1 32.7

Normal 62.5 63.9 68.6 80.1 80.3 75.2 69.7 71.4 65.9 63.2 57.7 60.5

Wet 138.7 135.6 135.6 160.2 173.2 179.1 178.9 147.7 139.5 139.8 154.4 141.0

Dry 31.4 31.1 32.5 38.7 41.6 38.2 40.2 41.4 36.7 32.4 26.9 33.7

Normal 53.9 55.3 58.6 70.0 74.5 71.9 74.3 72.5 64.1 58.5 52.3 56.4

Wet 109.8 119.7 129.5 156.6 164.0 173.1 173.2 153.1 134.6 130.1 133.9 110.1

Monthly discharge (m
3
/s)ClassificationReservoir

Jatiluhur

Saguling

Cirata
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Figure 5.10 Stochastic inflow prediction (ARIMA (0,0,1))
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6. SOFTWARE APPLICATION AND RESULT ANALYSIS 

his chapter is divided into several sections; each section presents the practical 

application of constructing an optimization model in the RTC-Tools 2.0 and the 

result analysis for each of those models. Section 6.1 discusses the goal programming of 

the sequences of objectives derived from the existing model in RIBASIM. This section 

answers the first and second research questions about the practicalities of developing a 

similar model network as RIBASIM in the RTC-Tools 2.0. Section 6.2 focuses on the 

linear programming of the maximum economic benefit as a single objective function 

based on the RIBASIM-PS study. The sensitivity analysis of this hydroeconomic 

optimization model follows on the same section.  The next following sections present the 

various optimization approaches in order to have a better applicability of the optimized 

reservoir operation rules than the RIBASIM-PS study. Section 6.3 explains an 

alternative approach called the hybrid optimization between the linear programming 

and the goal programming.  

Section 6.4 gains insights about increasing the social benefits by modifying the 

hydroeconomic objective function. This reformulation is expected to be crucial for a pure 

holistic hydroeconomic study without any additional algorithm from the rule-based 

simulation model. Section 6.5 observes the changes in the reservoir operation rules if 

the downstream water demands are higher when the additional water demands are not 

quantified economically. The next Section 6.6 discusses the optimization approach 

adapted from the applications by reservoir operators in comparison to the water 

resources law. These different approaches are summarised in the Table 6.1. At last, 

Section 6.7 briefly summaries objectives and methodology before outlining the findings. 

In this study, most data are taken from the existing RIBASIM model. The time series of 

upstream inflows into the reservoirs are exported between 1920 and 2009. In the same 

way, the monthly agricultural water demand and reservoir evaporation rate are 

exported; these data are assumed to be similar for each year in the simulation period as 

the changes in land use and the population growth is neglected. The bathymetries of the 

reservoirs are taken directly from the built reservoirs model in RIBASIM. The economic 

valuations are partly adapted from the RIBASIM-PS study whereas the penalties 

functions are obtain from the literature review. Since this optimization model is a non-

dynamic model, discounting is taken. 

The results from 1925 to 1935 are chosen as the representative period because it 

captures the high and low inflow into the reservoirs. In the inflow data pre-processing, 

the dry months (June-September) and the wet months (October-May) are separated. The 

typical year is chosen by comparing the average seasonal volume from the whole 

simulation period. The time series displays ten years results from the ninety years 

(1920-2009) simulation period. This chosen period comprises dry years (1925-1927), wet 

years (1931-1933) and typical year (1934). 

T 
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Table 6.1 Software application of different optimization approaches (RTC-Tools 2.0) 

 

 

1 and 2 6.1
Goal Programming

Sequences of hydrological objectives

Flood reduction

Agriculture demand

Firm energy

Infrastructure 

characteristics
- 90 years 90 year

3 6.2
Linear Programming

A hydroeconomic objective

Maximum 

economic benefit

Infrastructure 

characteristics

van der Vat 

(2015)
90 years 90 years

4 6.3

Hybrid Optimization

Sequences of hydrological objectives

A hydroeconomic objective

Flood reduction

Agriculture demand

Firm energy

Maximum economic benefit

Infrastructure 

characteristics

van der Vat 

(2015)
90 years 90 years

4 6.4

Linear Programming

A modified hydroeconomic objective

(Penalty functions)

Maximum 

economic benefit

Infrastructure 

characteristics

van der Vat 

(2015) & 

penalty 

functions

90 years 90 years

4 6.5

Linear Programming

A modified hydroeconomic objective

Additional hydrological constraints

Maximum 

economic benefit

Infrastructure 

characteristics

Drinking water

Environmental 

flow

Reservoir stability

van der Vat 

(2015) & 

penalty 

functions

90 years 90 years

4 6.6

Goal Programming

Sequences of hydrological objectives

(Application by reservoir operators)

1. Drinking water

1. Environmental flow

2. Hydropower generation

2. Flood reduction

2. Agriculture demand

Infrastructure 

characteristics

Reservoir stability

- 1 year 1 year

4 6.7

Goal Programming

Sequences of hydrological objectives

Sharing strategies (water resources 

law)

1. Hydropower generation

2. Drinking water

2. Environmental flow

3. Flood reduction

3. Agriculture demand

Infrastructure 

characteristics

Reservoir stability

- 1 year 1 year

Hydroeconomic 

valuation

Simulation 

period

Optimization 

time horizon

Research 

question

(s)

Section

(application 

and result)

Constraints
Annual benefit for 

Citarum cascade reservoirs
Objective functions
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6.1 Goal programming of hydrological objectives (RIBASIM proxy) 

This section focuses on the procedure for defining the sequences of objectives derived 

from the RIBASIM rule-based algorithm. This optimization is done without 

transforming any variable into an economic benefit function. In the RTC-Tools 2.0, the 

algorithm satisfies the highest priority goals first over the entire length of the time 

series. This procedure is markedly different to RIBASIM proxy that simulates at current 

and next time steps by an iterative procedure. For better comparison the optimization 

horizon of the RTC-Tools 2.0 model should be shortened, e.g. to two or three time steps 

to reduce the influence of knowledge on future inflows in the water system operation. In 

this case, a calendar year is considered as a practical optimization time horizon since 

the monthly inflow prediction is forecasted a year-ahead in Indonesia. 

In this study, the goal programming approach has been done in two different time 

horizons, (i) whole time series optimization as a default setup in RTC-Tools 2.0 and (ii) a 

year optimization time horizon with the substantial help from the batch file. By 

integrating a batch file inside the source code of RTC-Tools 2.0, the goal programming 

can be run within the specified optimization time horizon. This has been done by 

repetitively cutting the long time series, initializing the parameters based on the 

previous optimization result, then optimizing the similar problem defined in the source 

code. The results of each optimization run are then combined into a single file. 

In this study, the sequences of hydrological objectives are adapted from the algorithm in 

RIBASIM termed the rule curves and the hedging rules. While the rule curves are 

already described, Table 6.2 shows the hedging rules defined in the RIBASIM-PS study. 

A different percentage of the delivered target demand is determined after a specific 

storage zone in the reservoir is filled. This target demand entirely depends on the 

purpose of the reservoir. As was pointed out in the reservoir characteristics, the delivery 

target demands of both upstream reservoirs are the firm energy generation and the firm 

level fulfilment of the downstream reservoir.  The Jatiluhur reservoir is the only multi-

purpose reservoir that is responsible for satisfying the downstream water demands, 

generating energy and reducing the occurrence of the downstream flood events.  

Table 6.3 presents the sequences of hydrological objectives that determine the water 

allocation in the network. This table is derived from the rule curves (see Section 5.1) and 

the hedging rules (see Table 6.2). As RIBASIM simulation routes the water from 

upstream to downstream, the priority on the upstream reservoir should be set higher 

than the downstream reservoir in RTC-Tools 2.0. In addition, the minimum capacity of 

the open channel has been set as 0 since RIBASIM is unable to model backwater effect. 

This ensures that the downstream inflow is not responsible for satisfying more 

upstream targets although they are set as the highest priority. Adapting to the existing 

RIBASIM model, the sequences of objectives below are derived based on the algorithm of 

online adjusted gate in RIBASIM (see Section 5.1). It is important to note that the 

priority setting should be different if the cascade reservoirs model disables this option. 

In that case, the targets of the downstream reservoir should be defined in the lower 

priority after all targets of the upstream reservoir are specified. 
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When deriving these sequences of objectives, care was taken to highlight the implicit 

priorities, such as the reservoir dead storage level. The upper and lower soft constraints 

are explicitly defined in the time series that are compiled in the comma separated file. 

These time series data, which may consist of a constant value for the whole simulation 

period, are taken directly from the existing RIBASIM model. 

Table 6.2 The hedging rules of the Citarum cascade reservoirs model (RIBASIM) 

 

Table 6.3 Sequences of hydrological objectives (RIBASIM proxy) 

 

% between 

Hfirm and 

Hdead

% of target 

release

% between 

Hfirm and 

Hdead

% of target 

release

% between 

Hfirm and 

Hdead

% of target 

release

Zone 1 80 90 80 90 80 100

Zone 2 60 70 60 70 65 100

Zone 3 40 50 40 50 55 90

Zone 4 20 30 20 30 45 50

Dead Level 0 10 0 10 0 0

Lower 

boundary 

of zone

JatiluhurCirataSaguling

Priority Object Objective function
Lower 

soft constraint

Upper 

soft constraint

1 Cascade reservoirs Water level (H) Reservoir Hdead Reservoir H full

2 Saguling reservoir (S) Energy generation (P) S: 10% FirmP S: MaxP

3 Cirata reservoir (C) Energy generation C: 10% FirmP C: MaxP

4 Cascade reservoirs Water level Hhedging4 Hflood

5 Saguling reservoir Energy generation S: 30% FirmP S: MaxP

6 Cirata reservoir Energy generation C: 30% FirmP C: MaxP

7 Jatiluhur reservoir (J) Energy generation J: 50% FirmP J: MaxP

7 Agricultural terminal Target released 50% Qagr Qagr

8 Saguling reservoir Water level S: Hhedging3 S: Hflood

9 Cirata reservoir Water level C: Hhedging3 C: Hflood

10 Jatiluhur reservoir Water level J: Hhedging3 J: Hflood

11 Saguling reservoir Energy generation S: 50% FirmP S: MaxP

12 Cirata reservoir Energy generation C: 50% FirmP C: MaxP

13 Jatiluhur reservoir Energy generation J: 90% FirmP J: MaxP

13 Agricultural terminal Target released 90% Qagr Qagr

14 Saguling reservoir Water level S: Hhedging2 S: Hflood

15 Cirata reservoir Water level C: Hhedging2 C: Hflood

16 Jatiluhur reservoir Water level J: Hhedging2 J: Hflood

17 Saguling reservoir Energy generation S: 70% FirmP S: MaxP

18 Cirata reservoir Energy generation C: 70% FirmP C: MaxP

19 Jatiluhur reservoir Energy generation J: FirmP J: MaxP

19 Agricultural terminal Target released Qagr Qagr

20 Saguling reservoir Water level S: Hhedging1 S: Hflood

20 Cirata reservoir Water level C: Hhedging1 C: Hflood

20 Jatiluhur reservoir Water level J: Hhedging1 J: Hflood

21 Saguling reservoir Energy generation S: 90% FirmP S: MaxP

22 Cirata reservoir Energy generation C: 90% FirmP C: MaxP

23 Saguling reservoir Water level S: Hfirm S: Hflood

24 Cirata reservoir Water level C: Hfirm C: Hflood

25 Jatiluhur reservoir Water level J: Hfirm J: Hflood

26 Saguling reservoir Energy generation S: FirmP S: MaxP

27 Cirata reservoir Energy generation C: FirmP C: MaxP

28 Saguling reservoir Water level S: Htar S: Hflood

29 Cirata reservoir Water level C: Htar C: Hflood

30 Jatiluhur reservoir Water level J: Htar J: Hflood
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To optimize this model within 90 years as the time horizon, a default value of 

parameters (10-8) is applied to specify the satisfaction tolerance and the constraints 

relaxation (see Section 5.2). These tight criteria might not be an issue if an optimization 

with a long time horizon is carried out since an extreme violation is likely to be 

distributed. Additionally, the ability of RTC-Tools 2.0 in assessing the whole time series 

input generally results in a long-term prevention of drought in the extreme dry year. On 

the other hand, these tight criteria might result in an unsolvable goal in the unseen 

extremely dry year due to the short optimization time horizon. To address this issue, the 

constraints relaxation is set as 10-5 and satisfaction tolerance is set as 10-2 for the runs 

conducted with a one year optimization time horizon. 

When designing the model schematization, it was important to understand the physical 

representation of the reservoir in the case study so that an appropriate node in Modelica 

library is used. Figure 6.1 illustrates that the relation between reservoir water level and 

volume is reasonably linear. Therefore, the application of linear reservoir in the model 

schematization of Citarum cascade reservoirs might not considerably alter the 

optimization results. While the linear reservoir specifies a constant value of reservoir 

area, the look-up table reservoir presents a linear relation between water level and area. 

Although they have dissimilar physical representation, the difference between the 

evaporation demand in linear and look-up table reservoirs are insignificant compared to 

the overall mass balance in the system. Therefore, it seems that the application of linear 

reservoir could replace the look-up table reservoir in the model schematization of this 

case study. 

To help the optimization solver in finding the solution faster, the monotonicity value 

need to be set in RTC-Tools 2.0 if the look-up table reservoir is used in the model 

schematization. Setting the monotonicity as 1 ensures a strict monotonicity or always 

increasing look-up table fitting curve. Although the improvement seems to be 

insignificant in this case, the small changes shown in the figure below (left) are crucial.  

 
Figure 6.1 Monotonicity of look-up table fitting 
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Results  

This section answers the first and second research question that modelling a similar 

network as RIBASIM in the RTC-Tools 2.0 is a possibility. It also comprises the 

differences between the reservoir operation rules derived from the RIBASIM simulation 

and the RTC-Tools 2.0 optimization. Firstly, the results of a year optimization time 

horizon are presented as the reproduction of the RIBASIM simulation. After, the 

following part of the section explains the results of the 90 year time horizon as the 

further step in optimizing the RIBASIM simulation. 

Returning briefly to the subject of how the sequences of hydrological objectives are 

derived, the flood control curve is set as an upper water level soft constraint. Similarly 

to RIBASIM, this implies that the water level in the reservoir should not be higher than 

the flood curve. In order to gain a better understanding of the goal programming concept, 

the different sequences of objectives are applied. The supplementary results in a case 

when the upper flood control curves are removed are also presented in this section. This 

has been done for the optimization over the entire length of the time series. The 

reservoir operation rules of the Jatiluhur reservoir are presented since the other two 

reservoirs present insignificant differences in the results. 

In general, the results from both models signify that the reservoir operation rules are 

almost similar during the wet and typical year but tend to be different during the dry 

year. The finding from this study suggests that the goal programming results in more 

frequent minor drought but significantly lower the severities of drought events. 

Specifically, the different optimization time horizon carried out in this study reveals 

that one year as the optimization time horizon results in the most comparable results 

with RIBASIM simulation, still, they tend to be different during the extreme dry year. 

One year optimization time horizon 

As shown in Figure 6.2, RTC-Tools 2.0 almost reproduces similar reservoir operation 

rules to RIBASIM simulation results if a shorter optimization time horizon is applied. 

The results tend to be more comparable during normal and wet years. A significant 

difference can be observed in the reservoir operation rules during the extremely dry 

years between 1925 and 1927. During this period, the water level drop is clearly visible, 

specifically in the Cirata reservoir. It seems possible that these results are due to the 

high satisfaction of agricultural delivered demand at the end of 1926. These low water 

levels at the end of 1926 are specified as initial states which greatly affect the 

optimization for the next year (1927). These initial states become more consequential as 

the upstream inflows during those years are insignificant. The reason for this different 

operation between both tools is not entirely clear. It is likely that the straightforward 

priority setting as applied in the RTC-Tools model does not precisely correspond to the 

behaviour of RIBASIM in a cascading reservoir situation with the agricultural demand. 
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Figure 6.2 Reservoirs operation rules: Sequences of hydrological objectives (1 year horizon, RIBASIM proxy) 

The present results are significant in at least one major respect; the reservoir operation 

rules in RTC-Tools 2.0 seem to be consistent with the priority level setting. This can be 

clearly seen at the end of 1926. Tracing the priority setting in Table 6.3, 90% of 

agricultural demand (13) should be delivered after the water level of hedging zone 3 in 

all reservoirs (8-10) have been fulfilled. After, the remaining water started to fill the 

level of hedging zone 2. It seems that this priority setting is dissimilar to RIBASIM 

algorithm. At the end of 1926, RIBASIM tries to fulfil the firm level of Cirata reservoir 

just after fulfilling 50% of agricultural water demand. Hence, it could conceivably be 

hypothesised that deriving roughly similar reservoir operation rules from both tools 

during the dry years is possible if the priority setting in RTC-Tools 2.0 is carefully 

adjusted based on the RIBASIM algorithm.  
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Figure 6.3 Target delivered demands: Sequences of hydrological objectives (1 year horizon, RIBASIM proxy) 

The energy generation results in Figure 6.3 may help us to understand that the mass 

balanced concept is always satisfied in both tools. As the water level of cascade 

reservoirs are rather alike, the comparable energy generations imply that the released 

discharges from those reservoirs are roughly similar. These energy generation results 

also support the previous findings that RTC-Tools 2.0 tends to generate more frequent 

shortage but much less severity compare to the RIBASIM simulation even if one year 

optimization time horizon is carried out. This finding is similar to the agricultural 

delivered demand.  
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This figure also reveals that the RTC-Tools 2.0 results in more frequent flooding events, 

especially during the wet years. This can be easily prevented by adding a threshold of 

released discharge as additional a soft constraint. This result may be explained by the 

fact that the reservoir gate capacity is not explicitly specified in the RTC-Tools 2.0. In 

RIBASIM, some part of the released discharge is allocated to the next time step if it 

exceeds the gate capacity. Thus, it seems possible that these extreme released 

discharges in RTC-Tools 2.0 could be avoided by including the reservoir gate capacity 

into the optimization model. 

