
Tiaravanni Hermawan

APPLICATION OF GOAL PROGRAMMING APPROACH

IN HYDROECONOMIC OPTIMIZATION: A STUDY CASE OF

THE CITARUM CASCADE RESERVOIRS OPERATION RULES

by

TIARAVANNI HERMAWAN

Master thesis report submitted in

fulfilment of the requirements for the MSc in

Hydroinformatics and Water Management of

The Joint Master Course by EuroAquae consortium

University of Nice-Sophia Antipolis – Brandenburg University of

Technology Cottbus-Seftenberg – Newcastle University – Technical

University of Catalonia – Budapest University of Technology and Economics

DELFT, AUGUST 2016

Academic tutor

Dr. Frank Molkenthin

Brandenburg University of

Technology Cottbus-Seftenberg

Institutional tutors

Prof Ir Eelco van Beek

Dr. Peter Gijsbers

Jorn Baayen

Stichting Deltares

Tiaravanni Hermawan i

AUTHOR’S DECLARATION

I hereby declare that this work was written independently without any unauthorized

assistance or sources not given credit within the work. All words, phrases, passages, and

data taken from other sources have been properly cited. No parts of this work in the

same form or a similar form have ever been previously handed in to fulfil an

examination.

SIGNED: Tiaravanni Hermawan

DATE: Delft, 15.08.2016

Tiaravanni Hermawan ii

EXECUTIVE SUMMARY

In recent years, the hydroeconomic approach to solve multi-objective problems in

integrated river basin management receives growing attention. By combining the

principles of economics and engineering, the hydroeconomic models transform the

concept of fixed demand into the economic value of water defined through water rights.

Unfortunately, the management schemes and the policy insight are less likely to be

easily represented by a hydroeconomic objective function. In Deltares, the necessity to

explicitly implementing priority ordered by the policy on water resources allocation to a

conventional hydroeconomic model has been done by combining the particle SWARM

(PS) optimization with the rule-based simulation tools (RIBASIM).

The main objective of the study is to compare the application of RTC-Tools 2.0 with the

RIBASIM-PS approach. The new generation of RTC-Tools 2.0 is currently being

developed by Deltares for real-time control and optimization of hydraulic systems. This

study focuses on the reservoir operation strategies to determine the most promising

water allocation under similar attainment targets by constructing various

hydroeconomic optimization models for a study case in the RTC–Tools 2.0.

Similarly to RIBASIM-PS study, the case study of the Citarum cascade reservoirs in

Indonesia was adopted to provide rounded, detailed illustrations of the policy-based-

management in water resources. This study aims to provide useful insight to support

the decision-making in reservoir operation including the trade-offs between the

conflicting objectives whereas the current reservoir operation rule is derived by

optimizing of a single objective. The improvement on the reservoir operation rules is

expected to enhance the social and economic benefit of the reservoirs in the basin.

This study has been able to demonstrate, for the first time, the possibility to develop a

similar model network as RIBASIM and to optimize a similar hydroeconomic objective

as particle SWARM in the RTC-Tools 2.0. The principal theoretical implication of this

study is that it is possible to transform the algorithm of the simulation model (RIBASIM)

into the explicit hydrological sequences of objectives in the optimization model in RTC-

Tools 2.0. The finding in this study, while preliminary, suggests that the optimization

results from RTC-Tools 2.0 present more promising reservoir operation rules in

comparison with the result from RIBASIM simulation and the RIBASIM-PS study.

The results from this study indicate that finding an appropriate approach and properly

formulating the optimization problem are crucial steps in order to derive the most

promising optimization results. The goal programming approach seems to provide a

robust, easy-to-build and communicative method to achieve a transparent water

allocation based on the policy insight. In this approach, specific numeric goals are

derived based on the priorities to set the sequences of objective functions.

Tiaravanni Hermawan iii

One of the more significant finding to emerge from this study is that constructing a

hybrid hydroeconomic optimization model is a preferable approach to address the multi-

objective problems in RTC-Tools 2.0. The goal programming approach assists the

optimization algorithm in satisfying the sequences of objectives while it simultaneously

searches for the highest economic benefit. The results from this optimization present the

most promising reservoir operation rules that substantially enhance the social benefit

with a slight reduction in economic benefit for the study case of Citarum cascade

reservoirs.

Key words: integrated river basin management, multi-objective reservoir operation,

hydroeconomic optimization, goal programming

Tiaravanni Hermawan iv

ACKNOWLEDGEMENT

This master thesis was supported by Stichting Deltares, an independent institute for

applied research in the field of water, which is one of institutional partners of The Joint

Master Course by EuroAquae consortium. I would like to express my sincere gratitude

to my daily institutional supervisor, Dr. Peter Gijsbers, for the continuous support, his

immense knowledge and the thorough supervision on the contents in this research. I

would also like to acknowledge the crucial role of Prof. Eelco van Beek, who provided me

an opportunity to join their team as an intern. His insight and expertise have greatly

assisted this research. Then, I would like to express my appreciation to Jorn Baayen, as

the product manager of the innovative software used in this study, who has provided me

a substantial help on the detailed, technical problem of this research.

Furthermore, I would like to express my gratitude towards Dr. Frank Molkenthin as the

academic supervisor, who helped me continuously to coordinate my master thesis

throughout the process of researching and report writing, including for his time spent on

visiting Deltares. My thanks and appreciations also go to my colleagues, Laura Basco

Carrera and Lőrinc Mészáros, who help me to markedly improve my academic writing

skills, also to Tarasinta Perwitasari and Jesse van der Wees, for their time spent on

discussing the script language in this study.

Finally, I would like to dedicate this thesis to my parents. Their accomplishments and

independence in life inspire me to be a devoted person. They always motivate me to

finish my master study the best I could.

Tiaravanni Hermawan v

TABLE OF CONTENTS

Author’s Declaration .. i

Executive Summary .. ii

Acknowledgement ... iv

List of tables .. vii

List of figures .. viii

1. Introduction .. 1

1.1 Problem Description ... 1

1.2 Objective of the study and research questions .. 1

1.3 Overview of the study ... 2

2. Addressing multi-objective problems... 4

2.1 Model components: Simulation and optimization model ... 4

2.2 Time representation: Deterministic, stochastic and dynamic model 5

2.3 Sub model integration: Holistic and modular approach .. 6

2.4 Software implementation ... 6

3. Case study: Citarum cascade reservoirs .. 8

4. Methodology ... 13

5. Model structure .. 17

5.1 RIBASIM Rule Based Algorithm and particle SWARM Optimization 17

5.2 RTC-Tools 2.0 Software architecture ... 20

5.3 Model schematization and Database management ... 22

5.4 Hydroeconomic valuations ... 25

5.4.1 Downstream water demands ... 25

5.4.2 Hydropower generation ... 27

5.4.3 Flood risk reduction ... 29

5.4.4 Applicability of optimized rule curves ... 30

5.5 Indonesian governmental policy directive ... 32

5.5.1 Determination of various hydrological years .. 33

5.5.2 Simplistic stochastic forecast ARIMA ... 34

Tiaravanni Hermawan vi

6. Software application and result analysis .. 36

6.1 Goal programming of hydrological objectives (RIBASIM proxy) 38

6.2 Linear programming of a hydroeconomic objective ... 48

6.3 Hybrid optimization of hydroeconomic and hydrological objectives 56

6.4 Linear programming of a modified hydroeconomic objective 58

6.5 Linear programming of a modified hydroeconomic objective (Hard constraints) ... 60

6.6 Goal programming of hydrological objectives (Application) 63

6.7 Summary of findings .. 67

7. Conclusions and recommendations.. 72

7.1 Answers to research questions ... 72

7.2 Recommendations on future research.. 74

Bibliography .. 76

Appendix A: Glossary

Appendix B: Modelica script - Model schematization

Appendix C: Python script – Optimization

Appendix D: Python script – Batch file

Tiaravanni Hermawan vii

LIST OF TABLES

Table 2.1 Summary of hydroeconomic model design choices ... 4

Table 3.1 Overview of the case study applied ... 8

Table 3.2 The Citarum basin characteristics .. 8

Table 3.3 The Citarum cascade reservoirs characteristics ... 10

Table 5.1 The hard constraints of the optimization model ... 22

Table 5.2 Summary of constraints and objective functions (water demand) 26

Table 5.3 Summary of constraints and objective functions (hydropower generation) 28

Table 5.4 Summary of constraints and objective functions (flood damage) 29

Table 5.5 Summary of constraints (rule curves applicability) ... 30

Table 5.6 Summary of constraints (governmental policy directive) 32

Table 5.7 Hydrological year classification based on the probability of exceedance 33

Table 5.8 Simplified stochastic inflow predictions (Log-Normal distribution) 34

Table 6.1 Software application of different optimization approaches (RTC-Tools 2.0) ... 37

Table 6.2 The hedging rules of the Citarum cascade reservoirs model (RIBASIM) 39

Table 6.3 Sequences of hydrological objectives (RIBASIM proxy) 39

Table 6.4 Hydroeconomic objective function (Van der Vat, 2015) 49

Table 6.5 Hybrid objective functions ... 56

Table 6.6 Modified hydroeconomic objective function .. 58

Table 6.7 Modified hydroeconomic objective function (additional hard constraints) 60

Table 6.8 Sequences of hydrological objectives (application by reservoir operators) 63

Table 6.9 Sequences of hydrological objectives (governmental policy directive) 64

Table 6.10 Summary of benefit generated from hydroeconomic optimization models 69

Tiaravanni Hermawan viii

LIST OF FIGURES

Figure 1.1 Overview of the study .. 2

Figure 3.1 Schematic map of the Citarum River basin .. 9

Figure 3.2 The Citarum cascade reservoir operation rules .. 11

Figure 4.1 Network development in the RTC-Tools 2.0 ... 14

Figure 4.2 Sequences of objectives definition in the RTC-Tools 2.0 (RIBASIM proxy) ... 14

Figure 4.3 Hydroeconomic optimization approach in the RTC-Tools 2.0 (RIBASIM-PS) 15

Figure 4.4 Reservoir operation rules improvement .. 16

Figure 5.1 Schematic presentation of modular optimization approach 17

Figure 5.2 RIBASIM reservoir operation rule curves .. 19

Figure 5.3 The architecture and graphical user interface of RTC-Tools 2.0 20

Figure 5.4 The symbolization of the nodes and the links in RIBASIM and RTC-Tools 2.0

 ... 23

Figure 5.5 Modelica model schematization of the Citarum cascade reservoirs 23

Figure 5.6 The agricultural water demand in the Citarum basin 26

Figure 5.7 Index-based flood damage function & flood social damage penalty function . 30

Figure 5.8 Citarum cascade reservoirs’ storage and water level relation 31

Figure 5.9 Log-Normal distribution for Saguling historical inflow (January 1920-2009)33

Figure 5.10 Stochastic inflow prediction (ARIMA (0,0,1)) .. 35

Figure 6.1 Monotonicity of look-up table fitting ... 40

Figure 6.7 Reservoirs operation rules:Sequences of objectives (1 year, RIBASIMproxy) 42

Figure 6.8 Target delivered demands:Sequences of objectives (1 year, RIBASIM proxy)43

Figure 6.2 Saguling reservoir operation rules: Sequences of objectives(RIBASIMproxy)44

Figure 6.3 Cirata reservoir operation rules: Sequences of objectives (RIBASIM proxy) . 45

Figure 6.4 Jatiluhur reservoir operation rules:Sequences ofobjectives(RIBASIMproxy) 46

Figure 6.5 Jatiluhur reservoir operation rules: Sequences of objectives (no flood curve) 47

Figure 6.6 Agricultural delivered demand: Sequences of objectives (RIBASIM proxy) .. 48

Figure 6.9 Actual water level of the reservoirs: Hydroeconomic objective 51

Figure 6.10 Delivery targets: Hydroeconomic objective ... 52

Figure 6.11 Actual water level of the reservoirs: Sensitivity analysis 55

Figure 6.12 Delivery targets: Sensitivity analysis of hydroeconomic model 55

Figure 6.13 Delivery targets: Hybrid objectives .. 57

Figure 6.14 Energy generation: Modified hydroeconomic objective (shortage penalty) .. 59

Figure 6.15 Downstream flooding: Modified hydroeconomic objective (flood penalty) 59

Figure 6.16 Actual water level: Modified hydroeconomic objective (constraints) 62

Figure 6.17 Actual water level: Sequences of objectives (application&policy)................. 65

Figure 6.18 Agricultural delivered demand:Sequences ofobjectives(application&policy) 67

Tiaravanni Hermawan 0

Tiaravanni Hermawan 1

1. INTRODUCTION

eservoir operation in many river basins have to deal with conflicting goals from

downstream water users, hydropower and flood control. Finding the most promising

operation is a multi-objective problem. The inter-linkages between these water users

need to be addressed so that all water users reach sustainable benefits. Improved water

use efficiency could be accomplished by implementing a set of allocation measures that

might include priority setting and subsidies. To understand these complexities better,

many conceptual modelling tools in integrated water resources management are being

used. Several new modelling tools are becoming available, some of them with innovative

methods and distinctive advantages.

1.1 Problem Description

At this moment, Deltares is applying the RIBASIM software simulation package to

analyse water scarcity and water allocation problems, including reservoir operation. By

simulating alternative strategies, the most suitable solution is identified manually. This

is done in a kind of trial-and-error way which is time-consuming. Van der Vat [1] has

applied a particle SWARM optimization technique in combination with RIBASIM that is

able to find the optimal reservoir operating strategy directly. In that approach, the

parameters of the operation strategy are computerized and optimized based on costs and

benefits function. From this point, this study of Van der Vat [1] will be referred as the

RIBASIM-PS study.

Similar to the RIBASIM-PS study, reservoir optimization might be also possible with

the new generation of RTC-Tools 2.0. For water system control problems, Deltares is

developing the RTC-Tools 2.0 package as a simulation and an optimization tool. The

RTC-Tools is widely applied to real time control situations to optimize the operation of

pumps and reservoirs. RTC-Tools 2.0 is and upgrade of the present RTC-Tools,

providing more facilities and finding an optimum solution faster.

The objective of the study described in the document is to compare the application of

RTC-Tools 2.0 with the RIBASIM-PS approach. This study mainly focuses on the

reservoir operation strategies to determine the most promising water allocation under

similar targets.

1.2 Objective of the study and research questions

The objective of this study is to look into the possibility of applying RTC-Tools 2.0 to

determine the reservoir operation rules in comparison with the RIBASIM-PS study. To

achieve this objective, the following research questions are formulated:

R

Introduction

Tiaravanni Hermawan 2

1. Is RTC-Tools 2.0 able to model a similar network as RIBASIM does, using

allocation rules based on demand priority and reservoir operation rules including

hedging?

2. Is it possible to formulate a set of objectives and constraints in the RTC-Tools 2.0

that will result in optimized reservoir operating rules?

3. Are the calculations of optimal reservoir operation rules by RTC-Tools 2.0

different from the operation rules resulting from the RIBASIM-PS optimization

and, if so, why?

4. How can we further improve the results of the optimization approaches in order

to get a better applicability of the reservoir operation rules?

1.3 Overview of the study

To answer the research questions, this research is addressing the following three key

aspects; (i) the way of water allocation is being done in the network model, (ii) the

practicalities of the optimization procedure and (iii) improvement of the RIBASIM-PS

study. Figure 1.1 describes briefly the overview of this research while each component is

further explained below this figure.

Figure 1.1 Overview of the study

Chapter 2 presents results of the literature on multi-objective problems solving. It

begins with an extensive literature research on hydroeconomic studies and possible

optimization approach in integrated river basin management. Chapter 3 describes the

case study: the Citarum basin and the cascade reservoirs in that basin.

Introduction

Tiaravanni Hermawan 3

Chapter 4 explains the methodology that is applied to address each research question.

This chapter includes the tools used, data collection and sequences of tasks. Chapter 5

describes the model structure and technical details of the optimization performed in the

RTC-Tools 2.0. This includes the model schematization and database management. It

also covers the assumptions taken and the governing equations in the tools. The

hydroeconomic valuation analysis of the parameters in the optimization model is also

defined in this chapter.

In Chapter 6, the different objective functions in the optimization models are explained.

This chapter describes the software application in greater detail along with the

practicalities of building various optimization models in RTC-Tools 2.0. The results and

findings from each optimization models are discussed and analysed in this chapter.

Finally, the last Chapter 7 concludes this study by answering research questions along

with some future recommendations in the study area.

Tiaravanni Hermawan 4

2. ADDRESSING MULTI-OBJECTIVE PROBLEMS

n recent years, there has been an increasing amount of literature on solving multi-

objective problems in integrated river basin management. One of the current

approaches is hydroeconomic analysis. In his publication, Harou et al. [2] reviewed the

literature from the past 50 years and described that hydroeconomic models can play an

important role in addressing the increased water scarcity and conflicts issues due to the

future challenges. By combining the principles of economics and engineering,

hydroeconomic models transform the concept of fixed demand into the economic value of

water defined through water rights, priorities and future projections [3] [4] [2]. This new

concept of economic water demand is optimized to generate the maximum net benefit by

driving the water allocation and managing the existing supply-demand. In this way, a

better operation system in the water management system is developed to avoid

constructing new supply options [5]. Harou et al. [2] identified the design choices and

options to construct a hydroeconomic model as model components, time representation

and sub model integration. Table 2.1 provides an overview of these design choices. The

highlighted components present the selected design to construct the hydroeconomic

models in this study. Each component is further explained in the following section.

Table 2.1 Summary of hydroeconomic model design choices

2.1 Model components: Simulation and optimization model

Possible model components for a hydroeconomic model include simulation models,

optimization models, or a combination between both models.

A simulation model runs a rule-based algorithm to reproduce the system complexities in

integrated water resources management, planning and policies [6]. This model is mostly

driven by a simple mass balance concept. The strategies are simulated with trial-and-

error to identify the best feasible solution.

Simulation

Optimization

Combination between simulation and optimization

Deterministic (various hydrological years and implicit

stochastic optimization)

Stochastic

Dynamic

Holistic

Modular

Goal programming optimization (multi-objective)

Linear deterministic optimization (a single objective)

Hybrid between goal programming and linear optimization

Software

implementation

Hydroeconomic model

2.4

Time representation2.2

2.3 Submodel integration

2.1 Model components

I

Addressing multi-objective problems

Tiaravanni Hermawan 5

An optimization model runs based on the economic objectives and constraints that

represent the system to identify the most promising operation rules. The objective can

be formulated as linear or non-linear hydroeconomic functions. Optimization models are

less suitable to simulate complex water networks and non-linear system dynamics [2].

On the other hand, linearity is considered to be too theoretical to represent the system

in mathematical terms [7]. As finding a global optimum for non-linear objective

functions is likely to be inconvenient, linearization is often applied to hydroeconomic

modelling [2] [7]. Linearization can be taken in case the difference in results for both

formulations is negligible and unimportant [8].

2.2 Time representation: Deterministic, stochastic and dynamic model

The time representation in the hydroeconomic model is classified as a deterministic

model, a stochastic model, or a dynamic model. A dynamic model could be a

deterministic model or a stochastic model depending on the input data.

A deterministic model uses historical or synthetically generated time series to obtain a

single set of results. An appropriate operating rule under certain condition is mostly

derived by representing hydrological conditions (wet, normal and dry period) as

simplistic probabilistic events [9]. Furthermore, the deterministic method is often

sophisticatedly considered as an implicit stochastic model if the hydrological time series

data is long and representative enough [4]. Some authors have performed studies

implementing linear optimization in the hydroeconomic model [4] [10]. This approach

often termed as linear programming. Hydropower, irrigation, domestic demand, flood

control, recreation, navigation and environmental flow are reliable to be represented in

those studies since the deterministic model is relatively simple. Thus far, some studies

have shown promising results from non-linear reservoir optimization for hydropower,

irrigation and/or domestic water [11] [12]. Other studies even perform non-linearity in

the objective functions with some additional constraints such as flood and/or

environmental flows [13] [14].

A stochastic model explicitly incorporates the probabilistic character of model inputs to

generate the probability results rather than a single, deterministic single set of results.

In recent years, some authors have explored the stochastic-dynamic model in

hydroeconomic applications [15] [16]. This method has been successfully applied to the

reservoir optimization for irrigation and hydropower purpose in various river basins in

the world. This advanced approach captures the complexity of economic phenomena,

although it is considered as very computationally intensive. Besides this method often

suffers from difficulties in representing the stochastic phenomena [4], it tends to create

some implementation issues since it is harder to explain.