Entire length of the time series optimization time horizon 

As depicted in Figure 6.4, this study finds a slight difference in the Saguling reservoir 

water level between the results derived from both tools (Pearson product moment 

correlation coefficient=0.9). This finding is similar to the other parameters such as 

released discharge and energy generation. It can be seen that the optimization 

performed in RTC-Tools 2.0 prevents the energy shortage marginally better than the 

RIBASIM simulation. A possible explanation for this might be that the optimization 

problems in the Saguling reservoir do not involve any conflicting objective. In general, 

therefore, it seems that an optimization approach is considered as less necessary for a 

single purpose reservoir.  

 

Figure 6.4 Saguling reservoir operation rules: Sequences of hydrological objectives (RIBASIM proxy) 
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Figure 6.5 Cirata reservoir operation rules: Sequences of hydrological objectives (RIBASIM proxy) 

As presented in Figure 6.5, the results from both tools show a considerably lower actual 

water level compared to the applied rule curves. Specifically, RTC-Tools 2.0 produces a 

lower, more fluctuated actual water level than the RIBASIM simulation. Unexpectedly, 

RTC-Tools 2.0 is able to lower the cumulative energy shortage in the RIBASIM 

simulation from 11% to 2%. This the energy shortage per event refers to the total of the 

energy shortage in each reservoir. It is assumed that an extra energy generated in a 

reservoir cannot cover the energy shortage in another reservoir.  

These results are likely to be related to the difference between rules in both models 

during an extreme dry year. In the Citarum cascade reservoir simulation, RIBASIM 

strictly limits the target released discharge from the upstream reservoir to generate its 

firm energy demand and to fill the firm water level of the downstream reservoir. On the 

other hand, the RTC-Tools 2.0 optimization drives the water allocation based on the 

sequences of hydrological objectives. It leaves open the possibility of filling the 

downstream reservoir to its flood level from the upstream reservoir released discharge. 

The water level drop in the Cirata reservoir could be partly explained by its higher 

downstream released discharge during the dry period to keep higher water level in the 

Jatiluhur reservoir. 
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Figure 6.6 Jatiluhur reservoir operation rules: Sequences of hydrological objectives (RIBASIM proxy) 

Figure 6.6 depicts the operation rules of the Jatiluhur reservoir. This figure shows that 

the water level is maintained to be higher in the RTC-Tools 2.0 in comparison with 

RIBASIM. This finding suggests that RTC-Tools 2.0 tends to store the excess water for 

the energy generation and the foreseen drought events. These are consistent with the 

findings from the reservoir released discharge results. Figure 6.6 also compares the 

released discharge for the Jatiluhur reservoir between the results from both tools. 

Whereas RIBASIM releases a great amount of water during the high upstream inflow, 

RTC-Tools 2.0 tends to release lesser discharge. This most likely reduces a serious 

downstream flooding occurrence (the peak released discharge of the Jatiluhur reservoir 

reaches 320 m3/s). The results present that the downstream flooding is considerably 

reduced from 0.3 months/year to 0.1 months/year after the reservoir operation rules 

derived from the RTC-Tools 2.0 are applied.  

This figure reveals that there have been several steep falls in the energy generation 

from the RIBASIM simulation. In contrast, the RTC-Tools 2.0 optimization is able to 

reduce cumulative energy shortage from 11% to 4%. As the energy generation is a 

function of the water level and the released discharge, the most likely cause of energy 

generation drop is the declined in the reservoir water level in RIBASIM simulation.  
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Figure 6.7 Jatiluhur reservoir operation rules: Sequences of hydrological objectives (no flood curve) 

This study found some differences in a case when flood control curve as the upper soft 

constraint is removed from the RTC-Tools 2.0 optimization. However, both upstream 

reservoirs perform fairly similar. As the removal of the upper flood control curve allows 

the reservoir water level reaches a higher level, the results of the optimization model 

show a minor decrease in the energy shortage of both upstream reservoirs. 

As shown in Figure 6.7, dissimilarity is observed from the water level of the Jatiluhur 

reservoir. This figure shows also that the water level is maintained to be even higher in 

the RTC-Tools 2.0 if the upper constraint is removed. Since the dam height is set as a 

hard constraint, the reservoir tends to keep the water level at the full reservoir level. It 

tends to store more water during the wet season and release relatively higher discharge 

during the dry season. Combining these factors, RTC-Tools 2.0 is able to lower the 

cumulative energy shortage in the RIBASIM simulation from 11% to 2%. It is important 

to highlight that the released discharge rarely passes the flooding threshold although 

the dam height is set as the upper constraint. A possible explanation for this is that the 

firm energy demand is fulfilled better with the low-risk trade-off with the flood 

reduction. These results suggest that further optimization of the rule curves could be 

carried out, but this is considered as less necessary since the multi-objective functions 

can be defined explicitly in the study. 
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Figure 6.8 Agricultural delivered water demand: Sequences of hydrological objectives (RIBASIM proxy) 

Having explained the supplementary results, this section now moves on to discuss the 

results of the agricultural delivered demand when the flood control curve is set as upper 

soft constraint. Figure 6.8 shows almost similar results of the agricultural delivered 

demand derived from both tools. The RTC-Tools 2.0 optimization tends to deliver 

relatively less water in comparison with the RIBASIM simulation (1.1 months/year, 41 

m3/s), resulting more frequent minor droughts (12 months/year) but anticipating the 

future extreme droughts (5 m3/s). This may be partly the consequences of the substantial 

trade-off between the agricultural drought and the energy shortage in the Jatiluhur 

reservoir. This minor agricultural drought can be prevented by putting the agricultural 

water demand as a higher priority than the energy generation. 

These results further support the idea of the goal programming approach functionality 

on a multi-purpose reservoir. Collectively, these results are in accord with the previous 

findings indicating that the goal programming approach is able to derive more 

promising reservoir operation rules in comparison to RIBASIM simulation. Furthermore, 

a longer optimization time horizon is likely to result in better reservoir operation rules. 

It could be argued that the positive results were due to the ability of the RTC-Tools 2.0 

in assessing the whole time series input for each goal. This implies that this 

optimization method is too theoretical since the perfect knowledge of the hydrological 

forecast is less likely to be available for this long duration of time. These results, 

therefore, need to be interpreted with caution. 

6.2 Linear programming of a hydroeconomic objective 

This section discusses the procedure for defining a single hydroeconomic objective 

function in the RTC-Tools 2.0. As shown in Table 6.4, the economic valuations in this 

optimization model are fully adapted from the RIBASIM-PS study. The economic 

valuations are declared inside the Modelica script. Prior to this, care was taken to 

transform the variable units into the standard international units. The optimization 

model requires some critical transformation in the value shown in Table 6.4.  

- The agricultural economic benefit of 0.02 US$/m3 is transformed into 0.02/106 

million US$/m3 

- The hydropower economic benefit of 66 US$/MWh is transformed to 66,000/106 

million US$/GWh. As the standard international unit of the power is Watt, this 

unit must be integrated and divided by 3600.109 to be transformed to the value of 

energy generation in GWh. 
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- The flood penalty value of 14 million US$/month must be divided by the number 

of second in each month to obtain the unit of million US$/second. 

It is also important to note that the standard international unit of time derivative 

(second) is used although the optimization model runs in a monthly time stepping. The 

maximum total economic benefit as a single objective function is valued in million US 

Dollar. 

Two different approaches could be taken to solve the hydroeconomic optimization 

problem (i) a pure linear programming of hydroeconomic objective function and (ii) a 

linear programming with the additional soft constraints in the goal programming. In 

this study, a pure linear programming of hydroeconomic objective function is applied 

with the practical assistance from RTC-Tools 2.0. In this approach, the water allocation 

in the network is determined by the optimization of an objective function without any 

additional algorithm provided by a rule-based simulation model. The constraints and 

the initial conditions are taken directly from the existing RIBASIM model. RTC-Tools 

2.0 is set to optimize the parameters for the whole simulation period.  

Table 6.4 Hydroeconomic objective function (Van der Vat, 2015) 

 

Results 

The determination of the optimal reservoir operation rules as identified by RTC-Tools 

2.0 are different from the rules decision resolved from the RIBASIM-PS study. The 

results of the RIBASIM-PS study are the optimum annual rule curves including the 

flood level, the target level and the firm level of the three reservoirs. Each of the rule 

curves has a unique rule as specified in the RIBASIM algorithm (see Section 5.1). These 

Hydroeconomic 

optimization 

(van der Vat, 2015)

Unit Jatiluhur Cirata SagulingOthers Remarks

Initial condition: Reservoir 

water level
m+MSL 98.8 215 624

Reservoir water level

Minimum m+MSL 45 180 623 Dead level

Maximum m+MSL 106.89 220 643 Spilling level

Turbines capacity

Maximum MW 187 1,008 700 Physical constraints

Environmental flow m3/s 0 Neglegted

Drinking water demand m3/s 0 Neglegted

Agriculture US$/m3 0.02 0.02 10-6 millionUS$/m3

Agriculture demand m3/s 88 - 197

Hydropower

Peak US$/MWh 66 66 10-3 million US$/GWh

Rest US$/MWh 32 32 10-3 million US$/GWh

Agriculture US$/m3 0

Flood reduction 

Q>320 m3/s million US$/month 14 14 (30.24.60.60)-1 million US$/s

Firm energy demand GWh/month 69.7 60 100

Agriculture demand m3/s 88 - 197

Constraints

Objective functions

Benefit

Penalty

RIBASIM target released (not applied in RTC-Tools 2.0)
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rules further determine the quantity of the released discharge if a single value of the 

upstream inflow discharge for each time step is inputted. On the other hand, RTC-Tools 

2.0 derives directly a release discharge in a time step as one of the results of the 

hydroeconomic optimization approach. Similarly, both tools employ the simultaneous 

mass balanced concept to quantify the actual water level from the released discharge. 

Thus, the actual water level of the reservoir derived from both tools is a suitable 

variable to compare.  

To compare the results from both models, the historical average of the ninety years 

simulation period for each specific month is calculated. The time series result of 

agricultural delivered water demand and hydropower generation are also presented to 

perceive how both optimization models deal with a certain condition. 

As depicted in Figure 6.9, the RTC-Tools 2.0 optimization results mostly show slightly 

lower actual water level, less than a meter in each reservoir. Another observed trend is 

that the monthly average actual water level in the RIBASIM-PS optimization mostly 

follows the optimized target curve. Both trends are dissimilar between August and 

November on the Saguling reservoir. In this period, RTC-Tools 2.0 generates nearly 10 

meters higher actual water level. In RIBASIM-PS optimization, the actual water level 

falls under the optimized firm curve. This result shows that the water level suddenly 

drops at the end of time step in January. However, the water level in this period is 

expected to be higher since it represents the wettest month. These RIBASIM-PS results 

are rather confusing since the direct the relation between the average reservoir water 

level and the average monthly inflow is unclear.  

The RTC-Tools 2.0 optimization generally calculates lower water level during the dry 

season compared to the RIBASIM-PS optimization. While the beginning of the dry 

season has a direct impact on the most upstream reservoir, a time lag is observed on the 

downstream reservoirs. It is recognized that the water level drops the latest in the 

Jatiluhur reservoir. A possible explanation for this might be that in the beginning of the 

dry season, the downstream reservoir still receives a high release discharge from its 

upstream reservoir in addition to its low local inflow. 

The RIBASIM-PS study concludes that the hydroeconomic optimization considerably 

increases the annual economic benefit in comparison with RIBASIM simulation. In 

general, RTC-Tools 2.0 linear programming generates almost US$ 10 million higher 

maximum economic benefit in comparison with the RIBASIM-PS optimization. While 

the reservoir operation rules derived from RTC-Tools 2.0 successfully prevent the 

agricultural drought events, it performs poorly on the energy shortage reduction. 

Although the agricultural water demand and the firm energy generation are not 

explicitly defined in the RIBASIM-PS optimization, both target demands are managed 

by the RIBASIM algorithm. Figure 6.10 shows that this optimization approach performs 

very well compared to the result of the rule-based simulation in RIBASIM (see Figure 

6.6). In 1927, the RIBASIM-PS optimization is able to completely eliminate the 

agricultural drought and to ease the severity of energy shortage. 
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Figure 6.9 Actual water level of the reservoirs: Hydroeconomic objective 
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Figure 6.10 Delivery targets: Hydroeconomic objective 

Figure 6.10 implies that the RIBASIM-PS optimization handles the critical dry period 

better, especially in the energy shortage reduction in comparison with the RTC-Tools 2.0 

optimization. The RIBASIM rule-based algorithm highlights that the water demands 

and the firm energy demands are subjected to the target released discharge. As the firm 

energy demands are not explicitly defined in the RTC-Tools 2.0, the hydropower 

generation often drops below the firm energy demand whereas the agricultural water 

demand is always fulfilled. It may be the case that the economic valuation of 

agricultural delivered water demand is relatively dominant compared to the economic 

valuations of other objectives.  
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To reduce the frequency and the severities of this unfavourable event, the target 

demand should be comprised in the optimization model. This has been managed by 

combining the particle SWARM optimization with the rule-based simulation tools 

(RIBASIM). In the RTC-Tools 2.0, these target demands could be represented by (i) 

including the hydrological soft constraints in the goal programming or (ii) adding the 

penalty functions as part of the objective function. 

Sensitivity analysis 

As pointed in the literature review, a pure hydroeconomic optimization model is 

expected to be sensitive to the economic valuations. A sensitivity analysis is one of the 

methods of addressing this issue.  By running several optimization models with different 

values of the parameters, the changes in the water allocation in the network could be 

analysed if the economic valuation differs from what was previously assumed. 

The sensitivity analysis is conducted by modifying the economic valuation appraised by 

Van der Vat [1]. By multiplying and dividing the economic valuation by the factor of 5, 

six different strategies are run. They cover the changes in the economic valuation of 

agricultural delivered water demand, the hydropower generation and flood damage 

reduction. The optimization results obtained from each strategy are later compared to 

the optimization results from the baseline strategy. This sensitivity analysis is 

exclusively conducted for a pure linear programming of hydroeconomic objective 

function.  

As depicted in Figure 6.11, the sensitivity analysis to the economic valuation on the 

actual water level is almost similar for each reservoir. In general, the results from 

various scenarios suggest that the water allocation in the network alters along with the 

changes in the economic valuation. In contrast, the changes in the flood economic 

valuations have insignificant impact on the model; this formulation seems to be 

irrelevant in this hydroeconomic optimization. This might be partly explained by the 

ability of the RTC-Tools 2.0 to optimize with the perfect knowledge of the future events. 

Thus, applying the hydrological soft constraint or reformulating the economic valuation 

of flood damage is considered as necessary in RTC-Tools 2.0. However, this economic 

valuation is fundamental for the RIBASIM simulation since the released discharge from 

the Jatiluhur reservoir cannot be constrained explicitly.  

An interesting finding is that a negligible difference is observed when the economic 

valuation of hydropower generation is decreased and the economic valuation of 

agricultural delivered water demand is increased. As both changes tend to deliver more 

water to the agricultural area, adjusting the reservoir operation rule is not a possibility 

since the agricultural water demand is always fulfilled. This result is in line with those 

of previous findings that the economic valuation of agricultural delivered water demand 

is relatively dominant.  

The reduction in the economic valuation of agricultural delivered water demand and the 

increased in the economic valuation of hydropower generation tend to be the sensitive 

parameters in this model. By the factor of 5, these changes result in nearly two meters 

higher water levels of the three reservoirs. It seems that the water level of the Jatiluhur 



Software application and result analysis 

Tiaravanni Hermawan    54 

 

reservoir is the most sensitive to the changes on the economic valuations. It might 

partly be explained by the fact that the trade-off between the agricultural water demand 

and the energy generation is the most dominant in this reservoir. This figure also 

suggests that the economic valuation becomes more sensitive during the dry season. It 

signifies that the necessary trade-off between the conflicting objectives becomes more 

substantial in the case of water scarcity. 
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Figure 6.11 Actual water level of the reservoirs: Sensitivity analysis of hydroeconomic model 

 
Figure 6.12 Delivery targets: Sensitivity analysis of hydroeconomic model 

As presented in Figure 6.12, the agricultural delivered demand is likely to be affected by 

the increased economic valuation of hydropower generation, especially during the dry 

year. RTC-Tools 2.0 mostly keeps the reservoir water level higher in order to gain a 

higher benefit from the energy generation although the energy shortage is less likely to 

be improved. In general, a higher economic valuation of hydropower generation results 

in more energy generation, which further diminishes the total energy shortage but could 

result in the agricultural drought. This finding is similar when the economic valuation 

of agricultural delivered water demand is reduced. Therefore, it could conceivably be 
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concluded that the economic valuations, in general, are the sensitive parameters on the 

hydroeconomic optimization model

6.3 Hybrid optimization of hydroeconomic and hydrological objectives 

As particle SWARM optimization is combined with the rule-based simulation RIBASIM, 

care was taken to highlight the RIBASIM algorithm that affects the results of the 

optimization model. An alternative approach to compromising the social benefits while 

maximising the economic benefits is by running the combination of a linear 

programming and the goal programming in the RTC-Tools 2.0. Similarly to the role of 

the RIBASIM algorithm on the particle SWARM optimization, these soft constraints 

assist the RTC-Tools 2.0 in optimizing the sequences of hydrological objectives while it 

searches for the highest economic benefit at the same time. 

In RIBASIM, the water demand and the electricity firm demand are subjected to the 

target released discharges. These could be interpreted as the soft constraints in the goal 

programming approach. To obtain a comparable result with the RIBASIM-PS study, the 

domestic water demand and environmental flow are not taken into account. In addition, 

the maximum total economic benefit can be set as an objective function in the linear 

programming approach. By applying this hybrid optimization approach, preventing 

drought, flood event and energy shortcut can be considered as a higher priority than 

generating a maximum total economic benefit. As presented in Table 6.5, this hybrid 

optimization is formulated as a single integrated problem in the RTC-Tools 2.0. 

Table 6.5 Hybrid objective functions 

 

Results 

The consequence of applying these soft constraints is that, in general, it may generate 

lower maximum benefit. This optimization generates US$ 3 million lower economic 

benefits compared to the total economic benefit generated from the pure linear 

programming approach.  

The addition of the goal programming considerably enhances the social benefit, 

especially in reducing the total cumulative energy shortage. As presented in Figure 6.13, 

the hybrid optimization approach remarkably improves the social benefit compared to 

the pure linear programming approach. Assigning the firm energy demand to the lower 

Hybrid optimization Unit Jatiluhur Cirata Saguling Others

1. Goal Programming

    Firm energy demand (lower soft constraints)
GWh/month 69.7 60 100

1. Goal Programming

    Agricultural water demand
m3/s 88 - 197

1. Goal Programming

    Flooding threshold (upper soft constraint)

    (Maximum agricultural demand)

m3/s 200

2. Linear deterministic

    Maximum total economic benefit

    (van der Vat, 2015)

Sequences of hydrological objectives

Hydroeconomic objective
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soft constraints reduces the total cumulative energy shortage from 11% to 2%. This 

optimization also slightly reduces the occurrence of downstream flood event from 0.3 

months/year to 0.16 months/year. Although the agricultural drought always occurs 

during the whole simulation period, the value is negligible since it is relatively very 

small (1 m3/s). 

It is possible to hypothesise that this hybrid optimization provides an attractive 

alternative to the pure hydroeconomic optimization. This approach has a distinctive 

advantage since the soft constraints could be applied directly without any economic 

valuation. Applying these soft constraints is likely to ameliorate the robustness of the 

hydroeconomic optimization model since they are independent of the economic 

valuations. The concept of sequences of hydrological objective leads to more transparent 

water allocation in the hydroeconomic model. In addition, this hydroeconomic model 

becomes more flexible to the changes in priorities since the target demands are explicitly 

defined and ordered in the sequences of hydrological objectives. 

 
Figure 6.13  Delivery targets: Hybrid objectives 
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6.4 Linear programming of a modified hydroeconomic objective 

The hydroeconomic objective function adapted from Van der Vat (2015) should be 

adjusted if a pure linear programming approach is chosen. This section discusses the 

optimization of a single modified hydroeconomic objective function in the RTC-Tools 2.0. 

A pure linear programming approach is carried out in this hydroeconomic model. Table 

6.6 presents a modified hydroeconomic objective function that comprises some additional 

penalty functions discussed in Section 5.4. The high values of penalty functions are 

presumed to properly represent the importance of the social responsibilities. The 

expected results of this hydroeconomic optimization model can be partly related to the 

previously conducted sensitivity analysis.  

Table 6.6 Modified hydroeconomic objective function 

 

Results 

Compared to the result of the pure hydroeconomic optimization model, applying these 

penalty functions reduces the total economic benefits from US$ 378 million to US$ 370 

million but substantially enhance the social benefit. Figure 6.14 shows a visible 

reduction on the energy shortage after applying the high penalty function (two times of 

peak demand, US$ 132/kWh) when the hydropower generation is lower the firm energy 

demand. The penalty function applied to both upstream reservoirs greatly diminishes 

Hydroeconomic 

optimization
Unit Jatiluhur Cirata Saguling Others Remarks

Initial condition: 

Reservoir water level
m+MSL 98.8 219 625 RIBASIM Model

Reservoir water level

Minimum m+MSL 87.5 180 620 Stability

Maximum m+MSL 106.89 220 643 Spilling level

Turbines capacity

Maximum MW 187 1,008 700 Physical constraints

Environmental flow m3/s 0 Neglegted

Drinking water demand m3/s 0 Neglegted

Agriculture benefit Water footprint

Paddy (November - June) US$/m3 0.02 0.02 10-6 millionUS$/m3

Nuts (July - October) US$/m3 0.043 0.043 10-6 millionUS$/m3

Agriculture demand MPW (2012)

Paddy (November - June) m3/s 88 - 197

Nuts (July - October) m3/s 8-190

Hydropower van der Vat (2015)

Peak US$/MWh 66 66 10-3 million US$/GWh

Rest US$/MWh 32 32 10-3 million US$/GWh

Agriculture IRRI (2006)

Paddy (November - June) US$/m3 0.016 0.016 10-6 millionUS$/m3

Nuts (July - October) US$/m3 0

Hydropower

Peak US$/MWh 2x66 132 10-3 million US$/GWh

Flood reduction Muin (2015)

Q<200 m3/s 0

Q=320 m3/s million US$/month 14 14 (30.24.60.60)-1 million US$/s

Q<320 m3/s Linear interpolation

Constraints

Objective functions

Benefit

Penalty



Software application and result analysis 

Tiaravanni Hermawan    59 

 

the energy shortage even during the dry year. By contrast, this penalty function is 

irrelevant for the Jatiluhur reservoir since its energy generation is considered as an 

extra benefit. 

 
Figure 6.14 Energy generation: Modified hydroeconomic objective (shortage penalty) 

Figure 6.15 shows that reformulation of the flood penalty function results in even less 

flooding while the economic valuation from Van der Vat [1] already significantly reduces 

the downstream flood event. The maximum agricultural water demand (Q=200 m3/s) is 

set as the starting point of the linear flood penalty function. After this reformulation, 

the downstream flooding is always prevented since the released discharge never reached 

this threshold value.  

 
Figure 6.15 Downstream flooding: Modified hydroeconomic objective (flood penalty) 

The agricultural drought penalty (US$ 0.016/m3) and the higher economic valuations 

(US$ 0.02m3 and US$ 0.043/m3) of the agricultural delivered demand depends on 

seasonal cropping have less impact on the result since it is always satisfied. These 

findings suggest that the penalty function is considered as necessary when the economic 

valuation is relatively less dominant compared to the economic valuation of other 

conflicting objectives. 
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6.5 Linear programming of a modified hydroeconomic objective (Hard constraints) 

For the purpose of the applicability of reservoir operation rules, the constraints are 

modified. The constraint for the minimum water level is set to be higher for the 

reservoir stability. The domestic water demand and environmental flow are defined as 

the main priorities whereas the previous optimization models neglect these demands. 

The environmental flow and the domestic water demand are specified as hard 

constraints since both are too difficult to be estimated economically [2]. The agricultural 

water demand is also modified based on the calculation that comprises the seasonal 

cropping analysis. As the total water demand in the network increases nearly 30%, the 

starting point of the flood damage penalty function for the Jatiluhur reservoir is 

adjusted.  

Table 6.7 Modified hydroeconomic objective function (additional hard constraints) 

 

Results 

By applying the domestic water demand and the environmental flow as the highest 

priorities, the total annual water demand increases by nearly 30%. Compared to the 

optimization of the modified hydroeconomic function, these demands reduce the 

maximum total economic benefits from US$ 373 million to US$ 370 million. While these 

fundamental demands are always fulfilled, the occurrences of minor agricultural 

Hydroeconomic 

optimization
Unit Jatiluhur Cirata Saguling Others Remarks

Initial condition: 

Reservoir water level
m+MSL 98.8 219 625 RIBASIM Model

Reservoir water level

Minimum m+MSL 87.5 180 623 Stability

Maximum m+MSL 106.89 220 643 Spilling level

Turbines capacity

Maximum MW 187 1,008 700 Physical constraints

Domestic water demand m3/s 35.1 Hard constraint

Environmental flow m3/s 1.4 Hard constraint

Agriculture benefit Water footprint

Paddy (November - June) US$/m3 0.02 0.02 10-6 millionUS$/m3

Nuts (July - October) US$/m3 0.043 0.043 10-6 millionUS$/m3

Agriculture demand MPW (2012)

Paddy (November - June) m3/s 87-322

Nuts (July - October) m3/s 8-190

Hydropower van der Vat (2015)

Peak US$/MWh 66 66 10-3 million US$/GWh

Rest US$/MWh 32 32 10-3 million US$/GWh

Agriculture IRRI (2006)

Paddy (November - June) US$/m3 0.016 0.016 10-6 millionUS$/m3

Nuts (July - October) US$/m3 0

Hydropower

Peak US$/MWh 2x66 132 10-3 million US$/GWh

Flood reduction Muin (2015)

Q<236.4 m3/s 0

Q=320 m3/s million US$/month 14 14 (30.24.60.60)-1 million US$/s

Q<320 m3/s Linear interpolation

Benefit

Penalty

Constraints

Objective functions
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drought event increase to 8 months/year (6 m3/s). Figure 6.16 depicts that the drop in 

the water level of both upstream reservoirs reaches 10 m during the dry season to 

maintain almost similar water level in the Jatiluhur reservoir. One unanticipated 

finding was that this drop in water level results in nearly similar number of events and 

severities of total energy shortage. The decline in the total hydropower generation from 

the Saguling reservoir is followed by an improvement in the Jatiluhur reservoir. This 

result may be explained by the fact that the lower water level is compromised by the 

higher released discharge that supplies a higher total downstream water demand. 

Taken together, this finding signifies that the additional water demand has a 

consequential impact and should not be neglected in the optimization model although it 

is not valued economically. 

While these fundamental water demands can be directly implemented as the hard 

constraints in the RTC-Tools 2.0 optimization model, defining additional water demands 

without quantifying their economic benefits seem to be more challenging in the 

RIBASIM-PS optimization. Involving these highest priority water demands in the 

RIBASIM schematization implies that they are included in the whole hydroeconomic 

optimization process while defining them as hard constraints have not been done yet. 
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Figure 6.16 Actual water level of the reservoirs: Modified hydroeconomic objective (additional hard 

constraints) 
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6.6 Goal programming of hydrological objectives (Application) 

In this study, the operational water level defined by the Indonesian government policy 

directive is set as the hard constraints in addition to the characteristics of physical 

infrastructures. The initial condition is taken from the NEDECO spreadsheet model 

that determines the reservoir operation rules in 2010 [37]. The constraint of annual 

deficit prevention is not included in this optimization model since it is often violated in 

the application. The principle of equal live storage sharing between the cascade 

reservoirs is also neglected to provide more search space for the optimization model. It is 

important to note the results from this optimization model are incomparable to the 

previous optimization models since it simulates a year period with the markedly 

different input data. 

The sequences of hydrological objectives set in this optimization model refer to the 

mechanism for determining the reservoir operation rules based on the NEDECO 

spreadsheet model [37]. This spreadsheet model reveals that both upstream reservoirs 

are strictly operated to generate the maximum energy notwithstanding the high 

pressure in the Jatiluhur reservoir. As the local inflow discharge to the Jatiluhur 

reservoir is negligible, the water availability in this reservoir depends crucially on the 

released discharge of both upstream reservoirs. A special administrative procedure 

needs to be undertaken so that both upstream reservoirs release more discharge in the 

case of a serious downstream drought. To delineate this situation, the sequences of 

hydrological objectives are ordered to maximize the hydropower generation of both 

upstream reservoirs in the highest priority. In the lower priority, the target demands of 

the Jatiluhur reservoir are set. The fundamental downstream demands such as the 

domestic water demand and the environmental flow is set as the higher priority than 

the substantial trade-off in the Jatiluhur reservoir. 

Table 6.8 Sequences of hydrological objectives (application by reservoir operators) 

 

In order to define more applicable reservoir operation rules, it is important to define the 

sequences of objectives based on the Indonesian governmental policy directive. This 

study finds a conceptual difference between the sequences of objectives derived from the 

NEDECO spreadsheet model and the policy directive. As presented in Table 6.9, the 

domestic water demand and the environmental flow should be set as the highest priority 

as ordered in the Water Resources Law No. 7/2004 [56]. The upcoming priorities are set 

to the same level nevertheless the upstream reservoir receives inflow prior to the 

downstream reservoir. From this point, this strategy will be referred as the sharing 

strategy. 

Priority Object Objective function
Lower 

soft constraint

Upper 

soft constraint

1 Saguling reservoir (S) Energy generation (P)

2 Cirata reservoir (C) Energy generation

3 Drinking terminal Target released Qdri Qdri

3 Environmental flow Target released Qenv -

4 Agricultural terminal Target released Qagr Qagr

4 Jatiluhur reservoir (J) Energy generation J: FirmP J: MaxP

4 Jatiluhur reservoir Released Discharge 0 Flooding threshold

S: MaxP

C: MaxP
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Table 6.9 Sequences of hydrological objectives (governmental policy directive) 

 

The deterministic models for the various hydrological years are constructed since the 

stochastic approach is limited in this study. This optimization approach can be 

illustrated briefly by three different hydrological years forecast as model input 

generates three distinctive actual water levels in a reservoir. This optimization of the 

sequences of objectives reproduces the NEDECO spreadsheet model used by the 

operators of the Citarum cascade reservoirs. In Indonesia, the stakeholders annually 

decide a single rule curve for a specific year operation based on the meteorological 

forecast. Thus, this rule curves concept is similar to the actual water level derived by 

optimization in the RTC-Tools 2.0.  

Results 

As presented in Figure 6.17, the results of the RTC-Tools 2.0 optimization of the current 

strategy have a similar trend on the reservoir operation rule curves derived by the 

reservoir operators. The reservoir water level is operated to be higher in the wetter year 

but it is always below the maximum operational water level. This result suggests that 

the reservoir operation rules during the wet year result in the very high reservoirs 

water level at the end of time step. However, this is relation is indirect in the Jatiluhur 

reservoir: the water level during the dry year is higher than the water level during the 

normal year as they have different fulfilment of agricultural delivered demand. This 

implies that, in the NEDECO spreadsheet model, the agricultural delivered demand 

should not be set as a hard constraint since it may not always be satisfied. The water 

scarcity analysis has not yet conducted by this spreadsheet model since the inflow data 

present much higher values compared to the data in this study. 

It is important to note that the concept of the rule curves in the RIBASIM-PS study 

differs than the concept of the rule curve for a specific hydrological year in Indonesia. 

The RIBASIM-PS optimization results must be interpreted with caution since the trend 

of the actual water level mostly follows the target curve, notwithstanding the dry 

hydrological year is forecasted. Another important note is that, in the RIBASIM-PS 

algorithm, the actual rule curve applied to the reservoir operation (chosen from the firm, 

target and flood curve) could change in the next time step depending on the actual water 

level in the previous time step. This may cause confusion among the reservoir operators 

in Indonesia who usually determine an applied rule curve on a yearly basis. This can be 

clearly seen in the case of the extremely dry year is forecasted, an optimized firm curve 

in the RIBASIM-PS optimization cannot be directly applied as a dry year rule curve in 

term of the Indonesian government policy directive. 

Priority Object Objective function
Lower 

soft constraint

Upper 

soft constraint

1 Drinking terminal Target released Qdri Qdri

1 Environmental flow Target released Qenv -

2 Saguling reservoir (S) Energy generation (P) S: FirmP S: MaxP

2 Cirata reservoir (C) Energy generation C: FirmP C: MaxP

2 Jatiluhur reservoir (J) Energy generation J: FirmP J: MaxP

2 Agricultural terminal Target released Qagr Qagr

2 Jatiluhur reservoir Released Discharge 0 Flooding threshold
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Figure 6.17 Actual water level of the reservoirs: Sequences of hydrological objectives (application&policy) 



Software application and result analysis 

Tiaravanni Hermawan    66 

 

This part of the section focuses on comparing the results of the optimization models if 

different strategies are applied. The strategy to replicating the policy directive refers to 

the Water Resources Law No. 7/2004. In this strategy, the fundamental water demand 

is put in the higher priority whereas the following priorities are set based on the 

purpose of each reservoir. To perceive the substantial trade-off between the conflicting 

objectives, the optimization results of both strategies during the dry hydrological year 

are presented. 

The optimization results suggest that both strategies generate almost similar reservoir 

operation rules during the normal and wet year but these rules are significantly 

different during the dry year. These differences are consequential for the target 

demands of the Jatiluhur reservoir. In the dry year, the optimization result presents 

that the total economic benefit of the Citarum cascade reservoirs is increased by more 

than US$ 2 million along with a remarkable improvement on the economic benefit of the 

Jatiluhur reservoir. The benefit from the Jatiluhur reservoir is mostly gained from the 

higher agricultural benefit. 

In general, applying this strategy results in lower water level of both upstream 

reservoirs so that the downstream reservoir receives an extra water to satisfy the target 

demands. As these target demands are set as the same priority level, the optimization 

model tries to satisfy these demands simultaneously notwithstanding some demands 

have prior access to the water. This sharing strategy seems to have a better applicability 

in the case of water scarcity. It is almost certain that modelling this sharing strategy, 

specifically to manage the substantial trade-off between the conflictive objectives, has 

not yet been done in the NEDECO spreadsheet model.  

In the optimization results of the sequences of objectives based on the NEDECO 

spreadsheet model, the agricultural drought occurs frequently although the 

fundamental demands are always fulfilled. Adopting the sharing strategy towards the 

optimization model dramatically enhances the social benefits in the Jatiluhur reservoir 

but slightly reduces the average monthly hydropower generation from both upstream 

reservoirs from 180 GWh/month to 168 GWh/month. Figure 6.18 compare the 

agricultural delivered demand if different strategies are applied. Although the 

agricultural drought still occurs with the similar frequency of 5 months/year, the 

drought severity is reduced from 130 m3/s to 100 m3/s. This result shows a substantial 

the trade-off between the target demands of Citarum cascade reservoirs. Thus, it could 

be concluded that both social and economic benefits in the Citarum cascade reservoirs 

could be considerably improved by selecting a suitable strategy based on the policy 

insight. 