A dynamic model represents the time–dependent aspects of the model behaviour. Most

existing models exemplify a static capture of a particular time while the reality is

constantly changing over time [17]. In this specific context of the hydroeconomic study, a

dynamic model or a time-varying economic optimization model considers that both

benefit and cost are time-dependent. The objective function is further defined as a

function of interest rate and time.

Addressing multi-objective problems

Tiaravanni Hermawan 6

2.3 Sub model integration: Holistic and modular approach

The design choices of sub model integration in hydroeconomic model are a holistic

approach or a modular approach. User preferences on sub model integration are based

on the advantages offered by these different approaches.

In a holistic approach, all components are housed in a single model. It is considered as

the best approach to identify the unique global optimal solution [18]. The main

disadvantage of this approach is that it cannot be constructed on existing water

planning models. The water resources and economic system needs to be recoded and

simplified.

In a modular approach, the model components run separately. An advantage of using

this approach is that it avoids the problem of deriving the operation rules from

optimized release flows since it can be attached to the existing water planning model

[18].

2.4 Software implementation

A seminal study in hydroeconomic area is the work of Lund & Ferreira [4] which covers

most of the aspects of the system. They developed a linear deterministic hydroeconomic

optimization model by assessing economic penalties for various conflicting water uses.

Lund & Ferreira [4] points out that this simple linear deterministic approach provides

valuable engineering functions to identify the promising, suitable operating rules. This

study also concludes that the optimization quality strongly depends on the formulation

of the objective functions, which are reported to be more influential than simplifications

such as linearization taking a deterministic approach.

Van der Vat [1] has successfully applied this approach to optimize the deterministic

linear hydroeconomic model. His study optimizes the rule curves of the cascade

reservoirs in the Citarum River in Indonesia with benefit functions based on

agricultural delivered demand, hydropower generation and flood risk reduction. This

study did not include domestic water demand and environmental flow. His study

implemented a fully user defined optimization formulation (Python scripted particle

SWARM) in a combination with a simple mass-balanced rule-based simulation model

(RIBASIM). This method is able to identify directly the rule curves instead of released

flows with less computational efforts. The optimization results from this study are

somehow limited by the impracticalities of the optimized rule curves. The reservoir

operation rule curves change the reservoir operation rule curves up to 40 m monthly.

This high monthly fluctuation may result in the inapplicable reservoir operation.

Harou, et al. [2] found that a major problem with this kind of hydroeconomic models is

to explain the economic complexity to the stakeholders compared to existing water

resources models. Also, achieving a suitable efficiency and transparency in water use

will be more challenging. One of the reasons is that the management schemes and the

policy insight are less likely to be easily represented by the benefit or penalty functions.

In addition, hydroeconomic models often struggle with robustness at the local scale;

small changes in model parameters could dramatically alter the water allocation in the

Addressing multi-objective problems

Tiaravanni Hermawan 7

system [2]. Thus, additional analysis such as a shadows values, the range of basis and a

sensitivity analysis are mostly required to provide more information on the model

behaviour.

The hydroeconomic concepts generally stand in distant from the stakeholders’

perspective on priorities and infrastructure projects. In order to assembly these different

perspectives, a goal programming approach can be chosen. A number of authors have

considered that this method manages to bridge the gap between research and practical

application. It avoids the problem of justifying the weighted values that define the

priorities [19] [20]. In this approach, specific numeric goals are derived based on the

priorities to set the series of objective functions. The lower and upper limit for each goal

is restrained as soft constraints [21]. The optimized solution is obtained from the

minimum sum of deviations of these objective functions. It implies that this approach

allows violation on its own soft constraints; it creates a blurred boundary between the

objectives and the soft constraints. On top of these soft constraints, the inviolable hard

constraints can be also applied. This is one of the more practical ways considering the

real implementation in the water resources planning.

Leavesley et al., [22] presented a relevant study using this approach. He demonstrated a

leading approach using goal programming for a multi-purpose reservoir study. His study

has revealed the most striking advantages of this approach. It provides a new

alternative to integrate explicitly the water system with the water-related policies. It

also shows the flexibility on defining the future changes in the system. Their studies did

not include an economic analysis. Another significant analysis and discussion on the

goal programming approach were presented by Eschenbach et al., [21]. Their study sets

the river flow as a hydrology objective, the income goals as an economic objective and

the amount of employment as a social objective. Altogether, this model captures more

realistic phenomena when the inter-linkages and the trade-off between the conflicting

goals are taken into account; it also explicitly reviews the impacts on water allocation

changes if different strategies are implemented.

Concluding Remarks

The review of literature in this chapter has particularly concentrated in various

hydroeconomic models to address the multi-objective problem. By combining the

principles of economics and engineering, the hydroeconomic models transform the

concept of fixed demand into the economic value of water defined through water rights.

Unfortunately, the management schemes and the policy insight are less likely to be

easily represented by a hydroeconomic objective function, notwithstanding a

comprehensive analysis of economic valuations is accomplished. Collectively, these

studies highlight the necessity to explicitly implementing the priority ordered by the

policy on water resources allocation as an alternative to a conventional hydroeconomic

model. It is possible, therefore, that applying the goal programming approach in the

hydroeconomic model provides more robust, easy-to-build and communicative method to

achieve a transparent water allocation based on the policy insight.

Tiaravanni Hermawan 8

3. CASE STUDY: CITARUM CASCADE RESERVOIRS

itarum is an intermountain basin located on the main island of Java, Indonesia. As

one of the largest rivers in Java Island, its river drains an area of 6,080 m2 [23].

With 225 kilometres in length, the Citarum River begins from south of Wayang

Mountain, run through the provincial capital city of Bandung and out into the Java Sea.

This literature review covers the characteristics of case study related to the data applied

to the constructed hydroeconomic model. As an overview, Table 3.1 summaries of

literature review on the Citarum cascade reservoirs. Each component is further

explained in greater details this chapter.

Table 3.1 Overview of the case study applied

The three segments of the Citarum river are: upper (25km, 750-3,000 m+MSL), middle

(150km, 200-2,400 m+MSL) and the lower part (70km, >150 m+MSL) [24]. BBWS1

stated that the basin slope decreases gradually from upstream to downstream [25]. The

Citarum basin characteristics and schematic map are shown in Table 3.2 and Figure 3.1.

Table 3.2 The Citarum basin characteristics

1 BBWS: Balai Besar Wilayah Sungai, the central government agency for riverbasin organization

Study case Citarum cascade reservoirs, Indonesia

Available model Simplified model of Citarum cascade reservoirs, Indonesia

Modelling scale: space Lumped

Modelling scale: time Monthly

Rule-based simulation RIBASIM schematization and algorithm (Dijkman, 2012)

Time series data (1920 - 2009) Upstream inflow

Time series data (annual) Evapotranspiration rate, water demand and energy firm demand

Reservoir bathymetry Dead level, dam height, relation between water level, area and volume

Turbine characteristics Capacity, friction losses and tail water level

Hydroeconomic optimization Python-coded meta-heurictic SWARM particle (van der Vat, 2015)

Benefit Agriculture (US$/m3), peak and rest hydropower generation (US$/kWh)

Penalty Flood damage at 320 m3/s

Others Hydropower peak fraction

Basin Characteristics Unit Citarum

Elevation m+MSL 0 - 2,400

Rainfall mm/year 1,500-4,000

Soil type Loamy clay

Land use

Agriculture % 60

Forest % 25

Human activities and others % 15

Evaporation mm/day 4.4

Agiculture % 85

Domestic, industries % 10

Others % 5

C

Case study: Citarum cascade reservoirs

Tiaravanni Hermawan 9

Figure 3.1 Schematic map of the Citarum River basin [26]

To date, several studies have reported that rainfall ranges spatially between 1500 and

4000 mm/year [27]. BPLHD 2 [28] identified that the basin mostly contains many

volcanic products of loamy clay basin with the main cover of agricultural area (60%),

forest-bushes (25%) with the remaining area used for human activities and water bodies.

The average surface water availability provides an estimate of 44 m3/s [29]. This inflow

discharge is ranging throughout the year; it drops during the dry season from April to

September.

In this basin, the average evapotranspiration reaches 4.5 mm/day. This value is derived

from the high humidity between 80-92 g/m3 and the high temperature between 15oC –

27oC. Both parameters are almost constant all over the year but spatially varied

depending on the elevation. Rejekiningrum [30] identifies the water demands are

divided into 85% for irrigation and the rest for domestic use of 15 million population,

fisheries and industrial activities. The cascade reservoirs are installed in the heart of

this basin to satisfy these target demands and to supply electricity for Java and Bali.

2 BPLHD: Badan Pengelolaan Lingkungan Hidup Daerah, the regional environmental agency

Case study: Citarum cascade reservoirs

Tiaravanni Hermawan 10

MPW [29] analyses the most likely changes in the basin are the increased pressure in

demand from economic development and population growth. Also, climate change is

forecasted to change the rainfall pattern in the basin. In additional, the possible future

changes in the Citarum basin are listed below [27]:

 In the upper Citarum, the basin struggles to control the land use change,

specifically on the trend of primary forest conversion into the build-up land [31].

The trend that the forest has decreased until 40% in 15 years in the upper basin

[32].

 In the middle Citarum, the daily domestic waste thrown into the river reaches

700 m3. This amount of solid waste reduces the capacity of river and reservoirs

while both already strive with the high level of sedimentation. It also aggravates

the water quality problem that was previously created from the fisheries

activities in the reservoir.

 In the lower Citarum, the risk of downstream flooding mostly happens in the city

of Karawang and Bekasi is foreseen to be higher due to the land use change.

Realising the importance of the Citarum basin, the Jatiluhur reservoir was constructed

as multi-purpose reservoirs in 1957 [33]. After nearly 25 years, another two upstream

reservoirs, Saguling and Cirata were built mainly for hydropower generation. As shown

in Table 3.3, the characteristics of each reservoir including the reservoir area, storage

capacity and turbines capacity of each reservoir are compiled [34] [35] [36].

Table 3.3 The Citarum cascade reservoirs characteristics

Figure 3.2 presents the reservoir operation rules based on the trial and error in a

spreadsheet model produced by NEDECO3 [37]. In 2010, SPK-TPA 4 [38] generated the

reservoirs rules from the similar spreadsheet with the automatic solver goal-seek. In

March and May 2010, an exceptionally high inflow and unregulated Jatiluhur released

discharge resulted in downstream flooding in the city of Karawang and surroundings.

These repeated flooding events triggered the review the SOP5, including the new annual

operation procedures and the implementation rules [39]. Additionally, Perwitasari [40]

reviewed the literature from the flooding events in 2010 and performed a study on a

decision support tools on the daily basis.

3 NEDECO: Netherland Engineering Consultants BV
4 SPK-TPA: Secretariat of coordination committee on the administration of Citarum water
5 SOP: Standard Operation Procedure

Reservoir Characteristics Unit Saguling Cirata Jatiluhur

Purpose
Flood control,

hydropower

Flood control,

hydropower

Flood control, hydropower,

irrigation and public water

supply

Management

PT PLN

State-owned

company for

electricity

PT PJB

State-owned

company

for Jawa-Bali

Perum Jasa Tirta II

State-owned enterprise for

management of public

water supply

Dam name Saguling Cirata Djuanda

Elevation m+MSL 643 220 106.89

Dam height m 99 125 105

Reservoir area km2 30 50 70

Reservoir capacity Mcm 800 3,200 2,600

Hydropower capacity MW 700 1,008 150

Case study: Citarum cascade reservoirs

Tiaravanni Hermawan 11

To implement RIBASIM rule curve into The SOP Citarum, it assumed that the firm

curve represents the dry year and the target curve represents the normal year [39]. The

RIBASIM has a curved rule on the flood control, while in the SOP it is defined as a

specified constant level below the spilling level.

Figure 3.2 The Citarum cascade reservoir operation rules [37]

Case study: Citarum cascade reservoirs

Tiaravanni Hermawan 12

A simplified Citarum cascade reservoir schematization in RIBASIM by Dijkman, et al.

[39] is a favourable reference in this case study. This existing rule-based simulation

model is a lumped model with the monthly time step, but sufficient for the purpose of

this study. In this model, the land use, cropping pattern, climate, water demand and

energy demand are presumed to be similar in this period.

Most data required in the optimization model in this study are extracted from this

RIBASIM model. The upstream inflow into reservoir time series data is exported from

the period 1920-2009, ranging from 600 to 2400 m3/s annually. The monthly agricultural

water demand (80-200 m3/month) is assumed to be similar each year. The reservoir

evaporation rate is ranging between 3 mm/day and 5 mm/day. The reservoir

bathymetries including its turbine characteristics are taken directly from the built

reservoirs model in RIBASIM. These provided figures are comparable to the literature

review in this study.

In the hydroeconomic optimization model in this study, the benefit and penalty cost are

mostly taken from the RIBASIM-PS study This covers agricultural benefit, flood damage

cost, the fraction of peak and rest hydropower generation including their distinctive

benefits. These hydroeconomic valuations, which provide a promising optimization

result in RIBASIM-PS study, will be modified in this study.

Tiaravanni Hermawan 13

4. METHODOLOGY

o date, various methods have been developed and introduced to assess water

allocation in a river basin. Each method has its advantages and drawbacks.

Traditionally, the optimum water allocation has been assessed by simulating various

strategies in a rule-based simulation tool such as RIBASIM. As this method is time-

consuming and not necessarily leads to the most promising result, recent advances in

optimization techniques have facilitated the possibility to find better results. The

reservoir optimization is expected to become a possibility in the extended version of

Deltares software package RTC-Tools 2.0. To address this issue, four research questions

have been formulated. The tasks allocated to answers these questions are summarised

from Figure 4.1 to Figure 4.4.

The development of the methodology for this study is based on a study conducted by Van

der Vat [1] entitled Optimizing reservoir operation for flood storage, hydropower and

irrigation using a hydroeconomic model for the Citarum River, West-Java, Indonesia. He

implemented fully user defined optimization formulation (Python-scripted particle

SWARM) in combination with simple mass-balanced water allocation model (RIBASIM).

The study of Van der Vat [1] will be referred as the RIBASIM-PS study.

The detailed technical user manuals of RIBASIM provide the guidelines to further

analyse the mechanism of water allocations and the assumptions taken [41] [42]. By

applying hydroeconomic objective functions, the optimum reservoir rule curves are

attained from the particle SWARM optimization [43] [44]. For additional information, a

number of important reviews of the standard operation procedures of the Citarum

cascade reservoirs are presented in a project report prepared for Indonesian Ministry of

Public Works [39].

RIBASIM (https://www.deltares.nl/en/software/ribasim/) is a software package by

Deltares [45] that provides sources of analysis in water distribution pattern together

with water quality and sedimentation for integrated river basin management. This

software has been applied in more than 20 countries since 1985 in many river basins in

the world mainly to evaluate alternative measures in infrastructure as well as for

operational and demand management questions. The RIBASIM technical details can be

retrieved from its user manual [42].

RTC-Tools (https://www.deltares.nl/en/software/rtc-tools/) are an open-source toolbox for

hydraulic systems developed by Deltares [46]. The RTC-Tools 1.0 Tools, which was

published in 2007, are widely applied to optimization problem by coupling the tools with

a rule-based simulation tool. It is widely applied to real-time control operation of

hydraulic structures such as weirs, reservoirs, and pump stations. The tools used in this

study will make use of the new generation of RTC-Tools 2.0.

T

https://www.deltares.nl/en/software/rtc-tools/

Methodology

Tiaravanni Hermawan 14

RTC-Tools 2.0 tools offer various approaches to address optimization problems, ranging

from single to multi-objective problems. The new RTC-Tools 2.0 employs Modelica user

interface inside their software architecture. Modelica is an open source object-oriented

language developed by Modelica Association [47]. It is widely applied to cyber-physical

systems modelling in automotive or aerospace industries. Modelica is primarily designed

for simulation while its application for optimization is noticeable.

A case-study approach was adopted to provide rounded, detailed illustrations of the

policy-based-management in water resources. The case study chosen is a simplified

water network of the Citarum basin in West Java, Indonesia. As many types of research

have been conducted in this basin, Deltares could provide the detailed information

needed for this study.

Research question 1: Is RTC-Tools 2.0 able to model a similar network as RIBASIM does,

using allocation rules based on demand priority and reservoir operation rules including

hedging?

Figure 4.1 Network development in the RTC-Tools 2.0

The first step in this study is to fully comprehend the formulation of the nodes and links

in RIBASIM. This has been done by developing a spreadsheet model based on the

RIBASIM user manual as the main guidelines. Once the water allocation rules in

RIBASIM have been evaluated, similar technical details and visualisation are

reproduced in Modelica. Some differences are expected in certain components, such as

surface water reservoirs.

The datasets used for constructing a new optimization model in RTC-Tools 2.0 is

extracted from the existing RIBASIM model without any additional data collection.

Prior to importing this dataset, the data are classified whether they are the parameters

of physical characteristics or the rules in the model algorithm. In addition to the

physical characteristics of infrastructure, the physical data also cover time series input,

such as the upstream inflow into three reservoirs and evaporation rate. The rules in the

model algorithm include the water demand and the firm energy demand. Other

important information that must be highlighted are the reservoir operation rules and

allocation rules based on demand priority setting.

Research question 2: Is it possible to formulate a set of objectives and constraints in the

RTC-Tools 2.0 that will result in optimized reservoir operating rules?

Figure 4.2 Sequences of objectives definition in the RTC-Tools 2.0 (RIBASIM proxy)

Methodology

Tiaravanni Hermawan 15

As pointed before, the goal programming approach requires the sequences of objectives

to optimize the reservoir operation rules. These sequences of objectives are defined

based on the demand priority setting and reservoir operation including rule curves and

hedging rules in RIBASIM model. The datasets of rules in the model algorithm are

defined as soft constraints. These soft constraints refer to the lower and upper limit for

each objective in the form of time series taken from the RIBASIM datasets. The data

management and the result analysis are performed in the spreadsheet.

As the deterministic approach is applied in this study, a note of caution is due to the

presumption of the perfect knowledge of the future events. However, in the application,

the upstream inflows into the reservoir and the water demand should be considered as

the major sources of uncertainty.

Research question 3: Are the calculations of optimal reservoir operation rules by RTC-

Tools 2.0 different from the operation rules resulting from the RIBASIM-PS

optimization and, if so, why?

Figure 4.3 Hydroeconomic optimization approach in the RTC-Tools 2.0 (RIBASIM-PS)

In order to gain the comparable results with the particle SWARM optimization, a

similar hydroeconomic objective function is applied in this study. This requires a deep

analysis on the particle SWARM optimization and the RIBASIM algorithm that may

impact the optimization results. The maximum benefit as hydroeconomic objective

function is set in RTC-Tools 2.0. Other hydroeconomic formulations that build this main

objective function are declared in Modelica. In the next step, the downstream target

demand in RIBASIM algorithm is set as soft constraints in RTC-Tools 2.0. The target

demand consists of the firm energy generation and the agricultural water demand. As

RTC-Tools 2.0 has a more distinctive optimization solver than the particle SWARM

optimization, a comparison of the two results could reveal the applicability of the

reservoir operating rules based on the case study applied. The optimization results from

both tools are presented as the actual water level of reservoirs and the fulfilment of

downstream target demands.

As hydroeconomic models often struggle with robustness at the local scale, small

changes in economic valuation may dramatically alter the water allocation in the system

[2]. Thus, the optimization results strongly depend on the objective functions, which is

likely to be the most expensive and time-consuming part of the hydroeconomic study. In

particular, the analysis of economic valuation in this study is limited considering that it

should be conducted by an expert with a strong economic background. To address this

issue, the sensitivity analyses are performed to identify the changes in the water

allocation if the economic valuation differs from what was previously assumed.

Methodology

Tiaravanni Hermawan 16

Research question 4: How can we further improve the results of the optimization

approaches in order to get a better applicability of the reservoir operation rules?

Figure 4.4 Reservoir operation rules improvement

The RIBASIM-PS study of the Citarum cascade reservoirs optimization has not dealt

with detailed constraints and hydroeconomic valuations since it mainly focused on the

coupling and optimization process. That can be improved by conducting the

hydroeconomic analysis by reanalysing the economic valuations and formulation, such

as an additional penalty functions. This could be partly linked to the results of the

sensitivity analysis on the economic valuation.