This finding highlights the importance of adjusting the sequences of objectives to find 

the best strategy to address the water scarcity problem. These sequences of objectives in 

the goal programming could be directly associated with the stakeholders’ perspective on 

priorities. Although the concept of priorities has been widely used in the rule-based 

simulation model, RTC-Tools 2.0 Tools provides a new feature of defining these 

priorities explicitly in the optimization model. 
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Figure 6.18 Agricultural delivered water demand: Sequences of hydrological objectives (application&policy) 

6.7 Summary of findings 

To avoid constructing new supply options, various methods have been developed to 

assess water allocation in a river basin in order to find a better operation system, for 

instance to derive the most promising reservoir operation. Traditionally, the optimum 

water allocation has been assessed by simulating various strategies in a rule-based 

simulation tool such as RIBASIM. As this method is time-consuming and not necessarily 

leads to the most promising result, recent advances in optimization techniques have 

facilitated the possibility to find better results.  

As most reservoirs have conflicting objectives, a hydroeconomic optimization model 

could play an important role in solving multi-objective problems in the reservoir 

operation, especially in case of water scarcity. By combining the principles of economics 

and engineering, hydroeconomic models transform the concept of fixed demand into the 

economic value of water defined through water rights and priorities. Unfortunately, the 

management schemes and the policy insight are less likely to be easily represented by a 

hydroeconomic objective function. In Deltares, the necessity to explicitly implementing 

priority ordered by the policy on water resources allocation to a conventional 

hydroeconomic model has been done by combining the particle SWARM (PS) 

optimization with the rule-based simulation tools (RIBASIM). 

To develop new alternative to the RIBASIM-PS study, a modular optimization model 

RTC-Tools 2.0 has been set up. This study focuses on the reservoir operation strategies 

to determine the most promising water allocation under similar attainment targets by 

constructing various hydroeconomic optimization models for a study case in the RTC–

Tools 2.0. The development of the methodology for this study is based on the RIBASIM-

PS study [1]. A case-study approach was adopted to provide rounded, detailed 

illustrations of the policy-based-management in water resources. The case study chosen 

is a simplified water network of the Citarum basin in West Java, Indonesia.  
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The goal programming approach has been chosen as the methodology for explicitly 

implementing the priority in the hydroeconomic optimization model in RTC-2.0 Tools. 

As an alternative to a conventional hydroeconomic model, this approach is likely to 

provide more robust, easy-to-build and communicative method to achieve a transparent 

water allocation based on the policy insight. 

This study has been able to demonstrate the possibility to develop a similar model 

network as RIBASIM in the RTC-Tools 2.0. The methodology undertaken in this study 

has extended our knowledge of the critical step in transforming the algorithm of the 

simulation model into the explicit sequences of hydrological objectives for the 

optimization model. Furthermore, RTC-Tools 2.0 able to optimize similar hydroeconomic 

objective function as in RIBASIM-PS study but generate different results since RTC-

Tools 2.0 is not coupled with a rule-based simulation model. While this issue has been 

addressed in this study, several alternatives of optimization approaches could be 

undertaken in RTC-Tools 2.0 to find the most promising reservoir operation rules for the 

case study. 

This following part of the section summarises the findings related to the results of 

various optimization approaches carried out in the case study. These findings suggest 

that different optimization approaches generate distinctive results where certain results 

could be more suitable to the case study compared to the others. This study concludes 

that finding an appropriate approach and properly formulating the optimization 

problem are crucial steps in order to derive the most promising optimization results. 

Table 6.10 presents an overview of the results from the various optimization approaches 

during the 90 years simulation period. The annual economic benefits presented are 

based on the economic valuation by Van der Vat [1]. It is important to bear in mind that 

the economic benefit taken directly from the modified hydroeconomic optimization 

models in the RTC-Tools 2.0 is not comparable since they have a distinctive economic 

valuation. Besides, the hydrological optimization models did not include any 

hydroeconomic analysis. To address this issue, a post-processing on the optimization 

results is carried out to obtain the total economic benefit based on the economic 

valuations by Van der Vat [1]. At last, the results from the optimization models with a 

year simulation are incomparable due to the different input data used. 

As can be seen, the particle SWARM optimization approach significantly improves 

RIBASIM rule-based simulation model in terms of the number of the unfavourable 

events, their severities and the economic benefits. What is interesting about this result 

is that the pure linear programming from RTC-Tools 2.0 produces the highest benefit 

(US$ 378 million) in comparison with the other approaches but also the highest event 

severities. In contrast, the result of the goal programming of the sequences of 

hydrological objectives based on the RIBASIM presents the lowest benefit (321 

US$ million) with more frequent but less severe events.  
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Table 6.10 Summary of benefit generated from hydroeconomic optimization models 

 

Drinking 

water

Environ-

mental flow

Total 

Benefit
Irrigation

Hydro

power

Flood 

damage

Occurance 

of the 

agricultura

l drought

Average

agricultura

l drought

(m 3 /s

/month

Occurance 

of the 

energy 

shortage

Average

energy 

shortage

(GWh/

month)

Flood 

events

- -

RIBASIM Simulation without 

reservoir

(van der Vat, 2015)

0 0 27 44 0 17.4 4.6 13 - - 1.24

- -
RIBASIM Simulation with reservoir

(van der Vat, 2015)
0 0 347 60 289 1.7 1.1 41 5.1 60 0.12

- -
RIBASIM-SWARM Optimization

(van der Vat, 2015)
0 0 367.8 80 292 4.2 0.21 53 1.8 33.5 0.30

1 and 2 6.1

RTC 2.0 Tools

Goal Programming

90 year time horizon optimization

Hydrology Optimization

0 0 321.4 43 280 1.4 12 5 4.5 26 0.10

3 6.2

RTC 2.0 Tools

Linear Programming

Hydroeconomic Optimization

0 0 377.9 80.6 301.5 4.2 0 0 2.8 39 0.30

6.3

RTC 2.0 Tools

Hybrid Optimization

Hydrology Optimization

0 0 374.6 79.5 295.2 0.14 12 1.3 2 18 0.01

4 6.4

RTC 2.0 Tools

Linear Programming

Modified hydroeconomic 

Optimization

0 0 372.6 80.6 292 0 0 0 1.6 11 0

4 6.5

RTC 2.0 Tools

Linear Programming

Modified hydroeconomic 

Optimization

Additional hydrologic constraints

35.1 1.4 369.2 78.4 291 0.16 8 6.5 1.6 12.4 0.01

4 6.6

RTC 2.0 Tools

Goal Programming

Application by reservoir operators

(Normal year)

35.1 1.4 347.6 76.6 271 0 1 54 3 10 0

4 6.7

RTC 2.0 Tools

Goal Programming

Sharing strategy

(Normal year)

35.1 1.4 303.0 80 223 0 0 0 3.6 12 0

   Well-satisfied   Moderately-satisfied   Poorly-satisfied

Section

(application 

and result)

Research 

question

(s)

Annual benefit for 

Citarum cascade reservoirs

Social Benefit 

(months/year)

Economic benefit (2010 value)

( million US$/year)
Social priorities
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The result of the goal programming of the sequences of hydrological objectives based on 

the RIBASIM presents the lowest benefit (321 US$ million) with more frequent but less 

severe events. RTC-Tools 2.0 tends to generate more promising reservoir operation rules 

compared to the rule-based simulation model (RIBASIM), specifically when intense 

trade-off between reservoir conflicting objectives is substantial.  The goal programming 

approach results in more frequent minor drought but significantly lower the severities of 

the drought events. Furthermore, this study employs different sequences of objectives by 

removing the upper flood control curves. The evidence from this analysis suggests that 

further optimization of the rule curves could be carried out, but this is considered as less 

necessary since the multi-objective functions can be applied directly in the study. This 

approach has a distinctive benefit as the transforming the target demands into the 

hydroeconomic economic function is optional nevertheless the trade-off between those 

demands is managed. Therefore, this approach could avoid the step in analysing the 

economic valuations, which is likely to be most expensive and time-consuming part of 

the hydroeconomic study.  

The pure linear programming from RTC-Tools 2.0 provides the highest benefit (US$ 378 

million) compared to the other approaches but also the highest event severities. As the 

firm energy demands are not explicitly defined in the RTC-Tools 2.0, the hydropower 

generation often drops below the firm energy demand whereas the agricultural water 

demand is always fulfilled. This finding reveals that the economic valuation of 

agricultural delivered water demand is relatively dominant compared to the economic 

valuations of other objectives. Additionally, this finding enhances our understanding of 

the importance of comprising these target demands in the optimization model to reduce 

the frequency and the severity of this unfavourable event. This has been managed by 

combining the particle SWARM optimization with the rule-based simulation tools 

(RIBASIM). In the RTC-Tools 2.0, these target demands have been represented by (i) 

including the hydrological soft constraints in the goal programming or (ii) adding the 

penalty functions as part of the objective function. 

The sensitivity analysis conducted in this study concludes that the changes in the 

economic valuations that tend to deliver more water to agricultural demand have a 

negligible impact since the agricultural demand is always fulfilled in the current 

situation. On the other hand, the reduction in agricultural economic valuation and 

increment in the hydropower economic valuations tend to keep the water level higher to 

achieve higher energy generation, which further reduces the total energy shortage but 

results in agricultural drought. 

The results from the hybrid optimization present the most promising reservoir operation 

rules. This optimization is able to substantially enhance the social benefit but generates 

a slightly lower economic benefit (375 US$ million). Assigning the firm energy demand 

to a soft constraint to the goal programming approach remarkably improves the social 

benefit compared to the pure linear programming of hydroeconomic objective function. 

Similarly to the role of the RIBASIM algorithm on the particle SWARM optimization, 

these soft constraints assist the RTC-Tools 2.0 in optimizing the sequences of 

hydrological objectives while the linear programming searches for the highest economic 

benefit at the same time. Applying these soft constraints is likely to ameliorate the 
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robustness of the hydroeconomic optimization model since they are independent of the 

economic valuations. 

If a pure linear programming approach is preferred, the additional penalty functions 

should be included in the hydroeconomic valuations by Van der Vat (2015) to represent 

the social responsibility. In comparison with the pure hydroeconomic optimization, 

applying these penalty functions reduce the total economic benefits from US$ 378 

million to US$ 373 million but substantially enhance the social benefit. Applying the 

high penalty function on hydropower generation seems to be the most preferable 

approach to diminish the energy shortage. In addition, the occurrence of downstream 

flooding is entirely eliminated after applying more strict formulation of the penalty 

function on flood damage. These results seem to be consistent if the economic valuation 

of penalty function is high enough. On the other hand, assigning a penalty function to 

agricultural drought has less impact on the result since it is always satisfied. These 

findings suggest that the penalty function is considered as necessary when the economic 

valuation is relatively less dominant compared to the economic valuation of other 

conflicting objectives. 

When this modified hydroeconomic optimization comprises the fundamental demands as 

the highest priorities, the maximum total economic benefit reduces from US$ 373 

million to US$ 370 million. While these fundamental demands are always fulfilled, the 

occurrences of minor agricultural drought event increase. Taken together, this finding 

signifies that the additional water demand has a consequential impact and should be 

included in the optimization model although it is too difficult to be estimated 

economically.  

The results in this study reveal that the reservoir operation rules derived from RTC-

Tools 2.0 have a similar trend to the current application by the reservoir operators; the 

water level of the reservoir is operated to be higher in the wetter year but it is always 

between the ranges of the reservoir’s operational water levels. When the different 

sequences of objectives are applied, the reservoir operation rules tend to be significantly 

different during the dry year. The new strategy based on policy directive is set as the 

sequences of objectives in the goal programming model. This strategy puts the reservoir 

purpose in the same level of priority; nevertheless the upstream reservoir receives 

inflow prior to the downstream reservoir. This study concludes that the social and 

economic benefits in the Citarum cascade reservoirs, especially in the Jatiluhur 

reservoir, could be improved if a suitable strategy based on policy insight is 

implemented. 
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7. CONCLUSIONS AND RECOMMENDATIONS 

 

his concluding chapter revisits in Section 7.1 the four research questions and 

formulates the answers to these questions based on the analyses described in 

previous chapters. The summary and important findings of this study in greater details 

which led us to this conclusion are provided in Section 6.7. Finally, Section 7.2 

recommends a number of possible future researches in this field. 

7.1 Answers to research questions 

Returning to the questions posed at the beginning of this study, it is now possible to 

state that RTC-Tools 2.0 is the appropriate modular tools to solve optimization problems 

in addition to its wide application in real time control situations. RTC-Tools 2.0 offers 

the possibility to construct various optimization models with a high level of flexibility 

and to understand the optimization process better since most scripting are accessible for 

the users. This key feature is strengthened by Modelica declarative language which 

enables the users to easily reproduce and reformulate the optimization variables. In 

general, therefore, it seems that RTC-Tools 2.0 as an open source modular tools offers a 

valuable solutions by solving a single or multi-objective problems with advance 

optimization approaches. 

Research question 1: Is RTC-Tools 2.0 able to model a similar network as RIBASIM does, 

using allocation rules based on demand priority and reservoir operation rules including 

hedging? 

This study has been able to demonstrate the possibility to develop a similar model 

network as RIBASIM in the RTC-Tools 2.0. A related finding, while preliminary, is that 

the optimization results from RTC-Tools 2.0 present more promising reservoir operation 

rules in comparison with the rule-based simulation results in RIBASIM for the multi-

purpose reservoir. In single purpose reservoir, less significant difference between the 

optimization results from both tools is observed. Therefore, these findings suggest that 

the goal programming approach in the RTC-Tools 2.0 reveals a new potential method to 

derive a set of optimal reservoir operating rules, especially for the multi-purpose 

reservoir. Ensuring appropriate systems, the operation rules derived from RTC-Tools 

2.0 are expected to provide a promising solution to the trade-offs between two or more 

conflicting objectives. 

Research question 2: Is it possible to formulate a set of objectives and constraints in the 

RTC-Tools 2.0 that will result in optimized reservoir operating rules?  

T 
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The methodology undertaken in this study has extended our knowledge of the critical 

step in transforming the algorithm of the simulation model into the explicit sequences of 

hydrological objectives for the optimization model. When identifying these, care was 

taken to highlight the implicit priorities, rule curves and hedging rules based on storage 

adapted from the algorithm of the RIBASIM simulation model. 

 This study has demonstrated how to define the time series of the upper and lower 

constraints extracted from the existing RIBASIM model as the binding value of the 

sequences of objectives. This study also transforms some RIBASIM model inputs into 

inviolable hard constraints comprised of the physical infrastructure parameters. 

Whereas these hard constraints tend to be easier to identify, this study finds that 

deriving the soft constraints adapted from the simulation model input is more 

challenging. 

Research question 3: Are the calculations of optimal reservoir operation rules by RTC-

Tools 2.0 different from the operation rules resulting from the RIBASIM-PS 

optimization and, if so, why? 

The study concludes that the optimal reservoir operation rules as identified by RTC-

Tools 2.0 are different from the rules that resolved by RIBASIM-PS study. While the 

RIBASIM-PS study optimized annual rule curves, the RTC-Tools 2.0 optimization 

results in a time series of actual water levels. These results remain comparable since the 

three different rule curves from the RIBASIM-PS optimization result presents specific 

rules that later derive a time series of actual water level from the RIBASIM simulation. 

The pure hydroeconomic optimization carried out in this study assists in further 

understanding of the role of the algorithm that comprises the fulfilment of the social 

benefits. From the linear programming approach, RTC-Tools 2.0 generates a slightly 

higher maximum benefit but more shortage events compared to the optimization result 

from RIBASIM-PS optimization. RIBASIM-PS optimization, which optimizes a similar 

objective function, is nonetheless partly influenced by the algorithm in the rule-based 

simulation model RIBASIM. This algorithm assists RIBASIM-PS optimization in 

enhancing the social benefits while it searches for the highest economic benefit. 

The sensitivity analysis conducted in this study strengthens the presumption that the 

economic valuation is a sensitive parameter in the pure linear hydroeconomic 

optimization model, especially when the necessary trade-off between reservoir 

conflicting objectives is substantial. The changes in economic valuation could alter the 

operation rules in the system while determining a suitable value that comprises the 

management schemes and the policy insight is an expected difficulty.  

Research question 4: How can we further improve the results of the optimization 

approaches in order to get a better applicability of the reservoir operation rules? 

There is a number of important improvements that could be done in hydroeconomic 

optimization to derive more promising reservoir operation rules. This is the first study 

reporting the advantages of the hybrid optimization between the linear programming 

and additional soft constraints in the goal programming. As this approach directly 
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applies the parameter values, setting the penalty functions is optional. This approach is 

thought to be a preferable option if reformulating the objective functions is difficult. This 

approach is likely to ameliorate the robustness of the hydroeconomic optimization model 

since the soft constraints are independent of the economic valuations. 

The principal theoretical implication of this study is that the pure linear programming 

requires a suitable penalty function to represent the social benefit properly. The 

formulation of the penalty functions becomes more crucial for the optimization model 

due to the absence of the algorithm in the rule-based simulation model. 

The fundamental water demand should not be neglected on the optimization model 

although they are not quantified economically. While the practicality of applying these 

demands as the hard constraints in the RTC-Tools 2.0 is rather straight-forward, 

separating these demands from the optimization objective function is an expected 

difficulty in the RIBASIM-PS optimization. 

In order to derive more practical and applicable reservoir operation rules, the 

optimization model should incorporate the rules from the Indonesian government policy 

directive. The hydrological year rule curves in Indonesia, which simply refers to the 

expected monthly reservoir water level, are similar to the actual water level in the RTC-

Tools 2.0. The results of this study indicate that RTC-Tools 2.0 is able to derive the key 

concept in the policy directive; the cascade reservoirs should be operated higher during 

the wetter year although. Still, the reservoir water level must be between the 

operational water level constraints. 

7.2 Recommendations on future research 

Considering that the great variability of nodes and links is often to be the key feature of 

the rule-based simulation tools such as RIBASIM, the future development of RTC-Tools 

2.0 should be undertaken to expand the declarative equations in Modelica library in 

order to minimize the pre-processing step. This development is likely to enhance the 

practicalities and efficiency of constructing a spatially distributed model in the RTC-2.0 

Tools. Additionally, while the current version of RTC-Tools 2.0 generates a comma 

separated values file, the optimization results presented in graph and chart might be a 

tremendous help for the users to have a brief overview of the results. 

Being limited to the deterministic optimization as the scope of the study, this approach 

lacks of analysis in input data uncertainty. This study performs an optimization 

approach with the presumption of the perfect knowledge of the future events. Despite 

these promising results from these deterministic optimization models, questions remain. 

Furthermore, the simplistic statistical scholastic analysis conducted in this study 

suggests that the uncertainty in the inflow discharge forecast tends to be high. The 

stochastic optimization is expected to be an important issue for the future research 

considering that RTC-Tools 2.0 provides this capability. 

As was pointed out earlier, the Citarum basin has a highly dynamic system facing 

different future changes in the increased pressure in demand and climate change. These 

future challenges are different spatially. Further research should be undertaken to 
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develop this model into a dynamic model that represents the time-dependent aspects of 

the model behaviour. The future research that accommodates the dynamic future 

changes spatially is expected to provide a better insight into the multi-objective 

problems that will be useful for the decision-making process for the long-term master 

plan.
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APPENDIX A: GLOSSARY 

 

ARIMA   Autoregressive Integrated Moving Average, a stochastic 

approach to forecast the time series based on the statistics and 

econometrics.  

BBWS   Balai Besar Wilayah Sungai, the Indonesian central 

government agency for river basin organization 

BMKG   Badan Meteorologi, Klimatologi dan Geofisika, the Indonesian 

government agency for meteorology, climatology and 

geophysics 

BPLHD Badan Pengelolaan Lingkungan Hidup Daerah, the regional 

environmental agency 

Deterministic model   A model that applies a single set of historical or synthetically 

generated time series to obtain a single set of results. 

Goal programming  The optimization model that searches the minimum total 

deviation from the soft constraints of sequences of objectives, 

also termed multi-objective optimization 

Hard constraints  The inviolable constraints where the optimum solution must be 

inside these bounds, refer to constraints in a conventional 

linear programming 

Hydroeconomic model  Mathematical model that transforms the concept of fixed 

demand into the economic value of water defined through 

water rights and priorities and future projections by combining 

the principles of economics and engineering. 

Linear programming  A conventional optimization model that searches for a local 

minimum of a linear objective function 

Modelica  An open source object-oriented programming language for 

simulation and optimization developed by Modelica Association  

NEDECO   Netherland Engineering Consultants BV 

Objective function  A function to be minimized in the optimization model, mostly 

consists of the economic valuations in the hydroeconomic model. 
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Optimization model  A mathematical model that runs to identify the local minimum 

of objective function limited to the constraints which represent 

the system  

PS   Particle Swarm Optimization, is a population-based stochastic 

optimization approach inspired by social behaviour of bird 

flocking 

RIBASIM  River Basin Simulation Model, a software package by that 

provides the sources of analysis in water allocation of a 

network  (Deltares, 2015) 

RTC-Tools  Real-Time Control Tools, an open-source toolbox for real-time 

control and optimization of hydraulic systems by (Deltares, 

2016). 

Sequences of objectives Several specific numeric goals that are derived based on the 

priorities to set the series of objective functions 

Simulations model  A rule-based algorithm that reproduces the system complex-

ities in integrated water resources management, planning and 

policies to answer “what if” type of questions. 

Soft constraints  Each goal’s lower and upper bounds that allow violations from 

the goal programming model 

SOP   Standard Operating Procedure, a reservoir operation procedure 

to support maximum safety and operational efficiency 

depending on the hydrological data of current or forecast year. 

SPK-TPA  Sekretariat Pelaksana Koordinasi - Tata Pengaturan Air, the 

secretariat of coordination committee on the water resources 

management. 

Stochastic model  A model that incorporates the probabilistic character of model 

inputs to generate the probability results rather than a 

deterministic, single set of results. 
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APPENDIX B: MODELICA SCRIPT - MODEL SCHEMATIZATION 

The nodes and links of the model schematization on Modelica graphical user interface 

automatically generate the code that needs to be adjusted like in the following scripting. 

This scripting is mostly divided into four parts. 

1. Classification of variables along with their units, whether they are a parameter, 

an input or an output. This part of the scripting is very crucial to balance the 

number of equation and free variables 

2. Each objects’ name and annotation, some include the value of physical 

characteristics’ parameters 

3. Description of the connection between declared objects 

4. Declaration of equations that connect the clarification in the first part of this 

scripting and the name of the Modelica objects in the second part of this scripting. 

I. Goal programming on the linear reservoir model schematization 

model citarum 

  import SI = Modelica.SIunits; 

 

/*1. DEFINE input to balance the number of equation and free variables*/ 

 

  input SI.VolumeFlowRate inflow_Saguling_Q; 

  input SI.VolumeFlowRate inflow_Cirata_Q; 

  input SI.VolumeFlowRate inflow_Jatiluhur_Q; 

  input SI.Velocity Saguling_evaporation; 

  input SI.Velocity Cirata_evaporation; 

  input SI.Velocity Jatiluhur_evaporation; 

  input SI.VolumeFlowRate reservoirCompact_Saguling_Qturbine; 

  input SI.VolumeFlowRate reservoirCompact_Cirata_Qturbine; 

  input SI.VolumeFlowRate reservoirCompact_Jatiluhur_Qturbine; 

  output SI.VolumeFlowRate spill_Saguling_Q; 

  output SI.VolumeFlowRate spill_Cirata_Q; 

  output SI.VolumeFlowRate spill_Jatiluhur_Q; 

  input SI.VolumeFlowRate node_Agriculture_QOut; 

  input SI.VolumeFlowRate node_Drinking_QOut; 

 

/*2. Each objects’ name and annotation*/ 

/*INPUT hard constraints and physical parameters*/ 

  Deltares.Flow.SimpleRouting.BoundaryConditions.Inflow inflow_Saguling 

annotation(Placement(visible = true, transformation(origin = {-90, 74}, extent = {{-10, -

10}, {10, 10}}, rotation = 0))); 
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  Deltares.Flow.SimpleRouting.BoundaryConditions.Inflow inflow_Cirata 

annotation(Placement(visible = true, transformation(origin = {-90, 40}, extent = {{-10, -

10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.BoundaryConditions.Inflow inflow_Jatiluhur 

annotation(Placement(visible = true, transformation(origin = {-90, 8}, extent = {{-10, -

10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.Nodes.Node node1(nout = 1, nin = 2) 

annotation(Placement(visible = true, transformation(origin = {-54, 40}, extent = {{-10, -

10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.Reservoir.Linear reservoirCompact_Saguling(H_b = 

622.6, area = 20000000, H_tail = 280, turbine_efficiency=0.87) 

annotation(Placement(visible = true, transformation(origin = {-70, 74}, extent = {{-10, -

10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.Reservoir.Linear reservoirCompact_Cirata(H_b = 180, 

area = 30000000, H_tail = 107, turbine_efficiency=0.87) annotation(Placement(visible 

= true, transformation(origin = {-34, 40}, extent = {{-10, -10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.Nodes.Node node2(nout = 1, nin = 2) 

annotation(Placement(visible = true, transformation(origin = {-18, 8}, extent = {{-10, -

10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.Nodes.Node node_Drinking(nout = 2) 

annotation(Placement(visible = true, transformation(origin = {34, 8}, extent = {{-10, -

10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.Nodes.Node node_Agriculture(nout = 2) 

annotation(Placement(visible = true, transformation(origin = {50, -20}, extent = {{-10, -

10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.BoundaryConditions.Terminal terminal_Agriculture 

annotation(Placement(visible = true, transformation(origin = {82, -6}, extent = {{-10, -

10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.BoundaryConditions.Terminal terminal_River 

annotation(Placement(visible = true, transformation(origin = {82, -28}, extent = {{-10, -

10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.BoundaryConditions.Terminal terminal_Drinking 

annotation(Placement(visible = true, transformation(origin = {82, 8}, extent = {{-10, -

10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.Reservoir.Linear reservoirCompact_Jatiluhur(H_b = 

74.89, area = 53000000, H_tail = 28, turbine_efficiency=0.87) 

annotation(Placement(visible = true, transformation(origin = {2, 8}, extent = {{-10, -10}, 

{10, 10}}, rotation = 0))); 

 

/*3. DEFINE connection*/ 

equation 

  connect(node2.QOut[1], reservoirCompact_Jatiluhur.QIn) annotation(Line(points = {{-

10, 8}, {-6, 8}})); 

  connect(reservoirCompact_Jatiluhur.QOut, node_Drinking.QIn[1]) 

annotation(Line(points = {{10, 8}, {26, 8}})); 
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  connect(node_Drinking.QOut[1], terminal_Drinking.QIn) annotation(Line(points = 

{{42, 8}, {74, 8}})); 

  connect(node_Agriculture.QOut[2], terminal_River.QIn) annotation(Line(points = {{58, 

-20}, {58, -28}, {74, -28}})); 

  connect(node_Agriculture.QOut[1], terminal_Agriculture.QIn) annotation(Line(points 

= {{58, -20}, {61, -20}, {61, -6}, {74, -6}})); 

  connect(node_Drinking.QOut[2], node_Agriculture.QIn[1]) annotation(Line(points = 

{{42, 8}, {42, -20}})); 

  connect(reservoirCompact_Cirata.QOut, node2.QIn[2]) annotation(Line(points = {{-26, 

40}, {-26, 8}})); 

  connect(inflow_Jatiluhur.QOut, node2.QIn[1]) annotation(Line(points = {{-82, 8}, {-26, 

8}})); 

  connect(node1.QOut[1], reservoirCompact_Cirata.QIn) annotation(Line(points = {{-46, 

40}, {-42, 40}})); 

  connect(reservoirCompact_Saguling.QOut, node1.QIn[2]) annotation(Line(points = {{-

62, 74}, {-62, 40}})); 

  connect(inflow_Saguling.QOut, reservoirCompact_Saguling.QIn) 

annotation(Line(points = {{-82, 74}, {-78, 74}})); 

  connect(inflow_Cirata.QOut, node1.QIn[1]) annotation(Line(points = {{-82, 40}, {-62, 

40}})); 

 

/*4. DECLARE additional equation, mostly to connect time series and object*/ 

  inflow_Saguling.Q = inflow_Saguling_Q; 

  inflow_Cirata.Q = inflow_Cirata_Q; 

  inflow_Jatiluhur.Q = inflow_Jatiluhur_Q; 

  reservoirCompact_Saguling.evaporation_protected=Saguling_evaporation; 

  reservoirCompact_Cirata.evaporation_protected=Cirata_evaporation; 

  reservoirCompact_Jatiluhur.evaporation_protected=Jatiluhur_evaporation; 

  node_Drinking_QOut=terminal_Drinking.Q; 

  terminal_Drinking.Q = 0; 

  reservoirCompact_Saguling_Qturbine = reservoirCompact_Saguling.Q_turbine; 

  reservoirCompact_Cirata_Qturbine = reservoirCompact_Cirata.Q_turbine; 

  reservoirCompact_Jatiluhur_Qturbine = reservoirCompact_Jatiluhur.Q_turbine; 

  spill_Saguling_Q = reservoirCompact_Saguling.Q_spill; 

  spill_Cirata_Q = reservoirCompact_Cirata.Q_spill; 

  spill_Jatiluhur_Q = reservoirCompact_Jatiluhur.Q_spill; 

 

annotation(Icon(coordinateSystem(extent = {{-100, -100}, {100, 100}}, 

preserveAspectRatio = true, initialScale = 0.1, grid = {2, 2})), 

Diagram(coordinateSystem(extent = {{-100, -100}, {100, 100}}, preserveAspectRatio = 

true, initialScale = 0.1, grid = {2, 2}))); 

 

end citarum; 

 

 



 

Tiaravanni Hermawan   B-4 

 

 

II. Goal programming on look-up table reservoirs model schematization 

model citarum 

  import SI = Modelica.SIunits; 

  input SI.VolumeFlowRate inflow_Saguling_Q; 

  input SI.VolumeFlowRate inflow_Cirata_Q; 

  input SI.VolumeFlowRate inflow_Jatiluhur_Q; 

  input SI.VolumeFlowRate spill_Saguling_Q; 

  input SI.VolumeFlowRate spill_Cirata_Q; 

  input SI.VolumeFlowRate spill_Jatiluhur_Q; 

  output SI.VolumeFlowRate reservoirCompact_Saguling_Qturbine; 

  output SI.VolumeFlowRate reservoirCompact_Cirata_Qturbine; 

  output SI.VolumeFlowRate reservoirCompact_Jatiluhur_Qturbine; 

 

  input SI.Velocity Saguling_evaporation; 

  input SI.Velocity Cirata_evaporation; 

  input SI.Velocity Jatiluhur_evaporation; 

 

  input SI.VolumeFlowRate node_Agriculture_QOut; 

  output SI.VolumeFlowRate terminal_River_Q; 

  input SI.VolumeFlowRate node_Drinking_Qout; 

 

  input SI.Area Saguling_area(nominal = 1e8); 

  input SI.Volume Saguling_volume(nominal = 1e9); 

  input SI.Area Cirata_area(nominal = 1e8); 

  input SI.Volume Cirata_volume(nominal = 1e9); 

  input SI.Area Jatiluhur_area(nominal = 1e8); 

  input SI.Volume Jatiluhur_volume(nominal = 1e10); 

 

  Deltares.Flow.SimpleRouting.BoundaryConditions.Inflow inflow_Saguling 

annotation(Placement(visible = true, transformation(origin = {-90, 74}, extent = {{-10, 

-10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.BoundaryConditions.Inflow inflow_Cirata 

annotation(Placement(visible = true, transformation(origin = {-90, 40}, extent = {{-10, 

-10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.BoundaryConditions.Inflow inflow_Jatiluhur 

annotation(Placement(visible = true, transformation(origin = {-90, 8}, extent = {{-10, -

10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.Nodes.Node node1(nout = 1, nin = 2) 

annotation(Placement(visible = true, transformation(origin = {-54, 40}, extent = {{-10, 

-10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.Nodes.Node node_Drinking(nin = 1, nout = 2) 

annotation(Placement(visible = true, transformation(origin = {34, 8}, extent = {{-10, -

10}, {10, 10}}, rotation = 0))); 
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  Deltares.Flow.SimpleRouting.Nodes.Node node_Agriculture(nin = 1, nout = 2) 

annotation(Placement(visible = true, transformation(origin = {50, -20}, extent = {{-10, 

-10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.BoundaryConditions.Terminal terminal_Agriculture 

annotation(Placement(visible = true, transformation(origin = {82, -6}, extent = {{-10, -

10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.BoundaryConditions.Terminal terminal_River 

annotation(Placement(visible = true, transformation(origin = {82, -28}, extent = {{-10, 

-10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.BoundaryConditions.Terminal terminal_Drinking 

annotation(Placement(visible = true, transformation(origin = {82, 8}, extent = {{-10, -

10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.Reservoir.LookupTable 

reservoirCompact_Cirata(H_tail = 107, turbine_efficiency = 0.87) 

annotation(Placement(visible = true, transformation(origin = {-30, 40}, extent = {{-10, 

-10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.Reservoir.LookupTable 

reservoirCompact_Jatiluhur(H_tail = 104, turbine_efficiency = 0.87) 

annotation(Placement(visible = true, transformation(origin = {8, 8}, extent = {{-10, -

10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.Reservoir.LookupTable 

reservoirCompact_Saguling(H_tail = 280, turbine_efficiency = 0.87) 

annotation(Placement(visible = true, transformation(origin = {-70, 74}, extent = {{-10, 

-10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.Nodes.Node node2(nout = 1, nin = 2) 

annotation(Placement(visible = true, transformation(origin = {-16, 8}, extent = {{-10, -

10}, {10, 10}}, rotation = 0))); 

 

equation 

  connect(inflow_Jatiluhur.QOut, node2.QIn[1]) annotation(Line(points = {{-82, 8}, {-

24, 8}})); 

  connect(reservoirCompact_Cirata.QOut, node2.QIn[2]) annotation(Line(points = {{-

22, 40}, {-24, 40}, {-24, 8}})); 

  connect(node2.QOut[1], reservoirCompact_Jatiluhur.QIn) annotation(Line(points = 

{{-8, 8}, {0, 8}})); 

  connect(reservoirCompact_Saguling.QOut, node1.QIn[2]) annotation(Line(points = 

{{-62, 74}, {-62, 40}})); 

  connect(inflow_Saguling.QOut, reservoirCompact_Saguling.QIn) 

annotation(Line(points = {{-82, 74}, {-78, 74}})); 

  connect(node1.QOut[1], reservoirCompact_Cirata.QIn) annotation(Line(points = {{-

46, 40}, {-38, 40}, {-38, 40}, {-38, 40}})); 

  connect(node_Drinking.QOut[1], terminal_Drinking.QIn) annotation(Line(points = 

{{42, 8}, {74, 8}})); 

  connect(node_Agriculture.QOut[2], terminal_River.QIn) annotation(Line(points = 

{{58, -20}, {58, -28}, {74, -28}})); 
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  connect(node_Agriculture.QOut[1], terminal_Agriculture.QIn) 

annotation(Line(points = {{58, -20}, {61, -20}, {61, -6}, {74, -6}})); 

  connect(node_Drinking.QOut[2], node_Agriculture.QIn[1]) annotation(Line(points = 

{{42, 8}, {42, -20}})); 

  connect(inflow_Cirata.QOut, node1.QIn[1]) annotation(Line(points = {{-82, 40}, {-62, 

40}})); 

 

  Saguling_area = reservoirCompact_Saguling.A; 

  Saguling_volume = reservoirCompact_Saguling.V; 

  Cirata_area = reservoirCompact_Cirata.A; 

  Cirata_volume = reservoirCompact_Cirata.V; 

  Jatiluhur_area = reservoirCompact_Jatiluhur.A; 

  Jatiluhur_volume = reservoirCompact_Jatiluhur.V; 

 

  inflow_Saguling.Q = inflow_Saguling_Q; 

  inflow_Cirata.Q = inflow_Cirata_Q; 

  inflow_Jatiluhur.Q = inflow_Jatiluhur_Q; 

   

  reservoirCompact_Saguling.evaporation_protected=Saguling_evaporation; 

  reservoirCompact_Cirata.evaporation_protected=Cirata_evaporation; 

  reservoirCompact_Jatiluhur.evaporation_protected=Jatiluhur_evaporation; 

 

  reservoirCompact_Saguling_Qturbine = reservoirCompact_Saguling.Q_turbine; 

  reservoirCompact_Cirata_Qturbine = reservoirCompact_Cirata.Q_turbine; 

  reservoirCompact_Jatiluhur_Qturbine = reservoirCompact_Jatiluhur.Q_turbine; 

   

  node_Agriculture_QOut = node_Agriculture.QOut_control[1]; 

  terminal_River_Q = terminal_River.Q; 

  terminal_Drinking.Q = 0; 

  node_Drinking_Qout = node_Drinking.QOut_control[1]; 

 

  spill_Saguling_Q = reservoirCompact_Saguling.Q_spill; 

  spill_Cirata_Q = reservoirCompact_Cirata.Q_spill; 

  spill_Jatiluhur_Q = reservoirCompact_Jatiluhur.Q_spill; 

                                                                                                                                                           

  annotation(Icon(coordinateSystem(extent = {{-100, -100}, {100, 100}}, 

preserveAspectRatio = true, initialScale = 0.1, grid = {2, 2})), 

Diagram(coordinateSystem(extent = {{-100, -100}, {100, 100}}, preserveAspectRatio = 

true, initialScale = 0.1, grid = {2, 2}))); 

 

end citarum;  
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II. Hydroeconomic optimization on the linear reservoir model schematization 

The total economic benefit summarises the hydroeconomic objective function which 

comprises of economic valuations based on the hydropower generation, agricultural 

delivered demand and flood damage reduction. This hydroeconomic objective function is 

declared in the Modelica file and it is optimized by the linear programming with the 

assistance of RTC-Tools 2.0. In this scripting, the economic valuations are mostly 

adapted from Van der Vat (2015) while the commented economic valuations, which 

mainly consist of penalty functions, are appraised in this study. 