Comprising more hydrological factors into account could improve the RTC-2.0 Tools

optimization model. To assess agricultural water demand better, the seasonal cropping

of paddy and nuts are further analysed. Other prioritized water demands, such as

domestic water demand and environmental flow are also included in the optimization

model although they are not quantified economically. More constraints related to the

applicability of reservoir operation rules are added to find a more suitable solution in

the case study. A minimum water level should be set to be higher than the dead level to

ensure the reservoir stability. The maximum water level fluctuation in a month is also

taken into account. Improving the hydroeconomic model can be also achieved by

following the operational procedure for Citarum cascade reservoirs by the operators.

This requires some knowledge on the current Indonesian government policy directive for

cascade reservoirs.

The results of the optimization models are compared by data post-processing to obtain

the quantity of annual benefit. The economic benefit is calculated based on the economic

valuation by Van der Vat [1]. The social benefit is based on the number of events (in the

monthly time step) per year.

Tiaravanni Hermawan 17

5. MODEL STRUCTURE

o reproduce the RIBASIM-PS study in the RTC-Tools 2.0, identical datasets are

used to obtain comparable results. The schematic presentation of the optimization

model constructed in this study is depicted in Figure 5.1. The technical details of the

RIBASIM-PS study are briefly explained in Section 5.1. Section 5.2 elaborates the

software architecture and features of the RTC-Tools 2.0. Next, Section 5.3 describes the

model schematization and database management in greater detail. This section also

covers the application of the hard constraints which consist of the parameters of

physical infrastructures in the model schematization. At last, Section 5.4 delineates the

derivation of the hydroeconomic valuations in this study.

Figure 5.1 Schematic presentation of modular optimization approach

5.1 RIBASIM Rule Based Algorithm and particle SWARM Optimization

To obtain comparable results to the RIBASIM-PS study, the nodes and links of the

RIBASIM model are replicated in the RTC-Tools 2.0. The RIBASIM technical details are

retrieved from its user manual [42]. The governing equations of the surface water

reservoir in RIBASIM are shown in (eq. 1) to (eq. 6).

The target demand defines the quantity of downstream water demands

 and the minimum discharge to generate firm energy demand in

the dry period.

 (eq. 1)

T

Model structure

Tiaravanni Hermawan 18

The maximum energy generation or maximum turbine flow is calculated by iteration

since it has implicit relation of the net head . It is formulated from the

intake level , the friction losses and the tail level ()).

The power capacity , efficiency , plant load factor (), gravity and

water density (are taken into account. The conversion factors are constant

values based on the units of the parameters.

 (eq. 2)

The energy generated depends on the released discharge and the net head. The

maximum energy generated from the reservoir is capped by the maximum turbine flow.

The auxiliary energy consumption is considered in this calculation.

 (eq. 3)

 (eq. 4)

The spilling from the main gate happens if the actual released discharge is

bigger than the maximum turbine flow. The spilling from the top of the reservoir only

happens if the water level is higher than the reservoir height.

 (eq. 5)

Whereas the target released discharge is driven by the downstream demands, the

quantity of released discharge is determined by the rule curves. The provisional

water level pinpoints a particular zone which determines a specific action for the next

time step. It is necessary to clarify exactly what RIBASIM specified as the provisional

water level. It is defined as an actual water level in the reservoir after calculating the

actual inflows , all release targets , rainfall , evaporation and other

losses. By changing the released discharge, the concept of mass balance between the

reservoir storage at the current () and the next time step is satisfied by an

iterative procedure.

 (eq. 6)

Model structure

Tiaravanni Hermawan 19

Figure 5.2 RIBASIM reservoir operation rule curves

Figure 5.2 illustrates the zones that determine the reservoir operation rules. The set of

rules for each zone are:

The flood control curve indicates the maximum water level in the reservoir to provide

some storing capacity in the case of a flooding as the consequences of high upstream

inflow. If the provisional water level is above this curve, the firm target discharge and

the maximum discharge for an extra energy generation are released first from the

turbine gates. If the water level still higher than the flood control curve, extra water is

forced to spill in order to reach the flood control curve at the end of time step.

The target curve reflects the reservoir water level that generates the maximum

hydropower generation. If the provisional water level lies between the flood control

curve and the target curve, the firm target discharge and the discharge for an extra

energy generation are released until the provisional water level reaches the target curve

at the end of time step.

The firm curve reflects the minimum level required to fully supply the firm target

discharge. If the provisional water level is between the target curve and the firm curve,

the firm target discharge is released.

The hedging curves indicate the zone between the firm curve and the dead storage. In

the RIBASIM algorithm, the area between the firm curve and the dead storage are

divided into 5 zones. These zones determine what percentage of the firm target

discharge is released if the provisional water level drops into this zone.

Model structure

Tiaravanni Hermawan 20

The online adjusted gate option is available for the cascade reservoirs simulation. This

option, which is employed in the RIBASIM-PS study, forces the upstream reservoir to

release a higher released discharge if the water level of the downstream reservoir is

below the firm curve.

In the RIBASIM-PS study, a global optimization approach termed the particle SWARM

is combined with the rule-based simulation tools (RIBASIM). This recent approach

identifies the optimized parameters by initializing them by random values that generate

the whole range of possible solutions [43]. Those parameters are later updated to reach

the detected best solutions. Inspired by the synchronized move of the bird flocks, these

parameters move to search the best solution. The best neighbouring solutions attract

the other particles by adjusting the velocity vector of these particles. The optimization

converges if most updated values of the parameters already generate the approximate

best solutions. In this way, the particle SWARM optimization is able to cope with the

local minima from non-linearity and non-convexity of the objective function. It is also

independent from the initial values given as long as the particles cover the entire

solutions.

5.2 RTC-Tools 2.0 Software architecture

A modular optimization model has been set up to optimize the sequences of objectives.

Figure 5.3 depicts the architecture of the software along with their interaction during

the optimization runtime. Each component is further explained in this section. This

figure also captures the graphical user interface of the software.

Figure 5.3 The architecture and graphical user interface of RTC-Tools 2.0

Model structure

Tiaravanni Hermawan 21

Modelica

The reproduced network of the Citarum cascade reservoirs is defined in Modelica. In

this study, the use of Modelica is limited to the visualization purpose and the equation

declaration. It can also store the physical parameters of defined objects. In Modelica, a

physical infrastructure is defined as an object which stores some equations. Modelica

also opens a possibility to define the detailed components inside an object. This can be

illustrated briefly by representing two turbines, a main gate and a spilling gate as sub-

model components inside a reservoir object. Then, this object can be connected to the

other objects to create an integrated network.

One of the key features of Modelica is the declarative equation-based language. This

language eliminates the step in implementing the algorithms explicitly [47]. It leads to a

shorter, more understandable code which directly corresponds to the mathematical logic.

Some examples of the declarative equation can be seen in Section 5.3. Following is a

brief explanation how this declarative equation is used to solve an optimization problem.

The declarative equations in Modelica language are compiled by a compiler called

JModelica. This compiler converts Modelica models into a symbolic mathematical

representation that is accessible in the Python language using a framework called

CasADi. RTC-Tools 2.0 then discretizes these equations, injects time series and lookup

tables, and interfaces the resulting optimization problem with a non-linear

programming solver called IPOPT.

RTC-Tools 2.0

The new generation of the RTC-Tools 2.0 is a toolbox for the control and optimization of

environmental systems. RTC-Tools 2.0 is the modular optimization tools in the Python

language [46]. The Python language is known as an effective programming language

since the type of variable is implicitly defined. The RTC-Tools 2.0 is responsible for the

data management and the linkages between the software during the optimization

runtime. It mainly handles the non-physical input data such as lookup tables, initial

conditions and the time series input. The constant physical parameters can be also

managed.

The conventional linear programming approach is applied by the substantial assistance

from the RTC-Tools 2.0. As shown in the (eq. 7) this optimization model searches a

local minimum of an objective function . Therefore, applying an appropriate initial

condition and a formulating a suitable objective function are the most crucial steps in

this type of optimization.

 (eq. 7)

In the goal programming approach, several goals can be set together although they have

different scale and unit. The goals are numbered depending on their priorities; a smaller

number defines a higher priority while several goals can be set as the same priority level.

Each goal in the sequences of objectives is directly linked to the variables in Modelica.

The possible range of the optimized value for each goal is described in the time series of

the upper and lower bounds. These bounding values are further termed as the soft

Model structure

Tiaravanni Hermawan 22

constraints. They compel the optimization search space to shrink in the lower number of

priority goal.

In the RTC-Tools 2.0, the algorithm satisfies the highest priority goals first on all-time

series. The lower priority goals are solved afterward. As shown in the (eq. 8), the

optimum solution is attained when the sum of deviation from all variable in all-

time series reaches the minimum value. Moreover, the optimum solution must be inside

the bounds of the inviolable hard constraints . It is also important to note that the

total deviations of the higher goals () must remain constant or smaller after the

lower goals are solved.

{

 (eq. 8)

The time series data and the sequences of objectives are handled by the RTC-Tools 2.0.

Both are imported from the comma separated files that are linked to the variables in

Modelica object. The optimization process is entirely successful when the lowest goals

are solved.

In RTC-Tools 2.0, a value of satisfaction tolerance between 0 and 1 could be assigned to

all goals. The current goal is considered to be fully satisfied if a satisfaction variable is

above 1 – satisfaction tolerance. While smaller number indicates tighter criteria, the

satisfaction tolerance could be set as 1 to disable this option. In RTC-Tools 2.0, setting

tight criteria might result in an unsolvable goal within the maximum number of

iterations. If RTC-Tools 2.0 is unable to solve a goal, it terminates the runtime at the

latest solvable goal. Furthermore, a value of constraint relaxation) between 0 and 1

could also be assigned to control how much the soft constraints could be violated

depending on the range of value between upper and lower soft constraints . This

relation is described in (eq. 9)

 (eq. 9)

5.3 Model schematization and Database management

As previously mentioned, the variable in Modelica object is directly connected to the

hard constraints, the sequences of objectives and the time series data. Table 5.1

presents the overview of hard constraints applied which are further described in this

section. The time series data injected to the variable are also discussed while the

sequences of objectives are outlined in Chapter 6.

Table 5.1 The hard constraints of the optimization model

Modelica object Minimum Maximum

Reservoir water level Elevation Dam height

Reservoir relesed discharge 0 Gate capacity

Reservoir energy generation 0 Turbine capacity

River inflow discharge 0 ∞
Canal inflow discharge 0 Canal capacity

Model structure

Tiaravanni Hermawan 23

The Modelica object can be easily reproduced and redefined by modifying the declarative

equation and the icon visualization. The symbolization of nodes and links in Modelica

and RIBASIM are shown in

Figure 5.4. Furthermore, the declarative equations for each object are shown in (eq. 10)

to (eq. 14). These equations are declared to be similar to the governing equations in

RIBASIM except for the surface water reservoir node. In Modelica, the conversion factor

is not necessary since the variables are always defined in the standard international

unit. Figure 5.5 depicts the model schematization for the Citarum cascade reservoir

while the detailed object specifications are explained in a greater detail in this section.

Figure 5.4 The symbolization of the nodes and the links in RIBASIM and RTC-Tools 2.0

Figure 5.5 Modelica model schematization of the Citarum cascade reservoirs

Node/ link RIBASIM RTC 2.0 Tools

Inflow

Terminal

Demand

Conjuction

Bifurcation

Surface water reservoir

Channel

Model structure

Tiaravanni Hermawan 24

Inflow

The upstream boundaries of the network are specified as the time series discharge.

These time series data are mostly obtained from the data pre-processing on the rainfall-

runoff simulation. In this study, the inflows time series are obtained from Perum Jasa

Tirta I, the Indonesia state own enterprise for water resources management sector. The

inflow discharge in the Saguling reservoir is obtained from the observed upstream

monthly average discharge . However, the inflow data from other two

downstream reservoirs are calculated based on the mass balance concept by reviewing

the observed reservoir released discharge and water level.

 (eq. 10)

Terminal

A terminal node represents the end of a natural channel without any restriction on the

flow rate , for example, a river estuary. It can also symbolize the end of the

canal which delivers a target discharge . To avoid flooding, the maximum flow to

the canal is generally constrained based on the target demand.

 (eq. 11)

Conjunction and bifurcation

This node represents the splitting of a channel into two or more parts. A physical

example of this node is the main river diversion into a canal. The diversion is regulated

or allocated based on the target demand. The mass balance concept as a function of the

total inflows and the total outflows is enforced. This node could

also define a confluence where two or more water bodies meet in the river tributaries.

 (eq. 12)

Surface water reservoir

The surface water reservoir represents a surface water storage that controls the

downstream released discharge. Hence, the reservoir operation rules are the key factor

in satisfying the downstream target demands. These demands could be consist of

domestic water demand, environmental flow, agriculture, hydropower release and flood

control. The inviolable hard constraints or the physical constraints of the reservoir are

represented by the reservoir height, gate capacities and turbines capacities. On the

other hand, the reservoir operation rules such as the rule curves and the hedging rules

are specified as soft constraints.

Similar to the common reservoir model, the changes in the reservoir volume is

a function of the total upstream inflows into the reservoir , the downstream

released discharge and the reservoir actual evapotranspiration. This

function ensures the mass balance in the surface water reservoir.

 (eq. 13)

The relation between water level and reservoir storage is explicitly defined by a look up

table to represent the reservoir shape better. This relation provides better information

for the overall mass balance calculation. The relation between the water level and the

reservoir area also explicitly defined to calculate the reservoir evaporation. In RIBASIM,

Model structure

Tiaravanni Hermawan 25

this relation is defined by a piecewise linearization that divides a nonlinear function into

several linear sections. As these discontinuities often cause a problem for the

optimization solver in RTC-Tools 2.0, the relation of water level and reservoir storage is

defined as a function derived by B-Spline interpolation. Furthermore, a curve fit option

can be specified in RTC-Tools 2.0 to ensure that the first and the second derivation of

this function are always positive. Although the optimization solver in RTC-Tools 2.0 is

able to handle non-linearity, a monotone function could substantially help the solver to

find the optimal solution faster with slight modification to the physical representation.

The surface water reservoir covers the hydropower generation in the model

components. The energy generation is calculated from the relation of the released

discharge via turbine gate and the net head. The net head depends on the

intake level, the friction losses and the tail level). The released discharge from

the turbine gate can be utilized for the consumptive water demand. Adapting to the

RIBASIM model, the efficiency plant load factor , gravity

 and water density () are taken into account.

 (eq. 14)

Channel

The connection between two or more objects represents an open channel, for example, a

river or a canal. In this study, the connection ensures the mass balance between the

connected objects and opens the possibility to model the losses in energy and water. This

connection allows the water to flow in both upstream and downstream directions. Since

the backwater event less likely presents in this case study, the minimum capacity of the

open channel is set as 0 in the inviolable hard constraints.

5.4 Hydroeconomic valuations

Adapting to the RIBASIM-PS study, the economic benefit functions are formulated

based on the agricultural delivered demand, the hydropower generation and the flood

risk reduction. These functions formulate a single hydroeconomic objective function as a

linear and convex optimization problem. The economic valuation of each function is

expressed in 2010 US Dollars. A table of the summary of the hydroeconomic valuations

applied in this study is presented for each section. In each of this table, the

hydroeconomic valuations adapted from Van der Vat [1] are highlighted.

5.4.1 Downstream water demands

In this study, the fundamental demands that must be satisfied are not estimated

economically. As shown in Table 5.2, the domestic water demand and environmental

flow is set as the minimum constraints. On the other hand, the agricultural delivered

demand is formulated as one of the hydroeconomic benefit functions.

Model structure

Tiaravanni Hermawan 26

Table 5.2 Summary of constraints and objective functions (water demand)

5.4.1.1 Domestic water demands and environmental flow

As shown in (eq. 15) and (eq. 16), the domestic water demand is estimated

based on the population and the water use per capita in the Citarum basin. The

population in the basin in 2010 is around 16 million people and the average water use

 is 190 l/capita/day [29]. The value of the average water use is reasonable

for the city with more than 1 million inhabitants. In 2010, the estimation of the

domestic water demand is 35.12 m3/s. In 2010, the minimum environmental flow

 in the Citarum River is 1.4 m3/s with a slight annual increment [30]. As the model

constructed is a non-dynamic optimization model, both values are assumed to be similar

for the whole period. Both domestic water and environmental flow demand are defined

as priority discharge that must be released.

 (eq. 15)

 (eq. 16)

5.4.1.2 Agriculture

The report published by the Indonesian MPW [29] stated that the total rice paddy field

area is 348,704 Ha. The net agricultural water demand generated from the RIBASIM

simulation model is presented in Figure 5.6. This figure shows that the value of the

agricultural water demand shows comparatively greater quantity than the data used in

the RIBASIM-PS study. The most likely cause of this difference is that the Indonesian

MPW [29] performs more detail analysis on the cropping season. This difference could be

helpful to capture the sensitivity of the firm rule curve to the agricultural water demand.

Figure 5.6 The agricultural water demand in the Citarum basin (Data source: MPW, 2012)

Constraints
Quantity

(m 3 /s)

Benefit

(US$ /m 3)

Penalty

(US$ /m 3)

Agriculture (van der Vat, 2015) 88 - 197 0.02

 - Paddy (October - May) 87 - 322 0.02 0.016

 - Nuts (June - September) 8 - 190 0.043

Drinking water 35.1 - -

Environmental flow 1.4 - -

Water demand

Objective functions

Model structure

Tiaravanni Hermawan 27

Paddy

As shown in (eq. 17) and (eq. 18), the irrigation benefit
 is defined as the

economic benefit gained with the presence of reservoir operation
 . The agriculture

delivered demand is valued as US$0.02/m3. The annual benefit is calculated

by adding the monthly economic benefit of agricultural delivered demand

This delivered demand must be less or equal to the agricultural water demand
 .

 (eq. 17)

 ∑

 (eq. 18)

Van der Vat [1]

As the reduced amount of agricultural delivered demand may result in the economic loss

to the farmers, the penalty function that represents the drought impact in the

agricultural area is formulated. The drought penalty cost

 is obtained by

defining the cost function as the average yield reduction. A report by International Rice

Research Institute [48] concludes that the total drought reduces by nearly 80% of the

yield (

) over the entire season in the South and Southeast Asia. It provides an

estimated value of US$0.016 /m3 as the agricultural drought penalty cost

 . These

relations are formulated in the (eq. 19) and (eq. 20). It is important to note that this

method has not yet covered different drought damages based on the stage in the growing

season.

 (eq. 19)

 ∑

 (eq. 20)

Secondary crops

To reduce significantly the water demand during the dry season, the cultivated crops

are mostly replaced by the non-rice crops [49]. The usual secondary crop during the dry

season in the Citarum basin are nuts, corn, soybeans or cassava. Retrieved from the

official website of the Indonesian Ministry of Trade [50], the peanut price in September

2010 is IDR14,900/kg (US$1,030/ton). As a comparison, an overview of the rice market

price in 2010-2011 provides an average rice price

 of US$475 /ton. Combining

both values, the agricultural delivered demand in the secondary cropping season could

be estimated as US$0.043 /m3. This relation is formulated in the (eq. 21). Since nuts

are less prone to drought, the formulation of penalty cost is therefore considered as not

necessary.

 (eq. 21)

5.4.2 Hydropower generation

The economic benefit function of the hydropower generation depends on the water level

and released discharged from the reservoir. In the RIBASIM-PS study, the constraints

in the physical characteristics are directly defined in the RIBASIM model. In contrary,

the physical characteristics are included as the hard constraints in RTC-Tools 2.0. The

Model structure

Tiaravanni Hermawan 28

objectives and constraints related to the hydropower generation that must be specified

in the RTC-Tools 2.0 are shown in Table 5.3.

Table 5.3 Summary of constraints and objective functions (hydropower generation)

The economic valuation of hydropower generation is divided into peak load ,

US$66/MWh) and base load , US$32/MWh). The operational and maintenance

cost of the hydropower can be neglected since it is relatively small. The RIBASIM-PS

study simplifies that the rest of the electricity produced is valued as a base load if the

hydropower generation produces higher electricity than the firm energy

demand
 . On the other hand, if the hydropower generates less electricity than the

firm energy demand, the whole hydropower generation are valued as the peak load. As

shown in the (eq. 22), the economic benefit
 mainly depends on the actual

hydropower generation. All of the power generated in Cirata and Saguling are valued as

the peak load while Jatiluhur only produces around 21% of the peak load.