/*APPLY hydroeconomic valuations*/ 

/*COMMENT modified hydroeconomic valuations and additional constraints*/ 

 

model citarum 

  import SI = Modelica.SIunits; 

 

/*DEFINE input to balance the number of equation and free variables*/   

/*MODELICA variables*/ 

  input SI.VolumeFlowRate inflow_Saguling_Q; 

  input SI.VolumeFlowRate inflow_Cirata_Q; 

  input SI.VolumeFlowRate inflow_Jatiluhur_Q; 

  input SI.Velocity Saguling_evaporation; 

  input SI.Velocity Cirata_evaporation; 

  input SI.Velocity Jatiluhur_evaporation; 

  input SI.VolumeFlowRate reservoirCompact_Saguling_Qturbine; 

  input SI.VolumeFlowRate reservoirCompact_Cirata_Qturbine; 

  input SI.VolumeFlowRate reservoirCompact_Jatiluhur_Qturbine; 

  input SI.VolumeFlowRate spill_Saguling_Q; 

  input SI.VolumeFlowRate spill_Cirata_Q; 

  input SI.VolumeFlowRate spill_Jatiluhur_Q; 

  input SI.VolumeFlowRate node_Agriculture_QOut; 

  input SI.VolumeFlowRate out_Jatiluhur_Q; 

  input SI.VolumeFlowRate terminal_Drinking_Qin; 

 

 

/*HYDROECONOMIC VALUATION*/ 

/*HYDROPOWER*/ 

  parameter Real auxcon_Saguling (unit = "1")=0.01; 

  parameter Real auxcon_Cirata (unit = "1")=0.01; 

  parameter Real auxcon_Jatiluhur (unit = "1")=0; 

  parameter Real c (unit = "1")=1/(1e9*3600); 

 

  output Real output_Saguling (unit = "GWh"); 

  output Real output_Cirata (unit = "GWh"); 

  output Real output_Jatiluhur (unit = "GWh"); 
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  parameter Real fr_peakSaguling (unit = "1")=1; 

  parameter Real fr_peakCirata (unit = "1")=1; 

  parameter Real fr_peakJatiluhur (unit = "1")=0.2; 

  parameter Real value_Powerrest (unit = "dollar/GWh")=31.59*1000; 

  parameter Real value_Powerpeak (unit = "dollar/GWh")=65.85*1000; 

 

  output Real benefit_PowerSaguling (unit="1e6*dollar/GWh"); 

  output Real benefit_PowerCirata (unit="1e6*dollar/GWh"); 

  output Real benefit_PowerJatiluhur (unit="1e6*dollar/GWh"); 

  output Real benefit_Power (unit="1e6*dollar", start = 0.0, fixed = true); 

 

/*MODIFIED HYDROPOWER 

  parameter Real value_Powerpeakpenalty (unit = "dollar/GWh")=2*66*1e3; 

  output Real penalty_PowerSaguling (unit="1e6*dollar/GWh"); 

  output Real penalty_PowerCirata (unit="1e6*dollar/GWh"); 

  output Real penalty_Power (unit="1e6*dollar", start = 0.0, fixed = true); 

*/ 

  

/*IRRIGATION*/ 

  parameter Real value_Irrigationbenefit (unit="1e6*dollar/1e6*m3")=0.02; 

  output Real benefit_Irrigation (unit="1e6*dollar", start = 0.0, fixed = true); 

   

/*MODIFIED IRRIGATION 

  input value_Irrigationpenalty; 

  output penalty_Irrigation; 

  output benefitpenalty_Irrigation; 

*/ 

 

/*FLOOD DAMAGE*/ 

  parameter SI.VolumeFlowRate returnperiod_Q=320; 

  input Real value_Floodinitial (unit="1e6*dollar/s"); 

  parameter Real value_Floodpenalty (unit="1e6*dollar/s")=14/(3600*24*30); 

  output Real penalty_Flood (unit="1e6*dollar"); 

  output Real benefit_Flood (unit="1e6*dollar", start = 0.0, fixed = true); 

 

/*MODIFIED FLOOD DAMAGE 

  input value_Irrigationpenalty; 

  output penalty_Irrigation; 

  output benefitpenalty_Irrigation; 

*/ 

 

  output Real benefit_Total (unit="1e6*dollar"); 
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  Deltares.Flow.SimpleRouting.BoundaryConditions.Inflow inflow_Saguling 

annotation(Placement(visible = true, transformation(origin = {-90, 74}, extent = {{-10, -

10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.BoundaryConditions.Inflow inflow_Cirata 

annotation(Placement(visible = true, transformation(origin = {-90, 40}, extent = {{-10, -

10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.BoundaryConditions.Inflow inflow_Jatiluhur 

annotation(Placement(visible = true, transformation(origin = {-90, 8}, extent = {{-10, -

10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.Nodes.Node node1(nout = 1, nin = 2) 

annotation(Placement(visible = true, transformation(origin = {-54, 40}, extent = {{-10, -

10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.Reservoir.Linear reservoirCompact_Saguling(H_b = 

622.6, area = 31000000, H_tail = 280, turbine_efficiency=0.95) 

annotation(Placement(visible = true, transformation(origin = {-70, 74}, extent = {{-10, -

10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.Reservoir.Linear reservoirCompact_Cirata(H_b = 180, 

area = 33000000, H_tail = 107, turbine_efficiency=0.87) annotation(Placement(visible 

= true, transformation(origin = {-34, 40}, extent = {{-10, -10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.Nodes.Node node2(nout = 1, nin = 2) 

annotation(Placement(visible = true, transformation(origin = {-18, 8}, extent = {{-10, -

10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.Nodes.Node node_Drinking(nout = 2) 

annotation(Placement(visible = true, transformation(origin = {34, 8}, extent = {{-10, -

10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.Nodes.Node node_Agriculture(nout = 2) 

annotation(Placement(visible = true, transformation(origin = {50, -20}, extent = {{-10, -

10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.BoundaryConditions.Terminal terminal_Agriculture 

annotation(Placement(visible = true, transformation(origin = {82, -6}, extent = {{-10, -

10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.BoundaryConditions.Terminal terminal_River 

annotation(Placement(visible = true, transformation(origin = {82, -28}, extent = {{-10, -

10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.BoundaryConditions.Terminal terminal_Drinking 

annotation(Placement(visible = true, transformation(origin = {82, 8}, extent = {{-10, -

10}, {10, 10}}, rotation = 0))); 

  Deltares.Flow.SimpleRouting.Reservoir.Linear reservoirCompact_Jatiluhur(H_b = 

74.89, area = 79000000, H_tail = 28, turbine_efficiency=1) 

annotation(Placement(visible = true, transformation(origin = {2, 8}, extent = {{-10, -10}, 

{10, 10}}, rotation = 0))); 

 

equation 

  connect(node2.QOut[1], reservoirCompact_Jatiluhur.QIn) annotation(Line(points = {{-

10, 8}, {-6, 8}})); 
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  connect(reservoirCompact_Jatiluhur.QOut, node_Drinking.QIn[1]) 

annotation(Line(points = {{10, 8}, {26, 8}})); 

  connect(node_Drinking.QOut[1], terminal_Drinking.QIn) annotation(Line(points = 

{{42, 8}, {74, 8}})); 

  connect(node_Agriculture.QOut[2], terminal_River.QIn) annotation(Line(points = {{58, 

-20}, {58, -28}, {74, -28}})); 

  connect(node_Agriculture.QOut[1], terminal_Agriculture.QIn) annotation(Line(points 

= {{58, -20}, {61, -20}, {61, -6}, {74, -6}})); 

  connect(node_Drinking.QOut[2], node_Agriculture.QIn[1]) annotation(Line(points = 

{{42, 8}, {42, -20}})); 

  connect(reservoirCompact_Cirata.QOut, node2.QIn[2]) annotation(Line(points = {{-26, 

40}, {-26, 8}})); 

  connect(inflow_Jatiluhur.QOut, node2.QIn[1]) annotation(Line(points = {{-82, 8}, {-26, 

8}})); 

  connect(node1.QOut[1], reservoirCompact_Cirata.QIn) annotation(Line(points = {{-46, 

40}, {-42, 40}})); 

  connect(reservoirCompact_Saguling.QOut, node1.QIn[2]) annotation(Line(points = {{-

62, 74}, {-62, 40}})); 

  connect(inflow_Saguling.QOut, reservoirCompact_Saguling.QIn) 

annotation(Line(points = {{-82, 74}, {-78, 74}})); 

  connect(inflow_Cirata.QOut, node1.QIn[1]) annotation(Line(points = {{-82, 40}, {-62, 

40}})); 

 

/*DECLARE additional equation, mostly to connect time series and object*/ 

  inflow_Saguling.Q = inflow_Saguling_Q; 

  inflow_Cirata.Q = inflow_Cirata_Q; 

  inflow_Jatiluhur.Q = inflow_Jatiluhur_Q; 

  reservoirCompact_Saguling.evaporation=Saguling_evaporation; 

  reservoirCompact_Cirata.evaporation=Cirata_evaporation; 

  reservoirCompact_Jatiluhur.evaporation=Jatiluhur_evaporation; 

  terminal_Drinking.Q = 0; 

  reservoirCompact_Saguling_Qturbine = reservoirCompact_Saguling.Q_turbine; 

  reservoirCompact_Cirata_Qturbine = reservoirCompact_Cirata.Q_turbine; 

  reservoirCompact_Jatiluhur_Qturbine = reservoirCompact_Jatiluhur.Q_turbine; 

  spill_Saguling_Q = reservoirCompact_Saguling.Q_spill; 

  spill_Cirata_Q = reservoirCompact_Cirata.Q_spill; 

  spill_Jatiluhur_Q = reservoirCompact_Jatiluhur.Q_spill; 

  out_Jatiluhur_Q=spill_Jatiluhur_Q+reservoirCompact_Jatiluhur_Qturbine; 

 

/*ADD constraints for domestic/drinking  water demand 

   Environmental flow is added to bounds in RTC-Tools 2.0 

terminal_Drinking.Q = 35;   

*/ 
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/* 

  ---------------------------------------------------------- 

  BENEFIT AND PENALTY FUNCTIONS 

  ---------------------------------------------------------- 

*/ 

 

/*----------------------------HYDROPOWER GENERATION----------------------------*/ 

output_Saguling=c*(1-auxcon_Saguling)*reservoirCompact_Saguling.P; 

output_Cirata=c*(1-auxcon_Cirata)*reservoirCompact_Cirata.P; 

output_Jatiluhur=c*(1-auxcon_Jatiluhur)*reservoirCompact_Jatiluhur.P; 

 

 

benefit_PowerSaguling=(output_Saguling*((fr_peakSaguling*value_Powerpeak)+((1-

fr_peakSaguling)*value_Powerrest)))/1e6; 

benefit_PowerCirata=(output_Cirata*((fr_peakCirata*value_Powerpeak)+((1-

fr_peakCirata)*value_Powerrest)))/1e6; 

benefit_PowerJatiluhur=(output_Jatiluhur*((fr_peakJatiluhur*value_Powerpeak)+((1-

fr_peakJatiluhur)*value_Powerrest)))/1e6; 

 

der(benefit_Power)=(benefit_PowerSaguling+benefit_PowerCirata+benefit_PowerJatilu

hur); 

 

/*---------------------------------------IRRIGATION--------------------------------------*/ 

der(benefit_Irrigation)=terminal_Agriculture.Q*value_Irrigationbenefit/1e6; 

 

/*------------------------------MODIFIFED IRRIGATION-----------------------------*/ 

/* 

benefit_Irrigation+=terminal_Agriculture.Q*value_Irrigationbenefit; 

penalty_Irrigation+=(Qagr-terminal_Agriculture.Q)*value_Irrigationpenalty; 

benefitpenalty_Irrigation+=benefit_Irrigation-penalty_Irrigation 

*/ 

 

/*------------------------------------FLOOD REDUCTION-------------------------------------*/ 

if out_Jatiluhur_Q>returnperiod_Q then 

   penalty_Flood=value_Floodpenalty; 

else 

  penalty_Flood=0; 

end if; 

 

der(benefit_Flood)=(value_Floodinitial/(3600*24*30))-penalty_Flood; 

 

/*----------------------------MODIFIED FLOOD REDUCTION----------------------------*/ 

/* 

returnperiod_Q5=66; 

returnperiod_Q25=334; 
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value_Floodpenalty=14000000; 

 

if reservoirCompact_Jatiluhur_Qout>=returnperiod_Q25 then 

   penalty_Flood=value_Floodpenalty; 

elseif reservoirCompact_Jatiluhur_Qout>= returnperiod_Q5 & 

linear_Jatiluhur.HQ.Q<returnperiod_Q25: 

  penalty_Flood=(linear_Jatiluhur.HQ.Q-

returnperiod_Q5)*value_Floodpenalty/(returnperiod_Q25-returnperiod_Q5) 

else: 

  penalty_Flood=0 

benefit_Flood+=value_Floodinitial-penalty_Flood; 

*/ 

 

/*----------------------------TOTAL BENEFIT----------------------------*/ 

benefit_Total=benefit_Power+benefit_Irrigation+benefit_Flood; 

 

annotation(Icon(coordinateSystem(extent = {{-100, -100}, {100, 100}}, 

preserveAspectRatio = true, initialScale = 0.1, grid = {2, 2})), 

Diagram(coordinateSystem(extent = {{-100, -100}, {100, 100}}, preserveAspectRatio = 

true, initialScale = 0.1, grid = {2, 2}))); 

 

end citarum 
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APPENDIX C: PYTHON SCRIPT – OPTIMIZATION 

 

The following python scripting in this appendix might need to be slightly adjusted 

depending on the new development of RTC-Tools 2.0. 

I. Goal programming of the sequences of hydrological objectives 

The Python script below has been run in Docker that incorporate distributed 

applications integrated by RTC-2.0 Tools under 32-bits Python 2.7.3. This 

hydroeconomic optimization (~40 goals) took 20 minutes simulation time Intel(R) 

Core(TM) i5 2.5GHz.  This python scripting is linked to the model schematization of the 

linear reservoirs.  