 ∑ [[(

)] [(
)]]

 (eq. 22)

Van der Vat [1]

Some constraints on the hydropower generation aspects are described below:

Penalty on energy shortage

Cirata and Saguling reservoirs aim to fulfil the electricity demand peak on Java and

Bali during 18.00 – 22.00 [39]. The drop in the firm energy demand in both reservoirs

operation could bring about three hours power cut in several locations [51]. This

shortage costs higher than the energy price itself because it could result in high

economic losses, especially in the industrial production. In the case of this energy

shortage, a high penalty value is assumed as two times higher than the peak energy

value. The penalty value of US$ 132 /MW is applied to both upstream reservoirs when

each of them generates lower electricity than the firm energy demand. On the other

hand, most electricity generation in the Jatiluhur reservoir is valued as the base load

since it mostly generates an extra energy. The penalty function is not necessary to be

applied to this reservoir. The firm energy demands for each reservoir are 69.7 GWh for

Jatiluhur, 60 GWh for Cirata and 100 GWh for Saguling.

Jatiluhur Cirata Saguling
Peak

load

Base

load

Benefit for generated energy

(van der Vat, 2015)
US$ /MWh

66 32

Penalty on energy shortage US$ /MWh

Fraction of peak generation

(van der Vat, 2015)
% 21 100 100

Minimum level power generation m+MSL 75 205 623

Strategic level power generation m+MSL 82 206.5 625

Tail level hydropower plant m+MSL 27 102 252

Head loss m 1 4 28

Turbines efficiency % 87 87 87

Monthly firm energy demand GWh 69.7 60 100

Maximum turbines capacity MW 187 700 1,008

Constraints and Objective functions

2x66

UnitHydropower Characteristics

Model structure

Tiaravanni Hermawan 29

Strategic minimum level

To deal better with the energy shortage, the reservoir should be operated higher than

the strategic minimum water level [38]. The advised values on this water level are +82

m+MSL for Jatiluhur, +206 m+MSL for Cirata and +625 m+MSL for Saguling. These

values are 2 m – 5 m higher than the minimum level of reservoir power generation.

Limiting electricity generation based on the turbines capacity

At some point, a higher potential water level could not produce more electricity since it

is capped by the turbine capacity. The maximum turbines capacities are 700 MW for

Saguling, 1,008 MW for Cirata and 187 MW for Jatiluhur [39].

5.4.3 Flood risk reduction

It is expected that the damage of the downstream flooding depends on the upstream

released discharge. As summarised in Table 5.4, the RIBASIM-PS study applied a

binary flood damage function. In this study, a linear flood damage function is

formulated. The flood reduction benefit is calculated from the flood damage reduction

after the application of the optimized reservoir operation rules.

Table 5.4 Summary of constraints and objective functions (flood damage)

As shown in (eq. 23), the economic benefit
 is obtained from the difference

between the flood damage if the cascade reservoir is not constructed
 and the

flood damage after the reservoir construction with the optimized reservoir operation

rules
 . The flooding in the downstream area is expected if the released discharge

from Jatiluhur reservoir passes 320 m3/s. Although the released discharge is much

higher than the threshold, the similar flood damage cost of US$ 14 million is applied.

This value is based on the flood damage cost estimation for the affected household and

agricultural area in the downstream cities of the Citarum basin.

 ∑

 (eq. 23)

Van der Vat [1]

As depicted in Figure 5.7, a flood damage cost based on the index-based flood insurance

is assumed to be linear in the Citarum Basin [52]. It is important to note that this study

should estimate the social damage from the flood event apart from the insurance

purpose; thus, this curve should be modified. The penalty function is presumed to be

linear to the released discharge from Jatiluhur reservoir if it releases a higher discharge

than the maximum monthly agricultural water demand. The starting point of the flood

damage penalty function should be adjusted if the downstream water demand increases.

Constraints Objective functions
Discharge

(m 3 /s)

Damage

(million US$ /m 3)

Constant (van der Vat, 2015) 320 14

Linear Interpolation

Q=Qmax agriculture 200 0

Q (van der Vat, 2015) 320 14

Qmax agriculture<Q x

Flood reduction

Model structure

Tiaravanni Hermawan 30

Figure 5.7 Index-based flood damage function (left) and flood social damage penalty function (right)

It should be realised that this method is a simplification since the flooded area depends

on the water level of the downstream cross sections. Modelling a simplified hydrological

routing could be a handy approach to analyse of the severities of the downstream

flooding damage. This analysis is not carried out due to the monthly time stepping used

in this study.

5.4.4 Applicability of optimized rule curves

Some additional constraints are applied to find more applicable reservoir operation rules.

The optimized parameters are bound to the values based on the characteristics of

physical infrastructures and the stability of the reservoirs. These constraints are

presented in Table 5.5.

Table 5.5 Summary of constraints (rule curves applicability)

The water level, area and discharge relations of the Citarum cascade reservoirs are

slightly different in the various reports. These relations in Figure 5.8 are referred to the

2010 Standard Operation Procedures and its review [39].

Jatiluhur Cirata Saguling

Physical characteristic

Bottom gate level (Dead storage) m+MSL 45 180 623

Spilling level m+MSL 106.89 220 643

Volume at spilling level McM 2,448 1,827 560

Live storage capacity

(Turbine intake to spilling level)
McM 1,325 768 560

Minimum elevation for reservoir stability m+MSL 87.5 - -

Rule curves applicability Unit
Constraints

Model structure

Tiaravanni Hermawan 31

Figure 5.8 Citarum cascade reservoirs’ storage and water level relation (Data source: Dijkman, et al, 2012)

Dijkman, et al. [39] found that there has been a reduction in the capacity of the

reservoirs since its completion (60% for Saguling, 90% for Cirata and 75% for Jatiluhur).

It could partly be explained by the high sedimentation in these reservoirs [53].

Furthermore, substantial differences on the storage and water level relation from the

various reports are observed [39] [37] [38]. As this study conducts a deterministic

approach, the uncertainty on the storage and water level relation is neglected.

To have a better applicability of the optimized rules, limiting the minimum water level

in reservoirs is important to avoid the damages to the physical infrastructure. Both

upstream reservoirs are relatively stable since they were made of rock fill dam. [25].

Since the Jatiluhur reservoir was made of a rock fill dam with an inclined clay core, the

crack along the crest may occur if the water level is below a certain level. Srihadi, et al.

[54] stated that the strategic minimum level for Jatiluhur should be higher than 87.5 m

due to the dam stability. A clay core reservoir is well-known for its instability during the

water level fluctuation. The rapid change in the hydraulic head often leads to the

drawdown effect6. Since there is no specific limitation in the water elevation fluctuation,

it is assumed that the Jatiluhur reservoir is always stable when the water level is

higher than 87.5 m.

The Citarum cascade reservoirs are central of the freshwater fisheries in the basin. The

fluctuation in water level has less influence on this activities due to the temporary

floating structure used for fisheries. It is likely that the water level changes may have

more influences on the fishing boats and recreational boats.

6 Drawdown effect: A reduced stability in the upstream face of the reservoir due to the sudden

drop of the water elevation [61].

Model structure

Tiaravanni Hermawan 32

5.5 Indonesian governmental policy directive

This section describes and discusses the development of the methodology based on the

procedure carried out by the reservoir operators. The operators should implement the

governmental policy directive no Pd T-21-2004-A regarding operation rules of the multi-

purpose cascade reservoirs [55].

As presented in Table 5.6, some additional constraints applied in this section refer to the

Indonesian governmental policy directive. Three alternatives of the reservoir operation

rules are attained by processing the historical data that determines various hydrological

years. These inputs are assessed separately with a trial and error in the NEDECO

spreadsheet model resulting three different reservoir operation rules. These rules are

further termed as (i) wet curve, (ii) normal curve and (iii) dry curve depending on the

input data [37]. The most suitable curve for the reservoir operation rules is later decided

based on the weather forecast.

Whereas the agricultural water demand must be set as a constraint in the NEDECO

spreadsheet model, the RTC-Tools 2.0 provides more flexibility on defining the target

demand. RTC-Tools 2.0 offers a possibility to assign agricultural target demand to one of

the sequences of objectives in the goal programming while defining this target demand

as a hard constraint is rather straight-forward.

Table 5.6 Summary of constraints (governmental policy directive)

Equal sharing principle

The distributions of the total effective volume 7in the Citarum cascade reservoir should

be around 21% for Jatiluhur, 29% for Cirata and 50% for Saguling. This system is

expected to avoid the involvement of the reservoir operators in the conflict of interest.

Annual deficit prevention

To avoid an annual water deficit within the Citarum cascade reservoirs, the water level

at the end of the year (31 December 2000) is constrained to be greater or at least equal

than the initial water level of the same year (1 January 2000). The evaluation of the

derived rule curves from 2005 to 2010 reveals that the reservoir operation often violates

this policy, especially during the dry year.

Operational constraints

For practical reasons, the operation rules for the cascade reservoirs are constrained by

the operational water level. Retrieved from Figure 3.2, the operational water level for

each reservoir must be between these elevations:

7 Total effective volume: Reservoir live storage [55]

Jatiluhur Cirata Saguling

Equal sharing of effective volume % 50 29 21

Minimum operational water level m+MSL 87.5 206 623

Maximum operational water level m+MSL 106.5 219.5 642.5

Governmental directive constraints Unit

Constraints

Model structure

Tiaravanni Hermawan 33

- Saguling : 623.0 and 642.5 m+MSL

- Cirata : 206.0 and 219.5 m+MSL

- Jatiluhur : 87.5 and 106.5 m+MSL.

5.5.1 Determination of various hydrological years

Adapting to the Indonesian governmental policy directive, a classic statistical method

for inflow prediction is employed. The probability distribution Log-Normal and a

simplified stochastic prediction ARIMA8 are used to forecast the input. The applied

inflow data is further selected based on the weather information from BMKG9. The

definition of a hydrological year corresponds to a specific probability of exceedance

shown in Table 5.7. The measured inflow data obtained from the current year

observation are included in the statistical analysis for the next year inflow prediction.

Table 5.7 Hydrological year classification based on the probability of exceedance

As shown in the (eq. 24), the probability function of the Log-Normal distribution

depends on the standard deviation and the mean of the logarithmic value of the

time series data. This function is suitable for the analysis of the upstream inflow

discharge since it always has a positive value. Figure 5.9 illustrates the probability

distribution for Saguling historical inflow in January between 1920 and 2009.

 |

 √

{

 }
 ; (eq. 24)

Figure 5.9 Log-Normal distribution for Saguling historical inflow (January 1920-2009)

8 ARIMA: Autoregressive Integrated Moving Average
9 BMKG: Indonesian Agency for Meteorology, Climatology and Geophysics

Year Classification
Inflow discharge

probability of exceedance

Very dry <10%

Dry 10% - 40%

Normal 40% - 60%

Wet 60% - 90%

Very wet >90%

Model structure

Tiaravanni Hermawan 34

As shown in Table 5.8, the calculation based on the Indonesian government policy

directive is adapted to obtain the expected monthly upstream inflow for three reservoirs.

The cumulative normal distribution represents the probability of exceedance as

previously discussed. A specific Log-Normal distribution function is generated for each

specific month in each reservoir. It means that the analysis of the very dry inflow in

January 2010 is derived from the Log-Normal distribution of January upstream inflow

between 1920 and 2009. In particular, this statistical procedure is somehow problematic

since the probabilities of the very dry months occur simultaneously in a year is very

unlikely. As a consequence, the forecast upstream inflow as the main input in the

optimization model may lead to an extreme, less practical optimization results.

This study found a marked difference in the input data between the NEDECO

spreadsheet model and the data used in this study. During the dry year, the objectives

tend to be easier to satisfy in the NEDECO spreadsheet model due to smaller difference

between the monthly average inflow of the cascade reservoirs (RIBASIM: 77 m3/s,

NEDECO: 121 m3/s) and the monthly average target demand (RIBASIM: 158 m3/s,

NEDECO: 137 m3/s). For consistency reasons, the time series data used for the

statistical analysis in this optimization study are extracted from the existing RIBASIM

model.

Table 5.8 Simplified stochastic inflow predictions (Log-Normal distribution)

5.5.2 Simplistic stochastic forecast ARIMA

The Indonesian policy directive applies ARIMA (0,0,1) (Autoregressive Integrated

Moving Average) as a stochastic approach to predict the inflow into the reservoir. Figure

5.10 present the result of the inflow time series analysis that has been done in the

spreadsheet model produced in this study. The stochastic optimization analysis is not

carried out since this study is limited to the deterministic model.

The 90 years data is applied to define the ARIMA model parameters. Moreover, the

monthly data from the period 2000 and 2009 are used to forecast the upstream inflow in

2010. Although this stochastic forecast is not included in the optimization model, it

provides practical information that this inflow forecast has a high level of uncertainty.

The Citarum cascade reservoirs operator often addresses this issue by assessing the

meteorological data to identify the best estimation of a single deterministic forecast

value. An advance option is applying a stochastic optimization approach. While

stochastic optimization is considered as a very expensive approach, it is a widely held

view that it offers a better insight into more probable outcomes.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Dry 4.3 4.3 4.2 5.1 4.5 4.4 4.5 3.8 2.8 2.8 3.1 3.5

Normal 8.9 9.3 9.8 11.6 10.6 10.1 9.9 9.0 6.7 6.4 7.2 7.5

Wet 26.3 29.5 36.6 41.1 41.6 37.2 33.3 36.1 28.1 23.7 27.0 24.6

Dry 34.7 36.3 40.6 47.2 45.3 40.2 35.8 41.2 37.5 35.1 29.1 32.7

Normal 62.5 63.9 68.6 80.1 80.3 75.2 69.7 71.4 65.9 63.2 57.7 60.5

Wet 138.7 135.6 135.6 160.2 173.2 179.1 178.9 147.7 139.5 139.8 154.4 141.0

Dry 31.4 31.1 32.5 38.7 41.6 38.2 40.2 41.4 36.7 32.4 26.9 33.7

Normal 53.9 55.3 58.6 70.0 74.5 71.9 74.3 72.5 64.1 58.5 52.3 56.4

Wet 109.8 119.7 129.5 156.6 164.0 173.1 173.2 153.1 134.6 130.1 133.9 110.1

Monthly discharge (m
3
/s)ClassificationReservoir

Jatiluhur

Saguling

Cirata

Model structure

Tiaravanni Hermawan 35

Figure 5.10 Stochastic inflow prediction (ARIMA (0,0,1))

Tiaravanni Hermawan 36

6. SOFTWARE APPLICATION AND RESULT ANALYSIS

his chapter is divided into several sections; each section presents the practical

application of constructing an optimization model in the RTC-Tools 2.0 and the

result analysis for each of those models. Section 6.1 discusses the goal programming of

the sequences of objectives derived from the existing model in RIBASIM. This section

answers the first and second research questions about the practicalities of developing a

similar model network as RIBASIM in the RTC-Tools 2.0. Section 6.2 focuses on the

linear programming of the maximum economic benefit as a single objective function

based on the RIBASIM-PS study. The sensitivity analysis of this hydroeconomic

optimization model follows on the same section. The next following sections present the

various optimization approaches in order to have a better applicability of the optimized

reservoir operation rules than the RIBASIM-PS study. Section 6.3 explains an

alternative approach called the hybrid optimization between the linear programming

and the goal programming.

Section 6.4 gains insights about increasing the social benefits by modifying the

hydroeconomic objective function. This reformulation is expected to be crucial for a pure

holistic hydroeconomic study without any additional algorithm from the rule-based

simulation model. Section 6.5 observes the changes in the reservoir operation rules if

the downstream water demands are higher when the additional water demands are not

quantified economically. The next Section 6.6 discusses the optimization approach

adapted from the applications by reservoir operators in comparison to the water

resources law. These different approaches are summarised in the Table 6.1. At last,

Section 6.7 briefly summaries objectives and methodology before outlining the findings.

In this study, most data are taken from the existing RIBASIM model. The time series of

upstream inflows into the reservoirs are exported between 1920 and 2009. In the same

way, the monthly agricultural water demand and reservoir evaporation rate are

exported; these data are assumed to be similar for each year in the simulation period as

the changes in land use and the population growth is neglected. The bathymetries of the

reservoirs are taken directly from the built reservoirs model in RIBASIM. The economic

valuations are partly adapted from the RIBASIM-PS study whereas the penalties

functions are obtain from the literature review. Since this optimization model is a non-

dynamic model, discounting is taken.

The results from 1925 to 1935 are chosen as the representative period because it

captures the high and low inflow into the reservoirs. In the inflow data pre-processing,

the dry months (June-September) and the wet months (October-May) are separated. The

typical year is chosen by comparing the average seasonal volume from the whole

simulation period. The time series displays ten years results from the ninety years

(1920-2009) simulation period. This chosen period comprises dry years (1925-1927), wet

years (1931-1933) and typical year (1934).

T

Software application and result analysis

Tiaravanni Hermawan 37

Table 6.1 Software application of different optimization approaches (RTC-Tools 2.0)

1 and 2 6.1
Goal Programming

Sequences of hydrological objectives

Flood reduction

Agriculture demand

Firm energy

Infrastructure

characteristics
- 90 years 90 year

3 6.2
Linear Programming

A hydroeconomic objective

Maximum

economic benefit

Infrastructure

characteristics

van der Vat

(2015)
90 years 90 years

4 6.3

Hybrid Optimization

Sequences of hydrological objectives

A hydroeconomic objective

Flood reduction

Agriculture demand

Firm energy

Maximum economic benefit

Infrastructure

characteristics

van der Vat

(2015)
90 years 90 years

4 6.4

Linear Programming

A modified hydroeconomic objective

(Penalty functions)

Maximum

economic benefit

Infrastructure

characteristics

van der Vat

(2015) &

penalty

functions

90 years 90 years

4 6.5

Linear Programming

A modified hydroeconomic objective

Additional hydrological constraints

Maximum

economic benefit

Infrastructure

characteristics

Drinking water

Environmental

flow

Reservoir stability

van der Vat

(2015) &

penalty

functions

90 years 90 years

4 6.6

Goal Programming

Sequences of hydrological objectives

(Application by reservoir operators)

1. Drinking water

1. Environmental flow

2. Hydropower generation

2. Flood reduction

2. Agriculture demand

Infrastructure

characteristics

Reservoir stability

- 1 year 1 year

4 6.7

Goal Programming

Sequences of hydrological objectives

Sharing strategies (water resources

law)

1. Hydropower generation

2. Drinking water

2. Environmental flow

3. Flood reduction

3. Agriculture demand

Infrastructure

characteristics

Reservoir stability

- 1 year 1 year

Hydroeconomic

valuation

Simulation

period

Optimization

time horizon

Research

question

(s)

Section

(application

and result)

Constraints
Annual benefit for

Citarum cascade reservoirs
Objective functions

Software application and result analysis

Tiaravanni Hermawan 38

6.1 Goal programming of hydrological objectives (RIBASIM proxy)

This section focuses on the procedure for defining the sequences of objectives derived

from the RIBASIM rule-based algorithm. This optimization is done without

transforming any variable into an economic benefit function. In the RTC-Tools 2.0, the

algorithm satisfies the highest priority goals first over the entire length of the time

series. This procedure is markedly different to RIBASIM proxy that simulates at current

and next time steps by an iterative procedure. For better comparison the optimization

horizon of the RTC-Tools 2.0 model should be shortened, e.g. to two or three time steps

to reduce the influence of knowledge on future inflows in the water system operation. In

this case, a calendar year is considered as a practical optimization time horizon since

the monthly inflow prediction is forecasted a year-ahead in Indonesia.

In this study, the goal programming approach has been done in two different time

horizons, (i) whole time series optimization as a default setup in RTC-Tools 2.0 and (ii) a

year optimization time horizon with the substantial help from the batch file. By

integrating a batch file inside the source code of RTC-Tools 2.0, the goal programming

can be run within the specified optimization time horizon. This has been done by

repetitively cutting the long time series, initializing the parameters based on the

previous optimization result, then optimizing the similar problem defined in the source

code. The results of each optimization run are then combined into a single file.

In this study, the sequences of hydrological objectives are adapted from the algorithm in

RIBASIM termed the rule curves and the hedging rules. While the rule curves are

already described, Table 6.2 shows the hedging rules defined in the RIBASIM-PS study.