""" 

OTPIMIZATION of hydrological problems on the linear cascade reservoirs 

 

Author:  Tiaravanni Hermawan 

Date  :  July 28, 2016 

""" 

 

#IMPORT modules 

from rtctools.optimization.collocated_integrated_optimization_problem import 

CollocatedIntegratedOptimizationProblem 

from rtctools.optimization.goal_programming_mixin import GoalProgrammingMixin, 

Goal 

from rtctools.optimization.modelica_mixin import ModelicaMixin 

from rtctools.optimization.timeseries import Timeseries 

from rtctools.optimization.csv_mixin import CSVMixin 

from rtctools.util import run_optimization_problem 

from casadi import MX 

import logging 

import numpy as np 

import sys 

import os 

import csv 

from time import sleep 

 

logger = logging.getLogger("rtctools") 
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#PRIORITIES are based on RIBASIM, including rule curves and hedging rules 

#ONLINE adjusted gate: Most upstream reservoir has the highest priority for a specific 

rule curves 

#IF NOT ONLINE: Most upstream reservoir has the highest priority 

 

#TARGET before lowest hedging 

#A class for a specific goal, either range of soft constraints or minimize a function 

class Saguling_P10(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

#OBJETIVE function on a Modelica variable 

def function(self, o): 

        return o.state_at('reservoirCompact_Saguling.P', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e11) 

 

    # HIGHER priority =lower number 

    @property 

    def priority(self): 

        return 1 

 

class Cirata_P10(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('reservoirCompact_Cirata.P', self.time) 

 

    @property 

    def min(self): 
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        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e11) 

 

    @property 

    def priority(self): 

        return 2 

 

#Water level of hedging 4 

 

class Saguling_H4(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('reservoirCompact_Saguling.H', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e3) 

 

    @property 

    def priority(self): 

        return 3 

 

class Cirata_H4(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 
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        self._max = _max 

 

    def function(self, o): 

        return o.state_at('reservoirCompact_Cirata.H', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e3) 

 

    @property 

    def priority(self): 

        return 4 

 

class Jatiluhur_H4(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('reservoirCompact_Jatiluhur.H', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e3) 

 

    @property 

    def priority(self): 

        return 5 
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#TARGET 

 

class Saguling_P30(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('reservoirCompact_Saguling.P', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e11) 

 

    @property 

    def priority(self): 

        return 6 

 

class Cirata_P30(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('reservoirCompact_Cirata.P', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 
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    @property 

    def function_range(self): 

        return (0,1e11) 

 

    @property 

    def priority(self): 

        return 7 

 

class Jatiluhur_P50(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('reservoirCompact_Jatiluhur.P', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e11) 

 

    @property 

    def priority(self): 

        return 8 

 

class Agriculture_Q50(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('terminal_Agriculture.Q', self.time) 

 

    @property 

    def min(self): 

        return self._min 
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    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e3) 

 

    @property 

    def priority(self): 

        return 8 

 

#LEVEL Hedging 3 

 

class Saguling_H3(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('reservoirCompact_Saguling.H', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e3) 

 

    @property 

    def priority(self): 

        return 9 

 

class Cirata_H3(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 
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    def function(self, o): 

        return o.state_at('reservoirCompact_Cirata.H', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e3) 

 

    @property 

    def priority(self): 

        return 10 

 

class Jatiluhur_H3(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('reservoirCompact_Jatiluhur.H', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e3) 

 

    @property 

    def priority(self): 

        return 11 
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#TARGET 

 

class Saguling_P50(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('reservoirCompact_Saguling.P', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e11) 

 

    @property 

    def priority(self): 

        return 5 

 

class Cirata_P50(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('reservoirCompact_Cirata.P', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 
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    @property 

    def function_range(self): 

        return (0,1e11) 

 

    @property 

    def priority(self): 

        return 12 

 

class Jatiluhur_P90(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('reservoirCompact_Jatiluhur.P', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e11) 

 

    # Because we want to satisfy our water level target first, this has a 

    # higher priority (=lower number). 

    @property 

    def priority(self): 

        return 13 

 

class Agriculture_Q90(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('terminal_Agriculture.Q', self.time) 

 

    @property 
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    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e3) 

 

    @property 

    def priority(self): 

        return 14 

 

#LEVEL Hedging 2 

 

class Saguling_H2(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('reservoirCompact_Saguling.H', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e3) 

 

    @property 

    def priority(self): 

        return 15 

 

 

 

class Cirata_H2(Goal): 
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    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('reservoirCompact_Cirata.H', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e3) 

 

    @property 

    def priority(self): 

        return 16 

 

class Jatiluhur_H2(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('reservoirCompact_Jatiluhur.H', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e3) 
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    @property 

    def priority(self): 

        return 17 

 

#TARGET 

 

class Saguling_P70(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('reservoirCompact_Saguling.P', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e11) 

 

    @property 

    def priority(self): 

        return 18 

 

class Cirata_P70(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('reservoirCompact_Cirata.P', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 
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    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e11) 

 

    @property 

    def priority(self): 

        return 19 

 

class Jatiluhur_PFirm(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('reservoirCompact_Jatiluhur.P', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e11) 

 

    @property 

    def priority(self): 

        return 20 

 

class Agriculture_QOut(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('node_Agriculture.QOut_control[1]', self.time) 
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    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e3) 

 

    @property 

    def priority(self): 

        return 21 

 

#LEVEL Hedging 1 

 

class Saguling_H1(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('reservoirCompact_Saguling.H', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e3) 

 

    @property 

    def priority(self): 

        return 22 

 

 

class Cirata_H1(Goal): 
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    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('reservoirCompact_Cirata.H', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e3) 

 

    @property 

    def priority(self): 

        return 23 

 

class Jatiluhur_H1(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('reservoirCompact_Jatiluhur.H', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e3) 
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    @property 

    def priority(self): 

        return 24 

 

#TARGET 

 

class Saguling_P90(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('reservoirCompact_Saguling.P', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e11) 

 

    @property 

    def priority(self): 

        return 25 

 

class Cirata_P90(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('reservoirCompact_Cirata.P', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 
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    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e11) 

 

    @property 

    def priority(self): 

        return 26 

 

#LEVEL Firm 

 

class Saguling_HFirm(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('reservoirCompact_Saguling.H', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e3) 

 

    @property 

    def priority(self): 

        return 27 

 

class Cirata_HFirm(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 
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        return o.state_at('reservoirCompact_Cirata.H', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e3) 

 

    @property 

    def priority(self): 

        return 28 

 

class Jatiluhur_HFirm(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('reservoirCompact_Jatiluhur.H', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e3) 

 

    @property 

    def priority(self): 

        return 29 

 

#TARGET Firm 
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class Saguling_PFirm(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('reservoirCompact_Saguling.P', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e11) 

 

    @property 

    def priority(self): 

        return 30 

 

class Cirata_PFirm(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('reservoirCompact_Cirata.P', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e11) 
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    @property 

    def priority(self): 

        return 31 

 

#LEVEL Target 

 

class Saguling_HTarget(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('reservoirCompact_Saguling.H', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e3) 

 

    @property 

    def priority(self): 

        return 32 

 

class Cirata_HTarget(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('reservoirCompact_Cirata.H', self.time) 

 

    @property 

    def min(self): 

        return self._min 
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    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e3) 

 

    @property 

    def priority(self): 

        return 33 

 

class Jatiluhur_HTarget(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('reservoirCompact_Jatiluhur.H', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e3) 

 

    @property 

    def priority(self): 

        return 34 

 

#OPTIMIZATION problem 

class CitarumGP(GoalProgrammingMixin, CSVMixin, ModelicaMixin, 

CollocatedIntegratedOptimizationProblem): 

def __init__(self, model_folder, input_folder, output_folder): 

 

        # Call constructors 

        GoalProgrammingMixin.__init__(self) 

        CSVMixin.__init__(self, 



 

Tiaravanni Hermawan   C-23 

 

 

                          input_folder=input_folder, 

                          output_folder=output_folder, 

                          equidistant=False) 

        ModelicaMixin.__init__(self, 

                               model_name='citarum', 

                               model_folder=model_folder, 

         #HEADER of .csv time series 

                               constant_inputs=['inflow_Saguling_Q', 

                                                'inflow_Cirata_Q', 

                                                'inflow_Jatiluhur_Q', 

                                                'node_Agriculture_Q50', 

                                                'node_Agriculture_Q90',        

                                                'node_Agriculture_QOut', 

                                                'Saguling_evaporation', 

                                                'Cirata_evaporation', 

                                                'Jatiluhur_evaporation', 

                                                'Saguling_H4', 

                                                'Saguling_H3', 

                                                'Saguling_H2', 

                                                'Saguling_H1', 

                                                'Saguling_HFirm', 

                                                'Saguling_HTarget', 

                                                'SagulingHFlood', 

                                                'Cirata_H4', 

                                                'Cirata_H3', 

                                                'Cirata_H2', 

                                                'Cirata_H1', 

                                                'Cirata_HFirm', 

                                                'Cirata_HTarget', 

                                                'CirataHFlood', 

                                                'Jatiluhur_H4', 

                                                'Jatiluhur_H3', 

                                                'Jatiluhur_H2', 

                                                'Jatiluhur_H1', 

                                                'Jatiluhur_HFirm', 

                                                'Jatiluhur_HTarget', 

                                                'JatiluhurHFlood']) 

        CollocatedIntegratedOptimizationProblem.__init__(self) 

 

        # We keep track of our intermediate results, so that we can print some 

        # information about the progress of goals at the end of our run. 

        self.intermediate_results = [] 

 

 

        # Store settings 
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        #self.output_folder = output_folder 

 

    def bounds(self): 

        # HARD CONSTRAINTS 

        return {'reservoirCompact_Saguling.P': (0.0, 700000000),  

                'reservoirCompact_Cirata.P': (0.0, 1008000000), 

                'reservoirCompact_Jatiluhur.P': (0.0, 180000000),  

                'reservoirCompact_Jatiluhur.H': (74.89,106.89),  

                'reservoirCompact_Cirata.H': (180, 220),  

                'reservoirCompact_Saguling.H': (622.6, 643), 

                'reservoirCompact_Saguling.Q_spill': (0.0, None), 

                'reservoirCompact_Cirata.Q_spill': (0.0, None), 

                'reservoirCompact_Jatiluhur.Q_spill': (0.0, None), 

                'reservoirCompact_Saguling.Q_turbine': (0.0, None), 

                'reservoirCompact_Cirata.Q_turbine': (0.0, None), 

                'reservoirCompact_Jatiluhur.Q_turbine': (0.0, None), 

                'node_Agriculture.QOut_control[1]': (0, 

self.timeseries('node_Agriculture_QOut')),  

                'terminal_River.Q':(0.0, None), 

                'reservoirCompact_Saguling.V':(0.0, None),  

                'reservoirCompact_Cirata.V':(0.0, None),  

                'reservoirCompact_Jatiluhur.V':(0.0, None)} 

      

    @property 

    def goals(self): 

        g = [] 

        # Use a for loop to add goals for every time step 

        for t in self.times(): 

            g.append(Saguling_P10(t, 13440860,700000000)) 

            g.append(Saguling_P30(t, 40322581,700000000)) 

            g.append(Saguling_P50(t, 67204301,700000000)) 

            g.append(Saguling_P70(t, 94086022,700000000)) 

            g.append(Saguling_P90(t, 120967742,700000000)) 

            g.append(Saguling_PFirm(t, 134402602,700000000)) 

 

            g.append(Cirata_P10(t, 8064516,1008000000)) 

            g.append(Cirata_P30(t, 24193548,1008000000)) 

            g.append(Cirata_P50(t, 40322581,1008000000)) 

            g.append(Cirata_P70(t, 56451613,1008000000)) 

            g.append(Cirata_P90(t, 72580645,1008000000)) 

            g.append(Cirata_PFirm(t, 80645161,1008000000)) 

 

            g.append(Jatiluhur_P50(t, 46841398,187000000)) 

            g.append(Jatiluhur_P90(t, 84314516,187000000)) 

            g.append(Jatiluhur_PFirm(t, 93682796,187000000)) 



 

Tiaravanni Hermawan   C-25 

 

 

 

            g.append(Saguling_H4(t, self.interpolate(t, self.timeseries('Saguling_H4').times, 

self.timeseries('Saguling_H4').values), self.interpolate(t, 

self.timeseries('SagulingHFlood').times, self.timeseries('SagulingHFlood').values))) 

            g.append(Saguling_H3(t, self.interpolate(t, self.timeseries('Saguling_H3').times, 

self.timeseries('Saguling_H3').values), self.interpolate(t, 

self.timeseries('SagulingHFlood').times, self.timeseries('SagulingHFlood').values))) 

            g.append(Saguling_H3(t, self.interpolate(t, self.timeseries('Saguling_H2').times, 

self.timeseries('Saguling_H2').values), self.interpolate(t, 

self.timeseries('SagulingHFlood').times, self.timeseries('SagulingHFlood').values))) 

            g.append(Saguling_H1(t, self.interpolate(t, self.timeseries('Saguling_H1').times, 

self.timeseries('Saguling_H1').values), self.interpolate(t, 

self.timeseries('SagulingHFlood').times, self.timeseries('SagulingHFlood').values))) 

            g.append(Saguling_HFirm(t, self.interpolate(t, 

self.timeseries('Saguling_HFirm').times, self.timeseries('Saguling_HFirm').values), 

self.interpolate(t, self.timeseries('SagulingHFlood').times, 

self.timeseries('SagulingHFlood').values))) 

            g.append(Saguling_HTarget(t, self.interpolate(t, 

self.timeseries('Saguling_HTarget').times, self.timeseries('Saguling_HTarget').values), 

self.interpolate(t, self.timeseries('SagulingHFlood').times, 

self.timeseries('SagulingHFlood').values))) 

             

            g.append(Cirata_H4(t, self.interpolate(t, self.timeseries('Cirata_H4').times, 

self.timeseries('Cirata_H4').values), self.interpolate(t, 

self.timeseries('CirataHFlood').times, self.timeseries('CirataHFlood').values))) 

            g.append(Cirata_H3(t, self.interpolate(t, self.timeseries('Cirata_H3').times, 

self.timeseries('Cirata_H3').values), self.interpolate(t, 

self.timeseries('CirataHFlood').times, self.timeseries('CirataHFlood').values))) 

            g.append(Cirata_H3(t, self.interpolate(t, self.timeseries('Cirata_H2').times, 

self.timeseries('Cirata_H2').values), self.interpolate(t, 

self.timeseries('CirataHFlood').times, self.timeseries('CirataHFlood').values))) 

            g.append(Cirata_H1(t, self.interpolate(t, self.timeseries('Cirata_H1').times, 

self.timeseries('Cirata_H1').values), self.interpolate(t, 

self.timeseries('CirataHFlood').times, self.timeseries('CirataHFlood').values))) 

            g.append(Cirata_HFirm(t, self.interpolate(t, 

self.timeseries('Cirata_HFirm').times, self.timeseries('Cirata_HFirm').values), 

self.interpolate(t, self.timeseries('CirataHFlood').times, 

self.timeseries('CirataHFlood').values))) 

            g.append(Cirata_HTarget(t, self.interpolate(t, 

self.timeseries('Cirata_HTarget').times, self.timeseries('Cirata_HTarget').values), 

self.interpolate(t, self.timeseries('CirataHFlood').times, 

self.timeseries('CirataHFlood').values))) 
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            g.append(Jatiluhur_H4(t, self.interpolate(t, self.timeseries('Jatiluhur_H4').times, 

self.timeseries('Jatiluhur_H4').values), self.interpolate(t, 

self.timeseries('JatiluhurHFlood').times, self.timeseries('JatiluhurHFlood').values))) 

            g.append(Jatiluhur_H3(t, self.interpolate(t, self.timeseries('Jatiluhur_H3').times, 

self.timeseries('Jatiluhur_H3').values), self.interpolate(t, 

self.timeseries('JatiluhurHFlood').times, self.timeseries('JatiluhurHFlood').values))) 

            g.append(Jatiluhur_H3(t, self.interpolate(t, self.timeseries('Jatiluhur_H2').times, 

self.timeseries('Jatiluhur_H2').values), self.interpolate(t, 

self.timeseries('JatiluhurHFlood').times, self.timeseries('JatiluhurHFlood').values))) 

            g.append(Jatiluhur_H1(t, self.interpolate(t, self.timeseries('Jatiluhur_H1').times, 

self.timeseries('Jatiluhur_H1').values), self.interpolate(t, 

self.timeseries('JatiluhurHFlood').times, self.timeseries('JatiluhurHFlood').values))) 

            g.append(Jatiluhur_HFirm(t, self.interpolate(t, 

self.timeseries('Jatiluhur_HFirm').times, self.timeseries('Jatiluhur_HFirm').values), 

self.interpolate(t, self.timeseries('JatiluhurHFlood').times, 

self.timeseries('JatiluhurHFlood').values))) 

            g.append(Jatiluhur_HTarget(t, self.interpolate(t, 

self.timeseries('Jatiluhur_HTarget').times, self.timeseries('Jatiluhur_HTarget').values), 

self.interpolate(t, self.timeseries('JatiluhurHFlood').times, 

self.timeseries('JatiluhurHFlood').values))) 

 

            g.append(Agriculture_Q50(t, self.interpolate(t, 

self.timeseries('node_Agriculture_Q50').times, 

self.timeseries('node_Agriculture_Q50').values), self.interpolate(t, 

self.timeseries('node_Agriculture_QOut').times, 

self.timeseries('node_Agriculture_QOut').values))) 

            g.append(Agriculture_Q90(t, self.interpolate(t, 

self.timeseries('node_Agriculture_Q90').times, 

self.timeseries('node_Agriculture_Q90').values), self.interpolate(t, 

self.timeseries('node_Agriculture_QOut').times, 

self.timeseries('node_Agriculture_QOut').values))) 

            g.append(Agriculture_QOut(t, self.interpolate(t, 

self.timeseries('node_Agriculture_QOut').times, 

self.timeseries('node_Agriculture_QOut').values), self.interpolate(t, 

self.timeseries('node_Agriculture_QOut').times, 

self.timeseries('node_Agriculture_QOut').values))) 

 

        return g 

 

# Run 

run_optimization_problem(CitarumGP, base_folder='..') 
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II. Conventional linear programming of a hydroeconomic objective 

 

The Python script below has been run in Docker that incorporate distributed 

applications integrated by RTC-2.0 Tools under 32-bits Python 2.7.3. This 

hydroeconomic optimization took 3 minutes simulation time (~150 iterations) in Intel(R) 

Core(TM) i5 2.5GHz. The simulation time is likely to strongly depend on the formulation 

of the objective function. This python scripting is linked to the model schematization of 

the linear reservoirs. 

#IMPORT modules 

from rtctools.optimization.collocated_integrated_optimization_problem import 

CollocatedIntegratedOptimizationProblem 

from rtctools.optimization.modelica_mixin import ModelicaMixin 

from rtctools.optimization.timeseries import Timeseries 

from rtctools.optimization.csv_mixin import CSVMixin 

from rtctools.util import run_optimization_problem 

from casadi import MX 

import logging 

import numpy as np 

import sys 

import os 

logger = logging.getLogger("rtctools") 

 

#DEFINE the optimization problem 

class TestProblem(CSVMixin, ModelicaMixin, 

CollocatedIntegratedOptimizationProblem): 

    def __init__(self, model_folder, input_folder, output_folder): 

        # CALL constructors 

        CSVMixin.__init__(self, 

                          input_folder=input_folder, 

                          output_folder=output_folder, 

                          equidistant=False) 

        ModelicaMixin.__init__(self, 

                               model_name='citarum', 

                               model_folder=model_folder, 

                   constant_inputs=['inflow_Saguling_Q', 

    'inflow_Cirata_Q', 

    'inflow_Jatiluhur_Q', 

   'node_Agriculture_QOut', 

   'Saguling_evaporation', 

   'Cirata_evaporation', 

   'Jatiluhur_evaporation', 

   'value_Floodinitial']) 

        CollocatedIntegratedOptimizationProblem.__init__(self) 
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        # STORE settings 

        self.output_folder = output_folder 

 

    #DEFINE a single hydroeconomic objective function 

    def objective(self,ensemble_member): 

        # MAXIMIZE generation 

        return -self.state_at('benefit_Total', self.times()[-1]) 

 

    def bounds(self): 

        # HARD CONSTRAINT 

        return {'reservoirCompact_Saguling.P': (0.0, 700000000),  

                'reservoirCompact_Cirata.P': (0.0, 1008000000), 

                'reservoirCompact_Jatiluhur.P': (0.0, 180000000),  

                'reservoirCompact_Jatiluhur.H': (74.89,106.89),  

                'reservoirCompact_Cirata.H': (180, 220),  

                'reservoirCompact_Saguling.H': (622.6, 643), 

                'reservoirCompact_Saguling.Q_spill': (0.0, None), 

                'reservoirCompact_Cirata.Q_spill': (0.0, None), 

                'reservoirCompact_Jatiluhur.Q_spill': (0.0, None), 

                'reservoirCompact_Saguling.Q_turbine': (0.0, None), 

                'reservoirCompact_Cirata.Q_turbine': (0.0, None), 

                'reservoirCompact_Jatiluhur.Q_turbine': (0.0, None), 

          'node_Agriculture.QOut_control[1]': (0.0, 

                   self.timeseries('node_Agriculture_QOut')),  

                'terminal_River.Q':(0.0, None), 

                #Environmental flow 'terminal_River.Q':(1.4, None), 

                'reservoirCompact_Saguling.V':(0.0, None),  

                'reservoirCompact_Cirata.V':(0.0, None),  

                'reservoirCompact_Jatiluhur.V':(0.0, None)} 

 

    def constraints(self,ensemble_member): 

        return [ ] 

 

# RUN optimization problem 

run_optimization_problem(TestProblem, log_level=logging.INFO)  
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III. Conventional linear programming of a hydroeconomic objective (lookup table) 

The Python script below has been run in Docker that incorporates distributed 

applications integrated by RTC-2.0 Tools under 32-bits Python 2.7.3. This 

hydroeconomic optimization took 30 minutes simulation time in Intel(R) Core(TM) i5 

2.5GHz. The simulation time is likely to strongly depend on the formulation of the 

objective function. This python scripting is linked to the model schematization of the 

look-up table reservoirs. The curves fitting of the look-up table of reservoirs are 

presented below.  

""" 

Linear programming/linear optimization of a single hydroeconomic objective funtion 

 

Author:  Tiaravanni Hermawan 

Date  :  11 August, 2016 

""" 

 

from rtctools.optimization.collocated_integrated_optimization_problem import 

CollocatedIntegratedOptimizationProblem 

from rtctools.optimization.goal_programming_mixin import GoalProgrammingMixin, 

Goal 

from rtctools.optimization.modelica_mixin import ModelicaMixin 

from rtctools.optimization.csv_lookup_table_mixin import CSVLookupTableMixin 

from rtctools.optimization.timeseries import Timeseries 

from rtctools.optimization.csv_mixin import CSVMixin 

from rtctools.util import run_optimization_problem 

from casadi import MX 

import logging 

import numpy as np 

import sys 

import os 

import csv 

from time import sleep 

 

import numpy as np 

from abc import ABCMeta, abstractmethod 

from sets import Set 

import scipy.interpolate 

import itertools 

import logging 

import glob 

import datetime 

 

import matplotlib 

matplotlib.use('Agg') 
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import pylab 

 

logger = logging.getLogger("rtctools") 

 

class MaximizeBenefit(Goal): 

    def function(self, optimization_problem): 

        return -optimization_problem.integral('benefit_total') 

 

    @property 

    def function_range(self): 

        return (1e2, 1e5) 

 

    @property 

    def priority(self): 

        return 1 

 

class Lookup(CSVLookupTableMixin,GoalProgrammingMixin, CSVMixin, 

ModelicaMixin, CollocatedIntegratedOptimizationProblem): 

    def __init__(self, model_folder, input_folder, output_folder): 

        #lookup_tables = [splitext(f)[0] for f in listdir(join(input_folder, 'lookup_tables'))] 

        # Call constructors 

        CSVLookupTableMixin.__init__(self, input_folder=input_folder) 

        GoalProgrammingMixin.__init__(self) 

        CSVMixin.__init__(self, 

                          input_folder=input_folder, 

                          output_folder=output_folder, 

                          equidistant=False) 

        ModelicaMixin.__init__(self, 

                               model_name='citarum', 

                               model_folder=model_folder, 

                               constant_inputs=['inflow_Saguling_Q', 

                                                              'inflow_Cirata_Q', 

                                                              'inflow_Jatiluhur_Q', 

                                                              'node_Agriculture_QOut', 

                                                              'Saguling_evaporation', 

                                                              'Cirata_evaporation', 

                                                              'Jatiluhur_evaporation',  

                                lookup_tables=['Saguling_area', 

                                              'Saguling_volume' 

                                              'Cirata_area' 

                                              'Cirata_volume' 

                                              'Jatiluhur_area' 

                                              'Jatiluhur_volume']) 

        CollocatedIntegratedOptimizationProblem.__init__(self) 
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        for filename in glob.glob(os.path.join(self, input_folder, "lookup_tables/*.csv")): 

            logger.debug("Reading lookup tables from {}".format(filename)) 

 

            csvinput = np.genfromtxt(filename, delimiter=",", dtype=None, names=True, 

deletechars="") 

 

            input_name = csvinput.dtype.names[0] 

            input_values = csvinput[input_name] 

            for output_name in csvinput.dtype.names[1:]: 

                logger.debug("Reading lookup table from {} to {}".format(input_name, 

output_name)) 

     #Plot lookup table 

                tck = scipy.interpolate.splrep(input_values, csvinput[output_name], k=3, s=0) 

                t_ = np.linspace(input_values[0], input_values[-1], 1000) 

                o = scipy.interpolate.splev(t_, tck) 

                pylab.clf() 

                pylab.plot(t_, o) 

                pylab.title(input_name + ' to ' + output_name) 

                pylab.savefig(os.path.join(self, output_folder, input_name.replace(':','_') + '_' + 

output_name.replace(':','_') + '.png')) 

 

                logger.debug("Done computing B-Spline coefficients")     

 

        # We keep track of our intermediate results, so that we can print some 

        # information about the progress of goals at the end of our run. 

        self.intermediate_results = [] 

 

        # Store settings 

        #self.output_folder = output_folder 

         

    @property 

    def bounds(self): 

        # Bounds 

        return {'reservoirCompact_Saguling.P': (0.0, 700000000),  

                'reservoirCompact_Cirata.P': (0.0, 1008000000), 

                'reservoirCompact_Jatiluhur.P': (0.0, 180000000),  

                'reservoirCompact_Jatiluhur.H': (74.89,106.89),  

                'reservoirCompact_Cirata.H': (180, 220),  

                'reservoirCompact_Saguling.H': (622.6, 643), 

                'reservoirCompact_Saguling.Q_spill': (0.0, None), 

                'reservoirCompact_Cirata.Q_spill': (0.0, None), 

                'reservoirCompact_Jatiluhur.Q_spill': (0.0, None), 

                'reservoirCompact_Saguling.Q_turbine': (0.0, None), 

                'reservoirCompact_Cirata.Q_turbine': (0.0, None), 

                'reservoirCompact_Jatiluhur.Q_turbine': (0.0, None), 
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                'node_Agriculture.QOut_control[1]': (0, 

self.timeseries('node_Agriculture_QOut')),  

                'terminal_River.Q':(0.0, None), 

                'reservoirCompact_Saguling.V':(0.0, None),  

                'reservoirCompact_Cirata.V':(0.0, None),  

                'reservoirCompact_Jatiluhur.V':(0.0, None)}    

    @property 

    def goals(self): 

        g = [] 

        g.append(MaximizeBenefit()) 

return g 

 

# Run 

run_optimization_problem(Lookup, base_folder='..') 
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IV. Hybrid optimization between goal programming and conventional linear 

programming 

The Python script below has been run in Docker that incorporates distributed 

applications integrated by RTC-2.0 Tools under 32-bits Python 2.7.3. This 

hydroeconomic optimization (~4 sequences of objectives and a single hydroeconomic 

objective) took 5 minutes simulation time Intel(R) Core(TM) i5 2.5GHz. 

""" 

Hybrid optimization on the linear cascade reservoirs 

Author:  Tiaravanni Hermawan 

Date  :  August 10, 2016 

""" 

 

from rtctools.optimization.collocated_integrated_optimization_problem import 

CollocatedIntegratedOptimizationProblem 

from rtctools.optimization.goal_programming_mixin import GoalProgrammingMixin, 

Goal 

from rtctools.optimization.modelica_mixin import ModelicaMixin 

from rtctools.optimization.timeseries import Timeseries 

from rtctools.optimization.csv_mixin import CSVMixin 

from rtctools.util import run_optimization_problem 

from casadi import MX 

import logging 

import numpy as np 

import sys 

import os 

 

logger = logging.getLogger("rtctools") 

 

#LATEST PRIORITY 

class MaxTotalBenefit(Goal): 

    # If we do not specify any minimum or maximum value in this class, the 

    # goal programming mixin will try to minimize the following function. 

    def function(self, optimization_problem): 

        # Maximize generation 

        return optimization_problem.state_at('benefit_Total', 

optimization_problem.times()[-1]) 

 

    # Every goal needs a rough (over)estimate of the range of the function 

# defined above. 

# decent estimate. 

    @property 

    def function_range(self): 

        return (0, 1e6) 
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    # The lower the number returned by this function, the higher the priority. 

    @property 

    def priority(self): 

        return 100 

 

#HIGHEST PRIORITY: FIRM DEMAND 

#Put the firm target of the cascade linear reservoirs in the similar level 

 

class Saguling_PFirm(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('reservoirCompact_Saguling.P', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e12) 

 

    # Lowest number is the highest priority 

    @property 

    def priority(self): 

        return 1 

 

class Cirata_PFirm(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('reservoirCompact_Cirata.P', self.time) 

 

    @property 
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    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e12) 

 

    @property 

    def priority(self): 

        return 1 

 

class Jatiluhur_PFirm(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('reservoirCompact_Jatiluhur.P', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e12) 

 

    @property 

    def priority(self): 

        return 1 

 

class Agriculture_QOut(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 
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    def function(self, o): 

        return o.state_at('terminal_Agriculture.Q', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e3) 

 

    @property 

    def priority(self): 

        return 1 

 

class Jatiluhur_QOut(Goal): 

    def __init__(self, time, _min, _max): 

        self.time = time 

        self._min = _min 

        self._max = _max 

 

    def function(self, o): 

        return o.state_at('out_Jatiluhur_Q', self.time) 

 

    @property 

    def min(self): 

        return self._min 

 

    @property 

    def max(self): 

        return self._max 

 

    @property 

    def function_range(self): 

        return (0,1e3) 

 

    @property 

    def priority(self): 

        return 1 
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#OPTIMIZATION PROBLEM 

class Hybrid(GoalProgrammingMixin, CSVMixin, ModelicaMixin, 

CollocatedIntegratedOptimizationProblem): 

    def __init__(self, model_folder, input_folder, output_folder): 

        # Call constructors 

        GoalProgrammingMixin.__init__(self) 

        CSVMixin.__init__(self, 

                          input_folder=input_folder, 

                          output_folder=output_folder, 

                          equidistant=False) 

        ModelicaMixin.__init__(self, 

                               model_name='citarum', 

                               model_folder=model_folder, 

                               constant_inputs=['inflow_Saguling_Q', 

                                                'inflow_Cirata_Q', 

                                                'inflow_Jatiluhur_Q',        

                                                'node_Agriculture_QOut', 

                                                'Saguling_evaporation', 

                                                'Cirata_evaporation', 

                                                'Jatiluhur_evaporation', 

                                                'value_Floodinitial']) 

        CollocatedIntegratedOptimizationProblem.__init__(self) 

 

        # We keep track of our intermediate results, so that we can print some 

        # information about the progress of goals at the end of our run. 

        self.intermediate_results = [] 

 

    def bounds(self): 

        #HARD CONSTRAINTS 

        return {'reservoirCompact_Saguling.P': (0.0, 700000000),  

                'reservoirCompact_Cirata.P': (0.0, 1008000000), 

                'reservoirCompact_Jatiluhur.P': (0.0, 180000000),  

                'reservoirCompact_Jatiluhur.H': (74.89,106.89),  

                'reservoirCompact_Cirata.H': (180, 220),  

                'reservoirCompact_Saguling.H': (622.6, 643), 

                'reservoirCompact_Saguling.Q_spill': (0.0, None), 

                'reservoirCompact_Cirata.Q_spill': (0.0, None), 

                'reservoirCompact_Jatiluhur.Q_spill': (0.0, None), 

                'reservoirCompact_Saguling.Q_turbine': (0.0, None), 

                'reservoirCompact_Cirata.Q_turbine': (0.0, None), 

                'reservoirCompact_Jatiluhur.Q_turbine': (0.0, None), 

                'node_Agriculture.QOut_control[1]': (0.0, 

self.timeseries('node_Agriculture_QOut')),  

                'terminal_River.Q':(1.4, None), 
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    @property 

    def goals(self): 

        g = [] 

        #MAX Total benefit at the latest goal 

        g.append(MaxTotalBenefit()) 

 

        #SATISFY firm demand as soft constraints at the higher goal 

        # Use a for loop to add goals for every time step 

        for t in self.times(): 

            g.append(Saguling_PFirm(t, 148814016.428571,700000000))  

            g.append(Cirata_PFirm(t, 89285713.9642857,1008000000)) 

            g.append(Jatiluhur_PFirm(t, 103720238.428571,187000000)) 

            g.append(Agriculture_QOut(t, 0, self.interpolate(t, 

self.timeseries('node_Agriculture_QOut').times, 

self.timeseries('node_Agriculture_QOut').values))) 

            g.append(Jatiluhur_QOut(t, 57.6,200))             

 

        return g 

 

    def configure_solver(self, options): 

        # Guideline: O(goal tolerance) = |QSTGoal.function_range| * tol 

        options['tol']=1e-6 

        options['expand']=True 

 

# Run 

run_optimization_problem(Hybrid, log_level=logging.DEBUG) 
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APPENDIX D: PYTHON SCRIPT – BATCH FILE 

The batch file below is developed to automatically run RTC-Tools 2.0 several times with 

different input data but similar objective functions.  

#DEFINE folder location 

directory = os.path.join(sys.path[0], '../longinput/') 

directory2 = os.path.join(sys.path[0], '../input/') 

directory3 = os.path.join(sys.path[0], '../output/') 

 

#SPECIFY the length of cutting and simulation period 

cutting=12 

ts=1200 

run=int(ts/cutting) 

numrun=0 

 

# EXTRACT output file of the cut time series to a single extract.csv file (function) 

def extract(): 

    for o in range(cutting): 

            f_ext.write(line_out[(o+2)]) 

            f_out.close() 

 

for numrun in range(run): 

    print numrun 

    #CUT time series input 

    for subdir, dirs, files in os.walk(directory): 

        for file in files: 

            o=0 

            f=open(directory+file,'rb') 

            with open(directory+file,'rb') as openfile: 

                listsdata = [] 

                for linedata in openfile: 

                    linesdata = linedata.split(',') 

         linesdata[-1] = linesdata[-1].replace('\n', '').replace('\r', '') 

                    listsdata.append(linesdata) 

            i=0 

            f_cut = open(directory2+file,'wb') 

            #lines = f.readlines()             

            a=csv.writer(f_cut, delimiter=",", dtype=None, names=True, deletechars="") 

            a.writerow(listsdata[i]) 

            #f_cut.write(listsdata[i]) 
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            for i in range(cutting+2): 

                #print lines[(cutting*(numrun))+(i+1)] 

                a.writerow(listsdata[(cutting*(numrun))+(i+1)]) 

                f.close()                 

             

    #EXECUTE run.py in RTC-Tools 2.0 

    os.system("python run.py") 

     

    with open(directory3+'timeseries_export.csv','r') as openfile: 

        lines = [] 

        for line in openfile: 

            lists = line.split(',') 

            lines.append(lists) 

         

        column_jat = lines[0].index('reservoirCompact_Jatiluhur.H') 

        value_jat = float(lines[-1][column_jat]) 

        column_cir = lines[0].index('reservoirCompact_Cirata.H') 

        value_cir = float(lines[-1][column_cir]) 

        column_sag = lines[0].index('reservoirCompact_Saguling.H') 

        value_sag = float(lines[-1][column_sag]) 

         

head=['reservoirCompact_Saguling.H', 'reservoirCompact_Cirata.H',  

    'reservoirCompact_Jatiluhur.H'] 

    b= [value_sag,value_cir,value_jat] 

     

    f_init = open(directory2+'initial_state.csv','w')     

f_init.write('reservoirCompact_Saguling.H, reservoirCompact_Cirata.H, 

                     reservoirCompact_Jatiluhur.H\n') 

    a=csv.writer(f_init)   

    a.writerow(b) 

f_init.close()       

 

    #EXTRACT output file 

    f_out=open(directory3+'timeseries_export.csv','r')     

    f_ext=open(directory3+'extract.csv','a')     

    line_out = f_out.readlines() 

    

    if numrun==0: 

        f_ext.write(line_out[0]) 

        extract() 

    else: 

        extract() 