A different percentage of the delivered target demand is determined after a specific

storage zone in the reservoir is filled. This target demand entirely depends on the

purpose of the reservoir. As was pointed out in the reservoir characteristics, the delivery

target demands of both upstream reservoirs are the firm energy generation and the firm

level fulfilment of the downstream reservoir. The Jatiluhur reservoir is the only multi-

purpose reservoir that is responsible for satisfying the downstream water demands,

generating energy and reducing the occurrence of the downstream flood events.

Table 6.3 presents the sequences of hydrological objectives that determine the water

allocation in the network. This table is derived from the rule curves (see Section 5.1) and

the hedging rules (see Table 6.2). As RIBASIM simulation routes the water from

upstream to downstream, the priority on the upstream reservoir should be set higher

than the downstream reservoir in RTC-Tools 2.0. In addition, the minimum capacity of

the open channel has been set as 0 since RIBASIM is unable to model backwater effect.

This ensures that the downstream inflow is not responsible for satisfying more

upstream targets although they are set as the highest priority. Adapting to the existing

RIBASIM model, the sequences of objectives below are derived based on the algorithm of

online adjusted gate in RIBASIM (see Section 5.1). It is important to note that the

priority setting should be different if the cascade reservoirs model disables this option.

In that case, the targets of the downstream reservoir should be defined in the lower

priority after all targets of the upstream reservoir are specified.

Software application and result analysis

Tiaravanni Hermawan 39

When deriving these sequences of objectives, care was taken to highlight the implicit

priorities, such as the reservoir dead storage level. The upper and lower soft constraints

are explicitly defined in the time series that are compiled in the comma separated file.

These time series data, which may consist of a constant value for the whole simulation

period, are taken directly from the existing RIBASIM model.

Table 6.2 The hedging rules of the Citarum cascade reservoirs model (RIBASIM)

Table 6.3 Sequences of hydrological objectives (RIBASIM proxy)

% between

Hfirm and

Hdead

% of target

release

% between

Hfirm and

Hdead

% of target

release

% between

Hfirm and

Hdead

% of target

release

Zone 1 80 90 80 90 80 100

Zone 2 60 70 60 70 65 100

Zone 3 40 50 40 50 55 90

Zone 4 20 30 20 30 45 50

Dead Level 0 10 0 10 0 0

Lower

boundary

of zone

JatiluhurCirataSaguling

Priority Object Objective function
Lower

soft constraint

Upper

soft constraint

1 Cascade reservoirs Water level (H) Reservoir Hdead Reservoir H full

2 Saguling reservoir (S) Energy generation (P) S: 10% FirmP S: MaxP

3 Cirata reservoir (C) Energy generation C: 10% FirmP C: MaxP

4 Cascade reservoirs Water level Hhedging4 Hflood

5 Saguling reservoir Energy generation S: 30% FirmP S: MaxP

6 Cirata reservoir Energy generation C: 30% FirmP C: MaxP

7 Jatiluhur reservoir (J) Energy generation J: 50% FirmP J: MaxP

7 Agricultural terminal Target released 50% Qagr Qagr

8 Saguling reservoir Water level S: Hhedging3 S: Hflood

9 Cirata reservoir Water level C: Hhedging3 C: Hflood

10 Jatiluhur reservoir Water level J: Hhedging3 J: Hflood

11 Saguling reservoir Energy generation S: 50% FirmP S: MaxP

12 Cirata reservoir Energy generation C: 50% FirmP C: MaxP

13 Jatiluhur reservoir Energy generation J: 90% FirmP J: MaxP

13 Agricultural terminal Target released 90% Qagr Qagr

14 Saguling reservoir Water level S: Hhedging2 S: Hflood

15 Cirata reservoir Water level C: Hhedging2 C: Hflood

16 Jatiluhur reservoir Water level J: Hhedging2 J: Hflood

17 Saguling reservoir Energy generation S: 70% FirmP S: MaxP

18 Cirata reservoir Energy generation C: 70% FirmP C: MaxP

19 Jatiluhur reservoir Energy generation J: FirmP J: MaxP

19 Agricultural terminal Target released Qagr Qagr

20 Saguling reservoir Water level S: Hhedging1 S: Hflood

20 Cirata reservoir Water level C: Hhedging1 C: Hflood

20 Jatiluhur reservoir Water level J: Hhedging1 J: Hflood

21 Saguling reservoir Energy generation S: 90% FirmP S: MaxP

22 Cirata reservoir Energy generation C: 90% FirmP C: MaxP

23 Saguling reservoir Water level S: Hfirm S: Hflood

24 Cirata reservoir Water level C: Hfirm C: Hflood

25 Jatiluhur reservoir Water level J: Hfirm J: Hflood

26 Saguling reservoir Energy generation S: FirmP S: MaxP

27 Cirata reservoir Energy generation C: FirmP C: MaxP

28 Saguling reservoir Water level S: Htar S: Hflood

29 Cirata reservoir Water level C: Htar C: Hflood

30 Jatiluhur reservoir Water level J: Htar J: Hflood

Software application and result analysis

Tiaravanni Hermawan 40

To optimize this model within 90 years as the time horizon, a default value of

parameters (10-8) is applied to specify the satisfaction tolerance and the constraints

relaxation (see Section 5.2). These tight criteria might not be an issue if an optimization

with a long time horizon is carried out since an extreme violation is likely to be

distributed. Additionally, the ability of RTC-Tools 2.0 in assessing the whole time series

input generally results in a long-term prevention of drought in the extreme dry year. On

the other hand, these tight criteria might result in an unsolvable goal in the unseen

extremely dry year due to the short optimization time horizon. To address this issue, the

constraints relaxation is set as 10-5 and satisfaction tolerance is set as 10-2 for the runs

conducted with a one year optimization time horizon.

When designing the model schematization, it was important to understand the physical

representation of the reservoir in the case study so that an appropriate node in Modelica

library is used. Figure 6.1 illustrates that the relation between reservoir water level and

volume is reasonably linear. Therefore, the application of linear reservoir in the model

schematization of Citarum cascade reservoirs might not considerably alter the

optimization results. While the linear reservoir specifies a constant value of reservoir

area, the look-up table reservoir presents a linear relation between water level and area.

Although they have dissimilar physical representation, the difference between the

evaporation demand in linear and look-up table reservoirs are insignificant compared to

the overall mass balance in the system. Therefore, it seems that the application of linear

reservoir could replace the look-up table reservoir in the model schematization of this

case study.

To help the optimization solver in finding the solution faster, the monotonicity value

need to be set in RTC-Tools 2.0 if the look-up table reservoir is used in the model

schematization. Setting the monotonicity as 1 ensures a strict monotonicity or always

increasing look-up table fitting curve. Although the improvement seems to be

insignificant in this case, the small changes shown in the figure below (left) are crucial.

Figure 6.1 Monotonicity of look-up table fitting

Software application and result analysis

Tiaravanni Hermawan 41

Results

This section answers the first and second research question that modelling a similar

network as RIBASIM in the RTC-Tools 2.0 is a possibility. It also comprises the

differences between the reservoir operation rules derived from the RIBASIM simulation

and the RTC-Tools 2.0 optimization. Firstly, the results of a year optimization time

horizon are presented as the reproduction of the RIBASIM simulation. After, the

following part of the section explains the results of the 90 year time horizon as the

further step in optimizing the RIBASIM simulation.

Returning briefly to the subject of how the sequences of hydrological objectives are

derived, the flood control curve is set as an upper water level soft constraint. Similarly

to RIBASIM, this implies that the water level in the reservoir should not be higher than

the flood curve. In order to gain a better understanding of the goal programming concept,

the different sequences of objectives are applied. The supplementary results in a case

when the upper flood control curves are removed are also presented in this section. This

has been done for the optimization over the entire length of the time series. The

reservoir operation rules of the Jatiluhur reservoir are presented since the other two

reservoirs present insignificant differences in the results.

In general, the results from both models signify that the reservoir operation rules are

almost similar during the wet and typical year but tend to be different during the dry

year. The finding from this study suggests that the goal programming results in more

frequent minor drought but significantly lower the severities of drought events.

Specifically, the different optimization time horizon carried out in this study reveals

that one year as the optimization time horizon results in the most comparable results

with RIBASIM simulation, still, they tend to be different during the extreme dry year.

One year optimization time horizon

As shown in Figure 6.2, RTC-Tools 2.0 almost reproduces similar reservoir operation

rules to RIBASIM simulation results if a shorter optimization time horizon is applied.

The results tend to be more comparable during normal and wet years. A significant

difference can be observed in the reservoir operation rules during the extremely dry

years between 1925 and 1927. During this period, the water level drop is clearly visible,

specifically in the Cirata reservoir. It seems possible that these results are due to the

high satisfaction of agricultural delivered demand at the end of 1926. These low water

levels at the end of 1926 are specified as initial states which greatly affect the

optimization for the next year (1927). These initial states become more consequential as

the upstream inflows during those years are insignificant. The reason for this different

operation between both tools is not entirely clear. It is likely that the straightforward

priority setting as applied in the RTC-Tools model does not precisely correspond to the

behaviour of RIBASIM in a cascading reservoir situation with the agricultural demand.

Software application and result analysis

Tiaravanni Hermawan 42

Figure 6.2 Reservoirs operation rules: Sequences of hydrological objectives (1 year horizon, RIBASIM proxy)

The present results are significant in at least one major respect; the reservoir operation

rules in RTC-Tools 2.0 seem to be consistent with the priority level setting. This can be

clearly seen at the end of 1926. Tracing the priority setting in Table 6.3, 90% of

agricultural demand (13) should be delivered after the water level of hedging zone 3 in

all reservoirs (8-10) have been fulfilled. After, the remaining water started to fill the

level of hedging zone 2. It seems that this priority setting is dissimilar to RIBASIM

algorithm. At the end of 1926, RIBASIM tries to fulfil the firm level of Cirata reservoir

just after fulfilling 50% of agricultural water demand. Hence, it could conceivably be

hypothesised that deriving roughly similar reservoir operation rules from both tools

during the dry years is possible if the priority setting in RTC-Tools 2.0 is carefully

adjusted based on the RIBASIM algorithm.

Software application and result analysis

Tiaravanni Hermawan 43

Figure 6.3 Target delivered demands: Sequences of hydrological objectives (1 year horizon, RIBASIM proxy)

The energy generation results in Figure 6.3 may help us to understand that the mass

balanced concept is always satisfied in both tools. As the water level of cascade

reservoirs are rather alike, the comparable energy generations imply that the released

discharges from those reservoirs are roughly similar. These energy generation results

also support the previous findings that RTC-Tools 2.0 tends to generate more frequent

shortage but much less severity compare to the RIBASIM simulation even if one year

optimization time horizon is carried out. This finding is similar to the agricultural

delivered demand.

Software application and result analysis

Tiaravanni Hermawan 44

This figure also reveals that the RTC-Tools 2.0 results in more frequent flooding events,

especially during the wet years. This can be easily prevented by adding a threshold of

released discharge as additional a soft constraint. This result may be explained by the

fact that the reservoir gate capacity is not explicitly specified in the RTC-Tools 2.0. In

RIBASIM, some part of the released discharge is allocated to the next time step if it

exceeds the gate capacity. Thus, it seems possible that these extreme released

discharges in RTC-Tools 2.0 could be avoided by including the reservoir gate capacity

into the optimization model.

Entire length of the time series optimization time horizon

As depicted in Figure 6.4, this study finds a slight difference in the Saguling reservoir

water level between the results derived from both tools (Pearson product moment

correlation coefficient=0.9). This finding is similar to the other parameters such as

released discharge and energy generation. It can be seen that the optimization

performed in RTC-Tools 2.0 prevents the energy shortage marginally better than the

RIBASIM simulation. A possible explanation for this might be that the optimization

problems in the Saguling reservoir do not involve any conflicting objective. In general,

therefore, it seems that an optimization approach is considered as less necessary for a

single purpose reservoir.

Figure 6.4 Saguling reservoir operation rules: Sequences of hydrological objectives (RIBASIM proxy)

Software application and result analysis

Tiaravanni Hermawan 45

Figure 6.5 Cirata reservoir operation rules: Sequences of hydrological objectives (RIBASIM proxy)

As presented in Figure 6.5, the results from both tools show a considerably lower actual

water level compared to the applied rule curves. Specifically, RTC-Tools 2.0 produces a

lower, more fluctuated actual water level than the RIBASIM simulation. Unexpectedly,

RTC-Tools 2.0 is able to lower the cumulative energy shortage in the RIBASIM

simulation from 11% to 2%. This the energy shortage per event refers to the total of the

energy shortage in each reservoir. It is assumed that an extra energy generated in a

reservoir cannot cover the energy shortage in another reservoir.

These results are likely to be related to the difference between rules in both models

during an extreme dry year. In the Citarum cascade reservoir simulation, RIBASIM

strictly limits the target released discharge from the upstream reservoir to generate its

firm energy demand and to fill the firm water level of the downstream reservoir. On the

other hand, the RTC-Tools 2.0 optimization drives the water allocation based on the

sequences of hydrological objectives. It leaves open the possibility of filling the

downstream reservoir to its flood level from the upstream reservoir released discharge.

The water level drop in the Cirata reservoir could be partly explained by its higher

downstream released discharge during the dry period to keep higher water level in the

Jatiluhur reservoir.

Software application and result analysis

Tiaravanni Hermawan 46

Figure 6.6 Jatiluhur reservoir operation rules: Sequences of hydrological objectives (RIBASIM proxy)

Figure 6.6 depicts the operation rules of the Jatiluhur reservoir. This figure shows that

the water level is maintained to be higher in the RTC-Tools 2.0 in comparison with

RIBASIM. This finding suggests that RTC-Tools 2.0 tends to store the excess water for

the energy generation and the foreseen drought events. These are consistent with the

findings from the reservoir released discharge results. Figure 6.6 also compares the

released discharge for the Jatiluhur reservoir between the results from both tools.

Whereas RIBASIM releases a great amount of water during the high upstream inflow,

RTC-Tools 2.0 tends to release lesser discharge. This most likely reduces a serious

downstream flooding occurrence (the peak released discharge of the Jatiluhur reservoir

reaches 320 m3/s). The results present that the downstream flooding is considerably

reduced from 0.3 months/year to 0.1 months/year after the reservoir operation rules

derived from the RTC-Tools 2.0 are applied.

This figure reveals that there have been several steep falls in the energy generation

from the RIBASIM simulation. In contrast, the RTC-Tools 2.0 optimization is able to

reduce cumulative energy shortage from 11% to 4%. As the energy generation is a

function of the water level and the released discharge, the most likely cause of energy

generation drop is the declined in the reservoir water level in RIBASIM simulation.

Software application and result analysis

Tiaravanni Hermawan 47

Figure 6.7 Jatiluhur reservoir operation rules: Sequences of hydrological objectives (no flood curve)

This study found some differences in a case when flood control curve as the upper soft

constraint is removed from the RTC-Tools 2.0 optimization. However, both upstream

reservoirs perform fairly similar. As the removal of the upper flood control curve allows

the reservoir water level reaches a higher level, the results of the optimization model

show a minor decrease in the energy shortage of both upstream reservoirs.

As shown in Figure 6.7, dissimilarity is observed from the water level of the Jatiluhur

reservoir. This figure shows also that the water level is maintained to be even higher in

the RTC-Tools 2.0 if the upper constraint is removed. Since the dam height is set as a

hard constraint, the reservoir tends to keep the water level at the full reservoir level. It

tends to store more water during the wet season and release relatively higher discharge

during the dry season. Combining these factors, RTC-Tools 2.0 is able to lower the

cumulative energy shortage in the RIBASIM simulation from 11% to 2%. It is important

to highlight that the released discharge rarely passes the flooding threshold although

the dam height is set as the upper constraint. A possible explanation for this is that the

firm energy demand is fulfilled better with the low-risk trade-off with the flood

reduction. These results suggest that further optimization of the rule curves could be

carried out, but this is considered as less necessary since the multi-objective functions

can be defined explicitly in the study.

Software application and result analysis

Tiaravanni Hermawan 48

Figure 6.8 Agricultural delivered water demand: Sequences of hydrological objectives (RIBASIM proxy)

Having explained the supplementary results, this section now moves on to discuss the

results of the agricultural delivered demand when the flood control curve is set as upper

soft constraint. Figure 6.8 shows almost similar results of the agricultural delivered

demand derived from both tools. The RTC-Tools 2.0 optimization tends to deliver

relatively less water in comparison with the RIBASIM simulation (1.1 months/year, 41

m3/s), resulting more frequent minor droughts (12 months/year) but anticipating the

future extreme droughts (5 m3/s). This may be partly the consequences of the substantial

trade-off between the agricultural drought and the energy shortage in the Jatiluhur

reservoir. This minor agricultural drought can be prevented by putting the agricultural

water demand as a higher priority than the energy generation.

These results further support the idea of the goal programming approach functionality

on a multi-purpose reservoir. Collectively, these results are in accord with the previous

findings indicating that the goal programming approach is able to derive more

promising reservoir operation rules in comparison to RIBASIM simulation. Furthermore,

a longer optimization time horizon is likely to result in better reservoir operation rules.

It could be argued that the positive results were due to the ability of the RTC-Tools 2.0

in assessing the whole time series input for each goal. This implies that this

optimization method is too theoretical since the perfect knowledge of the hydrological

forecast is less likely to be available for this long duration of time. These results,

therefore, need to be interpreted with caution.

6.2 Linear programming of a hydroeconomic objective

This section discusses the procedure for defining a single hydroeconomic objective

function in the RTC-Tools 2.0. As shown in Table 6.4, the economic valuations in this

optimization model are fully adapted from the RIBASIM-PS study. The economic

valuations are declared inside the Modelica script. Prior to this, care was taken to

transform the variable units into the standard international units. The optimization

model requires some critical transformation in the value shown in Table 6.4.

- The agricultural economic benefit of 0.02 US$/m3 is transformed into 0.02/106

million US$/m3

- The hydropower economic benefit of 66 US$/MWh is transformed to 66,000/106

million US$/GWh. As the standard international unit of the power is Watt, this

unit must be integrated and divided by 3600.109 to be transformed to the value of

energy generation in GWh.

Software application and result analysis

Tiaravanni Hermawan 49

- The flood penalty value of 14 million US$/month must be divided by the number

of second in each month to obtain the unit of million US$/second.

It is also important to note that the standard international unit of time derivative

(second) is used although the optimization model runs in a monthly time stepping. The

maximum total economic benefit as a single objective function is valued in million US

Dollar.

Two different approaches could be taken to solve the hydroeconomic optimization

problem (i) a pure linear programming of hydroeconomic objective function and (ii) a

linear programming with the additional soft constraints in the goal programming. In

this study, a pure linear programming of hydroeconomic objective function is applied

with the practical assistance from RTC-Tools 2.0. In this approach, the water allocation

in the network is determined by the optimization of an objective function without any

additional algorithm provided by a rule-based simulation model. The constraints and

the initial conditions are taken directly from the existing RIBASIM model. RTC-Tools

2.0 is set to optimize the parameters for the whole simulation period.

Table 6.4 Hydroeconomic objective function (Van der Vat, 2015)

Results

The determination of the optimal reservoir operation rules as identified by RTC-Tools

2.0 are different from the rules decision resolved from the RIBASIM-PS study. The

results of the RIBASIM-PS study are the optimum annual rule curves including the

flood level, the target level and the firm level of the three reservoirs. Each of the rule

curves has a unique rule as specified in the RIBASIM algorithm (see Section 5.1). These

Hydroeconomic

optimization

(van der Vat, 2015)

Unit Jatiluhur Cirata SagulingOthers Remarks

Initial condition: Reservoir

water level
m+MSL 98.8 215 624

Reservoir water level

Minimum m+MSL 45 180 623 Dead level

Maximum m+MSL 106.89 220 643 Spilling level

Turbines capacity

Maximum MW 187 1,008 700 Physical constraints

Environmental flow m3/s 0 Neglegted

Drinking water demand m3/s 0 Neglegted

Agriculture US$/m3 0.02 0.02 10-6 millionUS$/m3

Agriculture demand m3/s 88 - 197

Hydropower

Peak US$/MWh 66 66 10-3 million US$/GWh

Rest US$/MWh 32 32 10-3 million US$/GWh

Agriculture US$/m3 0

Flood reduction

Q>320 m3/s million US$/month 14 14 (30.24.60.60)-1 million US$/s

Firm energy demand GWh/month 69.7 60 100

Agriculture demand m3/s 88 - 197

Constraints

Objective functions

Benefit

Penalty

RIBASIM target released (not applied in RTC-Tools 2.0)

Software application and result analysis

Tiaravanni Hermawan 50

rules further determine the quantity of the released discharge if a single value of the

upstream inflow discharge for each time step is inputted. On the other hand, RTC-Tools

2.0 derives directly a release discharge in a time step as one of the results of the

hydroeconomic optimization approach. Similarly, both tools employ the simultaneous

mass balanced concept to quantify the actual water level from the released discharge.

Thus, the actual water level of the reservoir derived from both tools is a suitable

variable to compare.

To compare the results from both models, the historical average of the ninety years

simulation period for each specific month is calculated. The time series result of

agricultural delivered water demand and hydropower generation are also presented to

perceive how both optimization models deal with a certain condition.

As depicted in Figure 6.9, the RTC-Tools 2.0 optimization results mostly show slightly

lower actual water level, less than a meter in each reservoir. Another observed trend is

that the monthly average actual water level in the RIBASIM-PS optimization mostly

follows the optimized target curve. Both trends are dissimilar between August and

November on the Saguling reservoir. In this period, RTC-Tools 2.0 generates nearly 10

meters higher actual water level. In RIBASIM-PS optimization, the actual water level

falls under the optimized firm curve. This result shows that the water level suddenly

drops at the end of time step in January. However, the water level in this period is

expected to be higher since it represents the wettest month. These RIBASIM-PS results

are rather confusing since the direct the relation between the average reservoir water

level and the average monthly inflow is unclear.

The RTC-Tools 2.0 optimization generally calculates lower water level during the dry

season compared to the RIBASIM-PS optimization. While the beginning of the dry

season has a direct impact on the most upstream reservoir, a time lag is observed on the

downstream reservoirs. It is recognized that the water level drops the latest in the

Jatiluhur reservoir. A possible explanation for this might be that in the beginning of the

dry season, the downstream reservoir still receives a high release discharge from its

upstream reservoir in addition to its low local inflow.

The RIBASIM-PS study concludes that the hydroeconomic optimization considerably

increases the annual economic benefit in comparison with RIBASIM simulation. In

general, RTC-Tools 2.0 linear programming generates almost US$ 10 million higher

maximum economic benefit in comparison with the RIBASIM-PS optimization. While

the reservoir operation rules derived from RTC-Tools 2.0 successfully prevent the

agricultural drought events, it performs poorly on the energy shortage reduction.

Although the agricultural water demand and the firm energy generation are not

explicitly defined in the RIBASIM-PS optimization, both target demands are managed

by the RIBASIM algorithm. Figure 6.10 shows that this optimization approach performs

very well compared to the result of the rule-based simulation in RIBASIM (see Figure

6.6). In 1927, the RIBASIM-PS optimization is able to completely eliminate the

agricultural drought and to ease the severity of energy shortage.

Software application and result analysis

Tiaravanni Hermawan 51

Figure 6.9 Actual water level of the reservoirs: Hydroeconomic objective

Software application and result analysis

Tiaravanni Hermawan 52

Figure 6.10 Delivery targets: Hydroeconomic objective

Figure 6.10 implies that the RIBASIM-PS optimization handles the critical dry period

better, especially in the energy shortage reduction in comparison with the RTC-Tools 2.0

optimization. The RIBASIM rule-based algorithm highlights that the water demands

and the firm energy demands are subjected to the target released discharge. As the firm

energy demands are not explicitly defined in the RTC-Tools 2.0, the hydropower

generation often drops below the firm energy demand whereas the agricultural water

demand is always fulfilled. It may be the case that the economic valuation of

agricultural delivered water demand is relatively dominant compared to the economic

valuations of other objectives.

Software application and result analysis

Tiaravanni Hermawan 53

To reduce the frequency and the severities of this unfavourable event, the target

demand should be comprised in the optimization model. This has been managed by

combining the particle SWARM optimization with the rule-based simulation tools

(RIBASIM). In the RTC-Tools 2.0, these target demands could be represented by (i)

including the hydrological soft constraints in the goal programming or (ii) adding the

penalty functions as part of the objective function.

Sensitivity analysis

As pointed in the literature review, a pure hydroeconomic optimization model is

expected to be sensitive to the economic valuations. A sensitivity analysis is one of the

methods of addressing this issue. By running several optimization models with different

values of the parameters, the changes in the water allocation in the network could be

analysed if the economic valuation differs from what was previously assumed.

The sensitivity analysis is conducted by modifying the economic valuation appraised by

Van der Vat [1]. By multiplying and dividing the economic valuation by the factor of 5,

six different strategies are run. They cover the changes in the economic valuation of

agricultural delivered water demand, the hydropower generation and flood damage

reduction. The optimization results obtained from each strategy are later compared to

the optimization results from the baseline strategy. This sensitivity analysis is

exclusively conducted for a pure linear programming of hydroeconomic objective

function.

As depicted in Figure 6.11, the sensitivity analysis to the economic valuation on the

actual water level is almost similar for each reservoir. In general, the results from

various scenarios suggest that the water allocation in the network alters along with the

changes in the economic valuation. In contrast, the changes in the flood economic

valuations have insignificant impact on the model; this formulation seems to be

irrelevant in this hydroeconomic optimization. This might be partly explained by the

ability of the RTC-Tools 2.0 to optimize with the perfect knowledge of the future events.

Thus, applying the hydrological soft constraint or reformulating the economic valuation

of flood damage is considered as necessary in RTC-Tools 2.0. However, this economic

valuation is fundamental for the RIBASIM simulation since the released discharge from

the Jatiluhur reservoir cannot be constrained explicitly.

An interesting finding is that a negligible difference is observed when the economic

valuation of hydropower generation is decreased and the economic valuation of

agricultural delivered water demand is increased. As both changes tend to deliver more

water to the agricultural area, adjusting the reservoir operation rule is not a possibility

since the agricultural water demand is always fulfilled. This result is in line with those

of previous findings that the economic valuation of agricultural delivered water demand

is relatively dominant.

The reduction in the economic valuation of agricultural delivered water demand and the

increased in the economic valuation of hydropower generation tend to be the sensitive

parameters in this model. By the factor of 5, these changes result in nearly two meters

higher water levels of the three reservoirs. It seems that the water level of the Jatiluhur

Software application and result analysis

Tiaravanni Hermawan 54

reservoir is the most sensitive to the changes on the economic valuations. It might

partly be explained by the fact that the trade-off between the agricultural water demand

and the energy generation is the most dominant in this reservoir. This figure also

suggests that the economic valuation becomes more sensitive during the dry season. It

signifies that the necessary trade-off between the conflicting objectives becomes more

substantial in the case of water scarcity.

Software application and result analysis

Tiaravanni Hermawan 55

Figure 6.11 Actual water level of the reservoirs: Sensitivity analysis of hydroeconomic model

Figure 6.12 Delivery targets: Sensitivity analysis of hydroeconomic model

As presented in Figure 6.12, the agricultural delivered demand is likely to be affected by

the increased economic valuation of hydropower generation, especially during the dry

year. RTC-Tools 2.0 mostly keeps the reservoir water level higher in order to gain a

higher benefit from the energy generation although the energy shortage is less likely to

be improved. In general, a higher economic valuation of hydropower generation results

in more energy generation, which further diminishes the total energy shortage but could

result in the agricultural drought. This finding is similar when the economic valuation

of agricultural delivered water demand is reduced. Therefore, it could conceivably be

Software application and result analysis

Tiaravanni Hermawan 56

concluded that the economic valuations, in general, are the sensitive parameters on the

hydroeconomic optimization model.

6.3 Hybrid optimization of hydroeconomic and hydrological objectives

As particle SWARM optimization is combined with the rule-based simulation RIBASIM,

care was taken to highlight the RIBASIM algorithm that affects the results of the

optimization model. An alternative approach to compromising the social benefits while

maximising the economic benefits is by running the combination of a linear

programming and the goal programming in the RTC-Tools 2.0. Similarly to the role of

the RIBASIM algorithm on the particle SWARM optimization, these soft constraints

assist the RTC-Tools 2.0 in optimizing the sequences of hydrological objectives while it

searches for the highest economic benefit at the same time.

In RIBASIM, the water demand and the electricity firm demand are subjected to the

target released discharges. These could be interpreted as the soft constraints in the goal

programming approach. To obtain a comparable result with the RIBASIM-PS study, the

domestic water demand and environmental flow are not taken into account. In addition,

the maximum total economic benefit can be set as an objective function in the linear

programming approach. By applying this hybrid optimization approach, preventing

drought, flood event and energy shortcut can be considered as a higher priority than

generating a maximum total economic benefit. As presented in Table 6.5, this hybrid

optimization is formulated as a single integrated problem in the RTC-Tools 2.0.

Table 6.5 Hybrid objective functions

Results

The consequence of applying these soft constraints is that, in general, it may generate

lower maximum benefit. This optimization generates US$ 3 million lower economic

benefits compared to the total economic benefit generated from the pure linear

programming approach.

The addition of the goal programming considerably enhances the social benefit,

especially in reducing the total cumulative energy shortage. As presented in Figure 6.13,

the hybrid optimization approach remarkably improves the social benefit compared to

the pure linear programming approach. Assigning the firm energy demand to the lower

Hybrid optimization Unit Jatiluhur Cirata Saguling Others

1. Goal Programming

 Firm energy demand (lower soft constraints)
GWh/month 69.7 60 100

1. Goal Programming

 Agricultural water demand
m3/s 88 - 197

1. Goal Programming

 Flooding threshold (upper soft constraint)

 (Maximum agricultural demand)

m3/s 200

2. Linear deterministic

 Maximum total economic benefit

 (van der Vat, 2015)

Sequences of hydrological objectives

Hydroeconomic objective

Software application and result analysis

Tiaravanni Hermawan 57

soft constraints reduces the total cumulative energy shortage from 11% to 2%. This

optimization also slightly reduces the occurrence of downstream flood event from 0.3

months/year to 0.16 months/year. Although the agricultural drought always occurs

during the whole simulation period, the value is negligible since it is relatively very

small (1 m3/s).

It is possible to hypothesise that this hybrid optimization provides an attractive

alternative to the pure hydroeconomic optimization. This approach has a distinctive

advantage since the soft constraints could be applied directly without any economic

valuation. Applying these soft constraints is likely to ameliorate the robustness of the

hydroeconomic optimization model since they are independent of the economic

valuations. The concept of sequences of hydrological objective leads to more transparent

water allocation in the hydroeconomic model. In addition, this hydroeconomic model

becomes more flexible to the changes in priorities since the target demands are explicitly

defined and ordered in the sequences of hydrological objectives.

Figure 6.13 Delivery targets: Hybrid objectives

Software application and result analysis

Tiaravanni Hermawan 58

6.4 Linear programming of a modified hydroeconomic objective

The hydroeconomic objective function adapted from Van der Vat (2015) should be

adjusted if a pure linear programming approach is chosen. This section discusses the

optimization of a single modified hydroeconomic objective function in the RTC-Tools 2.0.

A pure linear programming approach is carried out in this hydroeconomic model. Table

6.6 presents a modified hydroeconomic objective function that comprises some additional

penalty functions discussed in Section 5.4. The high values of penalty functions are

presumed to properly represent the importance of the social responsibilities. The

expected results of this hydroeconomic optimization model can be partly related to the

previously conducted sensitivity analysis.

Table 6.6 Modified hydroeconomic objective function

Results

Compared to the result of the pure hydroeconomic optimization model, applying these

penalty functions reduces the total economic benefits from US$ 378 million to US$ 370

million but substantially enhance the social benefit. Figure 6.14 shows a visible

reduction on the energy shortage after applying the high penalty function (two times of

peak demand, US$ 132/kWh) when the hydropower generation is lower the firm energy

demand. The penalty function applied to both upstream reservoirs greatly diminishes

Hydroeconomic

optimization
Unit Jatiluhur Cirata Saguling Others Remarks

Initial condition:

Reservoir water level
m+MSL 98.8 219 625 RIBASIM Model

Reservoir water level

Minimum m+MSL 87.5 180 620 Stability

Maximum m+MSL 106.89 220 643 Spilling level

Turbines capacity

Maximum MW 187 1,008 700 Physical constraints

Environmental flow m3/s 0 Neglegted

Drinking water demand m3/s 0 Neglegted

Agriculture benefit Water footprint

Paddy (November - June) US$/m3 0.02 0.02 10-6 millionUS$/m3

Nuts (July - October) US$/m3 0.043 0.043 10-6 millionUS$/m3

Agriculture demand MPW (2012)

Paddy (November - June) m3/s 88 - 197

Nuts (July - October) m3/s 8-190

Hydropower van der Vat (2015)

Peak US$/MWh 66 66 10-3 million US$/GWh

Rest US$/MWh 32 32 10-3 million US$/GWh

Agriculture IRRI (2006)

Paddy (November - June) US$/m3 0.016 0.016 10-6 millionUS$/m3

Nuts (July - October) US$/m3 0

Hydropower

Peak US$/MWh 2x66 132 10-3 million US$/GWh

Flood reduction Muin (2015)

Q<200 m3/s 0

Q=320 m3/s million US$/month 14 14 (30.24.60.60)-1 million US$/s

Q<320 m3/s Linear interpolation

Constraints

Objective functions

Benefit

Penalty

Software application and result analysis

Tiaravanni Hermawan 59

the energy shortage even during the dry year. By contrast, this penalty function is

irrelevant for the Jatiluhur reservoir since its energy generation is considered as an

extra benefit.

Figure 6.14 Energy generation: Modified hydroeconomic objective (shortage penalty)

Figure 6.15 shows that reformulation of the flood penalty function results in even less

flooding while the economic valuation from Van der Vat [1] already significantly reduces

the downstream flood event. The maximum agricultural water demand (Q=200 m3/s) is

set as the starting point of the linear flood penalty function. After this reformulation,

the downstream flooding is always prevented since the released discharge never reached

this threshold value.

Figure 6.15 Downstream flooding: Modified hydroeconomic objective (flood penalty)

The agricultural drought penalty (US$ 0.016/m3) and the higher economic valuations

(US$ 0.02m3 and US$ 0.043/m3) of the agricultural delivered demand depends on

seasonal cropping have less impact on the result since it is always satisfied. These

findings suggest that the penalty function is considered as necessary when the economic

valuation is relatively less dominant compared to the economic valuation of other

conflicting objectives.

Software application and result analysis

Tiaravanni Hermawan 60

6.5 Linear programming of a modified hydroeconomic objective (Hard constraints)

For the purpose of the applicability of reservoir operation rules, the constraints are

modified. The constraint for the minimum water level is set to be higher for the

reservoir stability. The domestic water demand and environmental flow are defined as

the main priorities whereas the previous optimization models neglect these demands.

The environmental flow and the domestic water demand are specified as hard

constraints since both are too difficult to be estimated economically [2]. The agricultural

water demand is also modified based on the calculation that comprises the seasonal

cropping analysis. As the total water demand in the network increases nearly 30%, the

starting point of the flood damage penalty function for the Jatiluhur reservoir is

adjusted.

Table 6.7 Modified hydroeconomic objective function (additional hard constraints)

Results

By applying the domestic water demand and the environmental flow as the highest

priorities, the total annual water demand increases by nearly 30%. Compared to the

optimization of the modified hydroeconomic function, these demands reduce the

maximum total economic benefits from US$ 373 million to US$ 370 million. While these

fundamental demands are always fulfilled, the occurrences of minor agricultural

Hydroeconomic

optimization
Unit Jatiluhur Cirata Saguling Others Remarks

Initial condition:

Reservoir water level
m+MSL 98.8 219 625 RIBASIM Model

Reservoir water level

Minimum m+MSL 87.5 180 623 Stability

Maximum m+MSL 106.89 220 643 Spilling level

Turbines capacity

Maximum MW 187 1,008 700 Physical constraints

Domestic water demand m3/s 35.1 Hard constraint

Environmental flow m3/s 1.4 Hard constraint

Agriculture benefit Water footprint

Paddy (November - June) US$/m3 0.02 0.02 10-6 millionUS$/m3

Nuts (July - October) US$/m3 0.043 0.043 10-6 millionUS$/m3

Agriculture demand MPW (2012)

Paddy (November - June) m3/s 87-322

Nuts (July - October) m3/s 8-190

Hydropower van der Vat (2015)

Peak US$/MWh 66 66 10-3 million US$/GWh

Rest US$/MWh 32 32 10-3 million US$/GWh

Agriculture IRRI (2006)

Paddy (November - June) US$/m3 0.016 0.016 10-6 millionUS$/m3

Nuts (July - October) US$/m3 0

Hydropower

Peak US$/MWh 2x66 132 10-3 million US$/GWh

Flood reduction Muin (2015)

Q<236.4 m3/s 0

Q=320 m3/s million US$/month 14 14 (30.24.60.60)-1 million US$/s

Q<320 m3/s Linear interpolation

Benefit

Penalty

Constraints

Objective functions

Software application and result analysis

Tiaravanni Hermawan 61

drought event increase to 8 months/year (6 m3/s). Figure 6.16 depicts that the drop in

the water level of both upstream reservoirs reaches 10 m during the dry season to

maintain almost similar water level in the Jatiluhur reservoir. One unanticipated

finding was that this drop in water level results in nearly similar number of events and

severities of total energy shortage. The decline in the total hydropower generation from

the Saguling reservoir is followed by an improvement in the Jatiluhur reservoir. This

result may be explained by the fact that the lower water level is compromised by the

higher released discharge that supplies a higher total downstream water demand.

Taken together, this finding signifies that the additional water demand has a

consequential impact and should not be neglected in the optimization model although it

is not valued economically.

While these fundamental water demands can be directly implemented as the hard

constraints in the RTC-Tools 2.0 optimization model, defining additional water demands

without quantifying their economic benefits seem to be more challenging in the

RIBASIM-PS optimization. Involving these highest priority water demands in the

RIBASIM schematization implies that they are included in the whole hydroeconomic

optimization process while defining them as hard constraints have not been done yet.

Software application and result analysis

Tiaravanni Hermawan 62

Figure 6.16 Actual water level of the reservoirs: Modified hydroeconomic objective (additional hard

constraints)

Software application and result analysis

Tiaravanni Hermawan 63

6.6 Goal programming of hydrological objectives (Application)

In this study, the operational water level defined by the Indonesian government policy

directive is set as the hard constraints in addition to the characteristics of physical

infrastructures. The initial condition is taken from the NEDECO spreadsheet model

that determines the reservoir operation rules in 2010 [37]. The constraint of annual

deficit prevention is not included in this optimization model since it is often violated in

the application. The principle of equal live storage sharing between the cascade

reservoirs is also neglected to provide more search space for the optimization model. It is

important to note the results from this optimization model are incomparable to the

previous optimization models since it simulates a year period with the markedly

different input data.

The sequences of hydrological objectives set in this optimization model refer to the

mechanism for determining the reservoir operation rules based on the NEDECO

spreadsheet model [37]. This spreadsheet model reveals that both upstream reservoirs

are strictly operated to generate the maximum energy notwithstanding the high

pressure in the Jatiluhur reservoir. As the local inflow discharge to the Jatiluhur

reservoir is negligible, the water availability in this reservoir depends crucially on the

released discharge of both upstream reservoirs. A special administrative procedure

needs to be undertaken so that both upstream reservoirs release more discharge in the

case of a serious downstream drought. To delineate this situation, the sequences of

hydrological objectives are ordered to maximize the hydropower generation of both

upstream reservoirs in the highest priority. In the lower priority, the target demands of

the Jatiluhur reservoir are set. The fundamental downstream demands such as the

domestic water demand and the environmental flow is set as the higher priority than

the substantial trade-off in the Jatiluhur reservoir.

Table 6.8 Sequences of hydrological objectives (application by reservoir operators)

In order to define more applicable reservoir operation rules, it is important to define the

sequences of objectives based on the Indonesian governmental policy directive. This

study finds a conceptual difference between the sequences of objectives derived from the

NEDECO spreadsheet model and the policy directive. As presented in Table 6.9, the

domestic water demand and the environmental flow should be set as the highest priority

as ordered in the Water Resources Law No. 7/2004 [56]. The upcoming priorities are set

to the same level nevertheless the upstream reservoir receives inflow prior to the

downstream reservoir. From this point, this strategy will be referred as the sharing

strategy.

Priority Object Objective function
Lower

soft constraint

Upper

soft constraint

1 Saguling reservoir (S) Energy generation (P)

2 Cirata reservoir (C) Energy generation

3 Drinking terminal Target released Qdri Qdri

3 Environmental flow Target released Qenv -

4 Agricultural terminal Target released Qagr Qagr

4 Jatiluhur reservoir (J) Energy generation J: FirmP J: MaxP

4 Jatiluhur reservoir Released Discharge 0 Flooding threshold

S: MaxP

C: MaxP

Software application and result analysis

Tiaravanni Hermawan 64

Table 6.9 Sequences of hydrological objectives (governmental policy directive)

The deterministic models for the various hydrological years are constructed since the

stochastic approach is limited in this study. This optimization approach can be

illustrated briefly by three different hydrological years forecast as model input

generates three distinctive actual water levels in a reservoir. This optimization of the

sequences of objectives reproduces the NEDECO spreadsheet model used by the

operators of the Citarum cascade reservoirs. In Indonesia, the stakeholders annually

decide a single rule curve for a specific year operation based on the meteorological

forecast. Thus, this rule curves concept is similar to the actual water level derived by

optimization in the RTC-Tools 2.0.

Results

As presented in Figure 6.17, the results of the RTC-Tools 2.0 optimization of the current

strategy have a similar trend on the reservoir operation rule curves derived by the

reservoir operators. The reservoir water level is operated to be higher in the wetter year

but it is always below the maximum operational water level. This result suggests that

the reservoir operation rules during the wet year result in the very high reservoirs

water level at the end of time step. However, this is relation is indirect in the Jatiluhur

reservoir: the water level during the dry year is higher than the water level during the

normal year as they have different fulfilment of agricultural delivered demand. This

implies that, in the NEDECO spreadsheet model, the agricultural delivered demand

should not be set as a hard constraint since it may not always be satisfied. The water

scarcity analysis has not yet conducted by this spreadsheet model since the inflow data

present much higher values compared to the data in this study.

It is important to note that the concept of the rule curves in the RIBASIM-PS study

differs than the concept of the rule curve for a specific hydrological year in Indonesia.

The RIBASIM-PS optimization results must be interpreted with caution since the trend

of the actual water level mostly follows the target curve, notwithstanding the dry

hydrological year is forecasted. Another important note is that, in the RIBASIM-PS

algorithm, the actual rule curve applied to the reservoir operation (chosen from the firm,

target and flood curve) could change in the next time step depending on the actual water

level in the previous time step. This may cause confusion among the reservoir operators

in Indonesia who usually determine an applied rule curve on a yearly basis. This can be

clearly seen in the case of the extremely dry year is forecasted, an optimized firm curve

in the RIBASIM-PS optimization cannot be directly applied as a dry year rule curve in

term of the Indonesian government policy directive.

Priority Object Objective function
Lower

soft constraint

Upper

soft constraint

1 Drinking terminal Target released Qdri Qdri

1 Environmental flow Target released Qenv -

2 Saguling reservoir (S) Energy generation (P) S: FirmP S: MaxP

2 Cirata reservoir (C) Energy generation C: FirmP C: MaxP

2 Jatiluhur reservoir (J) Energy generation J: FirmP J: MaxP

2 Agricultural terminal Target released Qagr Qagr

2 Jatiluhur reservoir Released Discharge 0 Flooding threshold

Software application and result analysis

Tiaravanni Hermawan 65

Figure 6.17 Actual water level of the reservoirs: Sequences of hydrological objectives (application&policy)

Software application and result analysis

Tiaravanni Hermawan 66

This part of the section focuses on comparing the results of the optimization models if

different strategies are applied. The strategy to replicating the policy directive refers to

the Water Resources Law No. 7/2004. In this strategy, the fundamental water demand

is put in the higher priority whereas the following priorities are set based on the

purpose of each reservoir. To perceive the substantial trade-off between the conflicting

objectives, the optimization results of both strategies during the dry hydrological year

are presented.

The optimization results suggest that both strategies generate almost similar reservoir

operation rules during the normal and wet year but these rules are significantly

different during the dry year. These differences are consequential for the target

demands of the Jatiluhur reservoir. In the dry year, the optimization result presents

that the total economic benefit of the Citarum cascade reservoirs is increased by more

than US$ 2 million along with a remarkable improvement on the economic benefit of the

Jatiluhur reservoir. The benefit from the Jatiluhur reservoir is mostly gained from the

higher agricultural benefit.

In general, applying this strategy results in lower water level of both upstream

reservoirs so that the downstream reservoir receives an extra water to satisfy the target

demands. As these target demands are set as the same priority level, the optimization

model tries to satisfy these demands simultaneously notwithstanding some demands

have prior access to the water. This sharing strategy seems to have a better applicability

in the case of water scarcity. It is almost certain that modelling this sharing strategy,

specifically to manage the substantial trade-off between the conflictive objectives, has

not yet been done in the NEDECO spreadsheet model.

In the optimization results of the sequences of objectives based on the NEDECO

spreadsheet model, the agricultural drought occurs frequently although the

fundamental demands are always fulfilled. Adopting the sharing strategy towards the

optimization model dramatically enhances the social benefits in the Jatiluhur reservoir

but slightly reduces the average monthly hydropower generation from both upstream

reservoirs from 180 GWh/month to 168 GWh/month. Figure 6.18 compare the

agricultural delivered demand if different strategies are applied. Although the

agricultural drought still occurs with the similar frequency of 5 months/year, the

drought severity is reduced from 130 m3/s to 100 m3/s. This result shows a substantial

the trade-off between the target demands of Citarum cascade reservoirs. Thus, it could

be concluded that both social and economic benefits in the Citarum cascade reservoirs

could be considerably improved by selecting a suitable strategy based on the policy

insight.

This finding highlights the importance of adjusting the sequences of objectives to find

the best strategy to address the water scarcity problem. These sequences of objectives in

the goal programming could be directly associated with the stakeholders’ perspective on

priorities. Although the concept of priorities has been widely used in the rule-based

simulation model, RTC-Tools 2.0 Tools provides a new feature of defining these

priorities explicitly in the optimization model.

Software application and result analysis

Tiaravanni Hermawan 67

Figure 6.18 Agricultural delivered water demand: Sequences of hydrological objectives (application&policy)

6.7 Summary of findings

To avoid constructing new supply options, various methods have been developed to

assess water allocation in a river basin in order to find a better operation system, for

instance to derive the most promising reservoir operation. Traditionally, the optimum

water allocation has been assessed by simulating various strategies in a rule-based

simulation tool such as RIBASIM. As this method is time-consuming and not necessarily

leads to the most promising result, recent advances in optimization techniques have

facilitated the possibility to find better results.

As most reservoirs have conflicting objectives, a hydroeconomic optimization model

could play an important role in solving multi-objective problems in the reservoir

operation, especially in case of water scarcity. By combining the principles of economics

and engineering, hydroeconomic models transform the concept of fixed demand into the

economic value of water defined through water rights and priorities. Unfortunately, the

management schemes and the policy insight are less likely to be easily represented by a

hydroeconomic objective function. In Deltares, the necessity to explicitly implementing

priority ordered by the policy on water resources allocation to a conventional

hydroeconomic model has been done by combining the particle SWARM (PS)

optimization with the rule-based simulation tools (RIBASIM).

To develop new alternative to the RIBASIM-PS study, a modular optimization model

RTC-Tools 2.0 has been set up. This study focuses on the reservoir operation strategies

to determine the most promising water allocation under similar attainment targets by

constructing various hydroeconomic optimization models for a study case in the RTC–

Tools 2.0. The development of the methodology for this study is based on the RIBASIM-

PS study [1]. A case-study approach was adopted to provide rounded, detailed

illustrations of the policy-based-management in water resources. The case study chosen

is a simplified water network of the Citarum basin in West Java, Indonesia.

Software application and result analysis

Tiaravanni Hermawan 68

The goal programming approach has been chosen as the methodology for explicitly

implementing the priority in the hydroeconomic optimization model in RTC-2.0 Tools.

As an alternative to a conventional hydroeconomic model, this approach is likely to

provide more robust, easy-to-build and communicative method to achieve a transparent

water allocation based on the policy insight.

This study has been able to demonstrate the possibility to develop a similar model

network as RIBASIM in the RTC-Tools 2.0. The methodology undertaken in this study

has extended our knowledge of the critical step in transforming the algorithm of the

simulation model into the explicit sequences of hydrological objectives for the

optimization model. Furthermore, RTC-Tools 2.0 able to optimize similar hydroeconomic

objective function as in RIBASIM-PS study but generate different results since RTC-

Tools 2.0 is not coupled with a rule-based simulation model. While this issue has been

addressed in this study, several alternatives of optimization approaches could be

undertaken in RTC-Tools 2.0 to find the most promising reservoir operation rules for the

case study.

This following part of the section summarises the findings related to the results of

various optimization approaches carried out in the case study. These findings suggest

that different optimization approaches generate distinctive results where certain results

could be more suitable to the case study compared to the others. This study concludes

that finding an appropriate approach and properly formulating the optimization

problem are crucial steps in order to derive the most promising optimization results.

Table 6.10 presents an overview of the results from the various optimization approaches

during the 90 years simulation period. The annual economic benefits presented are

based on the economic valuation by Van der Vat [1]. It is important to bear in mind that

the economic benefit taken directly from the modified hydroeconomic optimization

models in the RTC-Tools 2.0 is not comparable since they have a distinctive economic

valuation. Besides, the hydrological optimization models did not include any

hydroeconomic analysis. To address this issue, a post-processing on the optimization

results is carried out to obtain the total economic benefit based on the economic

valuations by Van der Vat [1]. At last, the results from the optimization models with a

year simulation are incomparable due to the different input data used.

As can be seen, the particle SWARM optimization approach significantly improves

RIBASIM rule-based simulation model in terms of the number of the unfavourable

events, their severities and the economic benefits. What is interesting about this result

is that the pure linear programming from RTC-Tools 2.0 produces the highest benefit

(US$ 378 million) in comparison with the other approaches but also the highest event

severities. In contrast, the result of the goal programming of the sequences of

hydrological objectives based on the RIBASIM presents the lowest benefit (321

US$ million) with more frequent but less severe events.

Software application and result analysis

Tiaravanni Hermawan 69

Table 6.10 Summary of benefit generated from hydroeconomic optimization models

Drinking

water

Environ-

mental flow

Total

Benefit
Irrigation

Hydro

power

Flood

damage

Occurance

of the

agricultura

l drought

Average

agricultura

l drought

(m 3 /s

/month

Occurance

of the

energy

shortage

Average

energy

shortage

(GWh/

month)

Flood

events

- -

RIBASIM Simulation without

reservoir

(van der Vat, 2015)

0 0 27 44 0 17.4 4.6 13 - - 1.24

- -
RIBASIM Simulation with reservoir

(van der Vat, 2015)
0 0 347 60 289 1.7 1.1 41 5.1 60 0.12

- -
RIBASIM-SWARM Optimization

(van der Vat, 2015)
0 0 367.8 80 292 4.2 0.21 53 1.8 33.5 0.30

1 and 2 6.1

RTC 2.0 Tools

Goal Programming

90 year time horizon optimization

Hydrology Optimization

0 0 321.4 43 280 1.4 12 5 4.5 26 0.10

3 6.2

RTC 2.0 Tools

Linear Programming

Hydroeconomic Optimization

0 0 377.9 80.6 301.5 4.2 0 0 2.8 39 0.30

6.3

RTC 2.0 Tools

Hybrid Optimization

Hydrology Optimization

0 0 374.6 79.5 295.2 0.14 12 1.3 2 18 0.01

4 6.4

RTC 2.0 Tools

Linear Programming

Modified hydroeconomic

Optimization

0 0 372.6 80.6 292 0 0 0 1.6 11 0

4 6.5

RTC 2.0 Tools

Linear Programming

Modified hydroeconomic

Optimization

Additional hydrologic constraints

35.1 1.4 369.2 78.4 291 0.16 8 6.5 1.6 12.4 0.01

4 6.6

RTC 2.0 Tools

Goal Programming

Application by reservoir operators

(Normal year)

35.1 1.4 347.6 76.6 271 0 1 54 3 10 0

4 6.7

RTC 2.0 Tools

Goal Programming

Sharing strategy

(Normal year)

35.1 1.4 303.0 80 223 0 0 0 3.6 12 0

 Well-satisfied Moderately-satisfied Poorly-satisfied

Section

(application

and result)

Research

question

(s)

Annual benefit for

Citarum cascade reservoirs

Social Benefit

(months/year)

Economic benefit (2010 value)

(million US$/year)
Social priorities

Software application and result analysis

Tiaravanni Hermawan 70

The result of the goal programming of the sequences of hydrological objectives based on

the RIBASIM presents the lowest benefit (321 US$ million) with more frequent but less

severe events. RTC-Tools 2.0 tends to generate more promising reservoir operation rules

compared to the rule-based simulation model (RIBASIM), specifically when intense

trade-off between reservoir conflicting objectives is substantial. The goal programming

approach results in more frequent minor drought but significantly lower the severities of

the drought events. Furthermore, this study employs different sequences of objectives by

removing the upper flood control curves. The evidence from this analysis suggests that

further optimization of the rule curves could be carried out, but this is considered as less

necessary since the multi-objective functions can be applied directly in the study. This

approach has a distinctive benefit as the transforming the target demands into the

hydroeconomic economic function is optional nevertheless the trade-off between those

demands is managed. Therefore, this approach could avoid the step in analysing the

economic valuations, which is likely to be most expensive and time-consuming part of

the hydroeconomic study.

The pure linear programming from RTC-Tools 2.0 provides the highest benefit (US$ 378

million) compared to the other approaches but also the highest event severities. As the

firm energy demands are not explicitly defined in the RTC-Tools 2.0, the hydropower

generation often drops below the firm energy demand whereas the agricultural water

demand is always fulfilled. This finding reveals that the economic valuation of

agricultural delivered water demand is relatively dominant compared to the economic

valuations of other objectives. Additionally, this finding enhances our understanding of

the importance of comprising these target demands in the optimization model to reduce

the frequency and the severity of this unfavourable event. This has been managed by

combining the particle SWARM optimization with the rule-based simulation tools

(RIBASIM). In the RTC-Tools 2.0, these target demands have been represented by (i)

including the hydrological soft constraints in the goal programming or (ii) adding the

penalty functions as part of the objective function.

The sensitivity analysis conducted in this study concludes that the changes in the

economic valuations that tend to deliver more water to agricultural demand have a

negligible impact since the agricultural demand is always fulfilled in the current

situation. On the other hand, the reduction in agricultural economic valuation and

increment in the hydropower economic valuations tend to keep the water level higher to

achieve higher energy generation, which further reduces the total energy shortage but

results in agricultural drought.

The results from the hybrid optimization present the most promising reservoir operation

rules. This optimization is able to substantially enhance the social benefit but generates

a slightly lower economic benefit (375 US$ million). Assigning the firm energy demand

to a soft constraint to the goal programming approach remarkably improves the social

benefit compared to the pure linear programming of hydroeconomic objective function.

Similarly to the role of the RIBASIM algorithm on the particle SWARM optimization,

these soft constraints assist the RTC-Tools 2.0 in optimizing the sequences of

hydrological objectives while the linear programming searches for the highest economic

benefit at the same time. Applying these soft constraints is likely to ameliorate the

Software application and result analysis

Tiaravanni Hermawan 71

robustness of the hydroeconomic optimization model since they are independent of the

economic valuations.

If a pure linear programming approach is preferred, the additional penalty functions

should be included in the hydroeconomic valuations by Van der Vat (2015) to represent

the social responsibility. In comparison with the pure hydroeconomic optimization,

applying these penalty functions reduce the total economic benefits from US$ 378

million to US$ 373 million but substantially enhance the social benefit. Applying the

high penalty function on hydropower generation seems to be the most preferable

approach to diminish the energy shortage. In addition, the occurrence of downstream

flooding is entirely eliminated after applying more strict formulation of the penalty

function on flood damage. These results seem to be consistent if the economic valuation

of penalty function is high enough. On the other hand, assigning a penalty function to

agricultural drought has less impact on the result since it is always satisfied. These

findings suggest that the penalty function is considered as necessary when the economic

valuation is relatively less dominant compared to the economic valuation of other

conflicting objectives.

When this modified hydroeconomic optimization comprises the fundamental demands as

the highest priorities, the maximum total economic benefit reduces from US$ 373

million to US$ 370 million. While these fundamental demands are always fulfilled, the

occurrences of minor agricultural drought event increase. Taken together, this finding

signifies that the additional water demand has a consequential impact and should be

included in the optimization model although it is too difficult to be estimated

economically.

The results in this study reveal that the reservoir operation rules derived from RTC-

Tools 2.0 have a similar trend to the current application by the reservoir operators; the

water level of the reservoir is operated to be higher in the wetter year but it is always

between the ranges of the reservoir’s operational water levels. When the different

sequences of objectives are applied, the reservoir operation rules tend to be significantly

different during the dry year. The new strategy based on policy directive is set as the

sequences of objectives in the goal programming model. This strategy puts the reservoir

purpose in the same level of priority; nevertheless the upstream reservoir receives

inflow prior to the downstream reservoir. This study concludes that the social and

economic benefits in the Citarum cascade reservoirs, especially in the Jatiluhur

reservoir, could be improved if a suitable strategy based on policy insight is

implemented.

Tiaravanni Hermawan 72

7. CONCLUSIONS AND RECOMMENDATIONS

his concluding chapter revisits in Section 7.1 the four research questions and

formulates the answers to these questions based on the analyses described in

previous chapters. The summary and important findings of this study in greater details

which led us to this conclusion are provided in Section 6.7. Finally, Section 7.2

recommends a number of possible future researches in this field.

7.1 Answers to research questions

Returning to the questions posed at the beginning of this study, it is now possible to

state that RTC-Tools 2.0 is the appropriate modular tools to solve optimization problems

in addition to its wide application in real time control situations. RTC-Tools 2.0 offers

the possibility to construct various optimization models with a high level of flexibility

and to understand the optimization process better since most scripting are accessible for

the users. This key feature is strengthened by Modelica declarative language which

enables the users to easily reproduce and reformulate the optimization variables. In

general, therefore, it seems that RTC-Tools 2.0 as an open source modular tools offers a

valuable solutions by solving a single or multi-objective problems with advance

optimization approaches.

Research question 1: Is RTC-Tools 2.0 able to model a similar network as RIBASIM does,

using allocation rules based on demand priority and reservoir operation rules including

hedging?

This study has been able to demonstrate the possibility to develop a similar model

network as RIBASIM in the RTC-Tools 2.0. A related finding, while preliminary, is that

the optimization results from RTC-Tools 2.0 present more promising reservoir operation

rules in comparison with the rule-based simulation results in RIBASIM for the multi-

purpose reservoir. In single purpose reservoir, less significant difference between the

optimization results from both tools is observed. Therefore, these findings suggest that

the goal programming approach in the RTC-Tools 2.0 reveals a new potential method to

derive a set of optimal reservoir operating rules, especially for the multi-purpose

reservoir. Ensuring appropriate systems, the operation rules derived from RTC-Tools

2.0 are expected to provide a promising solution to the trade-offs between two or more

conflicting objectives.

Research question 2: Is it possible to formulate a set of objectives and constraints in the

RTC-Tools 2.0 that will result in optimized reservoir operating rules?

T

Conclusions and recommendations

Tiaravanni Hermawan 73

The methodology undertaken in this study has extended our knowledge of the critical

step in transforming the algorithm of the simulation model into the explicit sequences of

hydrological objectives for the optimization model. When identifying these, care was

taken to highlight the implicit priorities, rule curves and hedging rules based on storage

adapted from the algorithm of the RIBASIM simulation model.

 This study has demonstrated how to define the time series of the upper and lower

constraints extracted from the existing RIBASIM model as the binding value of the

sequences of objectives. This study also transforms some RIBASIM model inputs into

inviolable hard constraints comprised of the physical infrastructure parameters.

Whereas these hard constraints tend to be easier to identify, this study finds that

deriving the soft constraints adapted from the simulation model input is more

challenging.

Research question 3: Are the calculations of optimal reservoir operation rules by RTC-

Tools 2.0 different from the operation rules resulting from the RIBASIM-PS

optimization and, if so, why?

The study concludes that the optimal reservoir operation rules as identified by RTC-

Tools 2.0 are different from the rules that resolved by RIBASIM-PS study. While the

RIBASIM-PS study optimized annual rule curves, the RTC-Tools 2.0 optimization

results in a time series of actual water levels. These results remain comparable since the

three different rule curves from the RIBASIM-PS optimization result presents specific

rules that later derive a time series of actual water level from the RIBASIM simulation.

The pure hydroeconomic optimization carried out in this study assists in further

understanding of the role of the algorithm that comprises the fulfilment of the social

benefits. From the linear programming approach, RTC-Tools 2.0 generates a slightly

higher maximum benefit but more shortage events compared to the optimization result

from RIBASIM-PS optimization. RIBASIM-PS optimization, which optimizes a similar

objective function, is nonetheless partly influenced by the algorithm in the rule-based

simulation model RIBASIM. This algorithm assists RIBASIM-PS optimization in

enhancing the social benefits while it searches for the highest economic benefit.

The sensitivity analysis conducted in this study strengthens the presumption that the

economic valuation is a sensitive parameter in the pure linear hydroeconomic

optimization model, especially when the necessary trade-off between reservoir

conflicting objectives is substantial. The changes in economic valuation could alter the

operation rules in the system while determining a suitable value that comprises the

management schemes and the policy insight is an expected difficulty.

Research question 4: How can we further improve the results of the optimization

approaches in order to get a better applicability of the reservoir operation rules?

There is a number of important improvements that could be done in hydroeconomic

optimization to derive more promising reservoir operation rules. This is the first study

reporting the advantages of the hybrid optimization between the linear programming

and additional soft constraints in the goal programming. As this approach directly

Conclusions and recommendations

Tiaravanni Hermawan 74

applies the parameter values, setting the penalty functions is optional. This approach is

thought to be a preferable option if reformulating the objective functions is difficult. This

approach is likely to ameliorate the robustness of the hydroeconomic optimization model

since the soft constraints are independent of the economic valuations.

The principal theoretical implication of this study is that the pure linear programming

requires a suitable penalty function to represent the social benefit properly. The

formulation of the penalty functions becomes more crucial for the optimization model

due to the absence of the algorithm in the rule-based simulation model.

The fundamental water demand should not be neglected on the optimization model

although they are not quantified economically. While the practicality of applying these

demands as the hard constraints in the RTC-Tools 2.0 is rather straight-forward,

separating these demands from the optimization objective function is an expected

difficulty in the RIBASIM-PS optimization.

In order to derive more practical and applicable reservoir operation rules, the

optimization model should incorporate the rules from the Indonesian government policy

directive. The hydrological year rule curves in Indonesia, which simply refers to the

expected monthly reservoir water level, are similar to the actual water level in the RTC-

Tools 2.0. The results of this study indicate that RTC-Tools 2.0 is able to derive the key

concept in the policy directive; the cascade reservoirs should be operated higher during

the wetter year although. Still, the reservoir water level must be between the

operational water level constraints.

7.2 Recommendations on future research

Considering that the great variability of nodes and links is often to be the key feature of

the rule-based simulation tools such as RIBASIM, the future development of RTC-Tools

2.0 should be undertaken to expand the declarative equations in Modelica library in

order to minimize the pre-processing step. This development is likely to enhance the

practicalities and efficiency of constructing a spatially distributed model in the RTC-2.0

Tools. Additionally, while the current version of RTC-Tools 2.0 generates a comma

separated values file, the optimization results presented in graph and chart might be a

tremendous help for the users to have a brief overview of the results.

Being limited to the deterministic optimization as the scope of the study, this approach

lacks of analysis in input data uncertainty. This study performs an optimization

approach with the presumption of the perfect knowledge of the future events. Despite

these promising results from these deterministic optimization models, questions remain.

Furthermore, the simplistic statistical scholastic analysis conducted in this study

suggests that the uncertainty in the inflow discharge forecast tends to be high. The

stochastic optimization is expected to be an important issue for the future research

considering that RTC-Tools 2.0 provides this capability.

As was pointed out earlier, the Citarum basin has a highly dynamic system facing

different future changes in the increased pressure in demand and climate change. These

future challenges are different spatially. Further research should be undertaken to

Conclusions and recommendations

Tiaravanni Hermawan 75

develop this model into a dynamic model that represents the time-dependent aspects of

the model behaviour. The future research that accommodates the dynamic future

changes spatially is expected to provide a better insight into the multi-objective

problems that will be useful for the decision-making process for the long-term master

plan.

Tiaravanni Hermawan 76

BIBLIOGRAPHY

[1] M. van der Vat, “Optimizing reservoir operation for flood storage, hydropower and

irrigation using a hydro-economic model for the Citarum River, West-Java,

Indonesia,” London, 2015.

[2] J. J. Harou, M. Pulido-Velazquez, D. E. Rosenberg, J. Medellín-Azuara, J. R. Lund

and R. E. Howitt, “Hydro-economic models: Concepts, design, applications, and

future prospects,” Journal of Hydrology, no. 375, p. 627–643, 2009.

[3] J. Braden, “Value of valuation: introduction,” Journal of Water Resource Planning

and Management, vol. 126, no. 6, pp. 336-338, 2000.

[4] J. Lund and I. Ferreira, “Operating rule optimization for Missouri River reservoir

system,” Journal of Water Resources Planning and Management, vol. 122, no. 4, p.

287–295, 1996.

[5] T. Zhu, G. F. Marques and J. R. Lund, “Hydroeconomic optimization of integrated

water management and transfers under stochastic surface water supply,” Water

Resources Research, vol. 51, p. 3568–3587, 2015.

[6] J. H. Gibbons, Use of Models for Water Resources Management, Planning, and

Policy, Washington, D.C., 1982.

[7] MIT, Nonlinear Programming, Massachusetts, 2015.

[8] G. B. Dantzig, “Linear Programming and Extensions,” Princeton University Press,

1963.

[9] D. Everson and J. C. Moseley, “Simulation or Optimization Techniques for

Multibasin Water Resources Planning,” Water Resources Bulletin, vol. 6, no. 5, pp.

725-737, 1970.

[10] M. S. Babel, A. D. Gupta and D. K. Nayak, “A Model for Optimal Allocation of

Water to Competing Demands,” Water Resources Management, vol. 19, no. 6, p.

693–712, 2005.

[11] I. Heinz, M. Pulido-Velazquez, J. R. Lund and J. and Andreu, “Hydro-economic

Modeling in River Basin Management: Implications and Applications for the

European Water Framework Directive,” Water Resources Management, vol. 21,

Tiaravanni Hermawan 77

no. 7, p. 1103–1125, 2007.

[12] S. Satti, B. Zaitchik and S. and Siddiqui, “The question of Sudan: a hydro-

economic optimization model for the Sudanese Blue Nile.,” Hydrology and Earth

System Sciences, vol. 19, no. 5, p. 2275–2293, 2015.

[13] X. Cai, M. W. Rosegrant and C. and Ringler, “Physical and economic efficiency of

water use in the river basin: Implications for efficient water management,” Water

Resources Research, vol. 39, no. 1, 2003.

[14] R. Bartlett, J. Baker, G. Lacombe, S. Douangsavanh and M. and Jeuland,

“Analyzing Economic Tradeoffs of Water Use in the Nam Ngum River Basin , Lao

PDR,” Duke Environmental Economics Working Paper Series, p. 37 pp, 2012.

[15] Q. Goor, C. Halleux, Y. Mohamed and A. and Tilmant, “Optimal operation of a

multipurpose multireservoir system in the Eastern Nile River Basin,” Hydrology

and Earth System Sciences, vol. 14, no. 10, p. 1895–1908, 2010.

[16] C. Rougé and A. Tilmant, “Applying SDDP to very large hydro-economic models

with a simplified formulation for irrigation : the case of the Tigris-Euphrates river

basin,” Geophysical Research Abstracts, p. 9859, 2015.

[17] A. Niazi, S. O. Prasher, J. Adamowski and T. Gleeson, “A System Dynamics Model

to Conserve Arid Region Water Resources through Aquifer Storage and Recovery

in Conjunction with a Dam,” Water, vol. 6, pp. 2300-2321, 2014.

[18] J. W. Labadie, “Optimal Operation of Multireservoir Systems: State-of-the-Art

Review,” Journal of Water Resources Planning and Management,, vol. 130, no. 2,

p. 93–111, 2004.

[19] G. A. Schultz, Ivory tower versus ghosts? - or- The Interdependency Between

Systems Analysts and Real-World Decision Makers in Water Management:

Closing the Gap Between Theory and Practice, Bochum: IAHS, 1989, pp. 23-32.

[20] M. McGregor and J. Dent, “An Application of Lexicographic Goal Programming to

Resolve the Allocation of Water from the Rakaia River (New Zealand),”

Agricultural Systems, vol. 41, pp. 349-367, 1993.

[21] E. A. Eschenbach, T. M. Magee and E. Zagona, “Multiobjectives Operations of

Reservoir Systems via Goal Programming,” J Water Resour Plan Management,

vol. 127, pp. 108-120, 2001.

[22] G. Leavesley, S. Markstrom, M. Brewer and R. Viger, “The modular modeling

system (MMS) : The physical process modeling component of a database-centered

decision support,” U.S. Geological Survey, Denver, 1995.

Tiaravanni Hermawan 78

[23] Deltares, “Pilot case Citarum basin,” 2016. [Online]. Available:

https://publicwiki.deltares.nl/display/OpenS/Pilot+case_+Citarum+basin.

[Accessed 11 April 2016].

[24] CGIAR CSI, “SRTM 90m Digital Elevation Database,” 2016. [Online]. Available:

http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-1. [Accessed

11 April 2016].

[25] BBWS Citarum, “Kondisi Fisik dan Spasial,” 08 August 2014. [Online]. Available:

http://citarum.org/tentang-kami/sekilas-citarum/kondisi-fisik-dan-spasial.html.

[Accessed 24 March 2016].

[26] BBWS Citarum, “Peta Wilayah Sungai Citarum,” 2016. [Online]. Available:

http://bbwscitarum.com/wp-content/uploads/2014/12/peta-ws-citarum-keppres-

12.png. [Accessed 11 April 2016].

[27] Jawa Ecoregion Profile, “Citarum Basin,” Indonesia Ministry of Environment,

2015. [Online]. Available: http://ppejawa.com/ekoregion/das-citarum/. [Accessed 10

April 2016].

[28] BPLHD, Writer, Parakarsa pemerintah Jawa Barat dalam rangka pengembangan

eco town di cekungan Bandung. [Performance]. 2010.

[29] I. MPW, “Pola Pengelolaan Sumber Daya Air Wilayah Sungai Cidanau - Ciujung -

Cidurian - Cisadane- Ciliwung - Citarum,” Kementerian Pekerjaan Umum,

Jakarta, 2012.

[30] P. Rejekiningrum, “Alokasi Optimum Kebutuhan Air Untuk Pertanian Dengan

Inovasi Teknologi Irigasi Berselang (Intermittent Irrigation): Studi Kasus Das

Citarum, Jawa Barat,” Prosiding Seminar Nasional Matematika, Sains, dan

Teknologi., vol. 4, pp. 23-37, 2013.

[31] H. Shirakawa, K. Noda, P. San Miguel and K. Oki, “Integration of ecosystem

services in impact assessment tools,” in 6th annual ESP conference, Bali, 2013.

[32] Lufiandi, “Impact of Land Use Change on Water Managment in Upper Citarum

River Basin,” Delft, 2011.

[33] BBWS Citarum, “Kondisi Fisik dan Spasial,” 08 August 2014. [Online]. Available:

http://citarum.org/tentang-kami/sekilas-citarum/kondisi-fisik-dan-spasial.html.

[Accessed 24 March 2016].

[34] Dirjen PU, “Pola Pengelolaan Sumber Daya Air Wilayah Sungai Citarum,”

Direktorat Jenderal Sumber Daya Air Kementerian Pekerjaan Umum, Jakarta,

2012.

Tiaravanni Hermawan 79

[35] FAO, “AQUASTAT global water information system,” 2015.

[36] GEO, “Current list of hydropower plants.,” 2015.

[37] Nedeco, “Jatiluhur Water Resources Management Project Preparation Study

(JWRMP). Optimal Integrated Citarum Reservoir Cascade Operation. Feasibility

Report. Nedeco in association with Indec, Virama Karya and Gamma,” Bandung,

1998.

[38] SPK-TPA, “Standard Operation Procedure 2010 of Cascade Reservoirs Citarum,”

SPK-TPA Citarum, Bandung, 2010.

[39] J. Dijkman, W. Van der Krogt, Hendarti and J. Brinkman, “Review of the

Standard Operation Procedures for the Citarum Reservoirs, Results of a rapid

assessment. 6 Cis project.,” Jakarta, 2012.

[40] T. Perwitasari, “Simulation of Cascade Reservoirs Operation using RTC Tools and

Distributed-Hydrological Model Citarum River Basin, West Java, Indonesia,”

Delft, 2013.

[41] W. Van der Krogt, “RIBASIM Version 7.00 Technical Reference Manual,”

Deltares, Delft, 2008.

[42] W. Van der Krogt and A. Boccalon, “River Basin Simulation Model RIBASIM

Version 7.00, User Manual,” Deltares, Delft, 2013.

[43] K. E. Parsopoulos and M. N. Vrahatis, “Recent approaches to global optimization

problems through particle swarm optimization,” Natural Computing, no. 1, pp.

235-306, 2002.

[44] J. M. Reddy and N. D. Kumar, “Performance evaluation of elitist-mutated multi-

onjective particle swarm optimization for integrated water resources

management,” Journal of Hydroinformatics, no. 11.1, pp. 79-83, 2009.

[45] Deltares, “RIBASIM,” 2015. [Online]. Available:

https://www.deltares.nl/en/software/ribasim/. [Accessed 08 April 2016].

[46] Deltares, “RTC-Tools,” 2016. [Online]. Available:

https://www.deltares.nl/en/software/rtc-tools/. [Accessed 21 March 2016].

[47] P. Fritzson, “Introduction to Object-Oriented Modeling and Simulation with

Modelica Using OpenModelica,” Linköping University, Linköpin, 2012.

[48] International Rice Research Institute, “Incorporating drought tolerance as a rice

breeding objective,” 2006.

[49] S. M. Miranda, “Irrigation Management for Crop Diversification in Indonesia, The

Tiaravanni Hermawan 80

Philippines, and Sri Lanka,” Colombo, 1989.

[50] Indonesian Ministry of Trade, “Tabel Harga Kebutuhan Pokok Nasional,” Jakarta,

2010.

[51] PLN, “Kemarau Panjang, PLTA Tidak Bisa Beroperasi Maksimal,” 29 October

2015. [Online]. Available: http://www.pln.co.id/blog/kemarau-panjang-plta-tidak-

bisa-beroperasi-maksimal/. [Accessed 31 March 2016].

[52] S. F. Muin, “Pengembangan Asuransi Bencana Banjir Berbasis Indeks Untuk

Sektor Pemukiman Dan Pertanian,” Institut Pertanian Bogor, Bogor, 2015.

[53] H. G. S. Aji, “Evaluasi laju sedimentasi pada waduk Jatiluhur, Kabupaten

Purwakarta, Jawa Barat,” UT - Civil Engineering and Environment , Bogor, 2014.

[54] I. Srihadi, B. Gunady and R. Mayasari, “Operational Performance of Djuanda

Dam Indonesia,” Stravanger, 2015.

[55] Jasa Tirta II, Jakarta, 2004.

[56] Indonesian Ministry of Public Works, “Undang-Undang Republik Indonesia 7/2004

Tentang Sumber Daya Air,” Jakarta, 2004.

[57] D. A. Iancu and N. Trichakis, “Pareto Efficiency in Robust Optimization,”

Management Science, vol. 60, no. 1, pp. 130 - 147, January 2014.

[58] A. Chapagain and A. Hoekstra, “The Green, Blue And Grey Water Footprint Of

Rice From Both A Production And Consumption Perspective,” UNESCO-IHE,

Delft, 2010.

[59] M. Mekonnen and A. Hoekstra, “The green, blue and grey water footprint of crops

and derived crop products,” UNESCO-IHE Institute for Water Education, Delft,

2010.

[60] C. B. Boroughs and E. Zagona, “Daily Flow Routing With The Muskingum-Cunge

Method Daily Flow Routing With The Muskingum-Cunge Method,” 2002. [Online].

Available: http://webcache.googleusercontent.com/search?q=cache:lePP-Npwf-

gJ:cadswes.colorado.edu/sites/default/files/PDF/RiverWare/BoroughsLV2002.pdf+

&cd=1&hl=en&ct=clnk&gl=nl. [Accessed 29 March 2016].

[61] Geo-Slope International, “Rapid Drawdown with Effective Stress,” Calgary, 2007.

[62] S. Sunanisari, E. Harsono and T. Tarigan, “Pengelolaan Ekosistem Dan

Produktivitas DAS Citarum: Pengembangan Model Kualitas Air Waduk Saguling,

Cirata, Jatiluhur,” Pusat Penelitian Geoteknologi LIPI, Bandung, 2003.

[63] N. Kumar and J. Reddy, “Optimal reservoir operation for irrigation of multiple

Tiaravanni Hermawan 81

crops using elitist-mutated particle swarm optimization,” Hydrological Sciences,

vol. 54, no. 4, pp. 686-701, August 2007.

[64] T. Juwitaningtyas, “The Most Polluted River in the World, Citarum River,

Indonesia,” 2016. [Online]. Available:

http://www.austroindonesianartsprogram.org/blog/most-polluted-river-world-

citarum-river-indonesia. [Accessed 11 April 2016].

[65] Indonesian Ministry of Trade, “Tinjauan Pasar Beras,” Jakarta, 2011.

[66] A. Tilmant, D. Pinte and Q. and Goor, “Assessing marginal water values in

multipurpose multireservoir systems via stochastic programming.,” Water

Resources Research, vol. 44, no. 12, 2008.

[67] A. Tilmant and W. Kinzelbach, “The cost of noncooperation in international river

basins,” Water Resources Research,, vol. 48, no. 1, 2012.

[68] Ladi, “Operating Rule Optimization for Missouri River Reservoir System,” Journal

of Water Resources Planning and Management, vol. 122, no. 5, p. 287–295, 1996.

[69] D. Whittington, X. Wu and S. C., “Water resources management in the Nile basin:

the economic value of cooperation,” Water Policy, vol. 7, no. 3, p. 227–252, 2005.

[70] C. Ringler, N. V. Huy and S. Msangi, “Water Allocation Policy Modelling for the

Dong Nai River Basin: an Integrated Perspective,” Journal of the American Water

Resources Association, vol. 42, no. 6, p. 1465–1482, 2006.

[71] W. Chow, R. Brocksen, Wisniewski and Joe, “Clean Water: Factors that Influence

Its Availability, Quality and Its Use,” in International Clean Water Conference,

California, 1995.

[72] A. Dinar, Bridges Over Water: Understanding Transboundary Water Conflict,

Negotiation and Cooperation, World Scientific, 2007.

[73] McGraw-Hill, Linear Goal Programming and Its Solution Procedures, 2004.

[74] S. Systems, “The Dynamic Model,” Sparx Systems, 2004.

[75] World Weather, “Climate Bandung,” 2016. [Online]. Available: https://weather-

and-climate.com/average-monthly-Rainfall-Temperature-

Sunshine,bandung,Indonesia. [Accessed 2016 June 30].

Tiaravanni Hermawan A-0

APPENDIXES

Tiaravanni Hermawan A-1

APPENDIX A: GLOSSARY

ARIMA Autoregressive Integrated Moving Average, a stochastic

approach to forecast the time series based on the statistics and

econometrics.

BBWS Balai Besar Wilayah Sungai, the Indonesian central

government agency for river basin organization

BMKG Badan Meteorologi, Klimatologi dan Geofisika, the Indonesian

government agency for meteorology, climatology and

geophysics

BPLHD Badan Pengelolaan Lingkungan Hidup Daerah, the regional

environmental agency

Deterministic model A model that applies a single set of historical or synthetically

generated time series to obtain a single set of results.

Goal programming The optimization model that searches the minimum total

deviation from the soft constraints of sequences of objectives,

also termed multi-objective optimization

Hard constraints The inviolable constraints where the optimum solution must be

inside these bounds, refer to constraints in a conventional

linear programming

Hydroeconomic model Mathematical model that transforms the concept of fixed

demand into the economic value of water defined through

water rights and priorities and future projections by combining

the principles of economics and engineering.

Linear programming A conventional optimization model that searches for a local

minimum of a linear objective function

Modelica An open source object-oriented programming language for

simulation and optimization developed by Modelica Association

NEDECO Netherland Engineering Consultants BV

Objective function A function to be minimized in the optimization model, mostly

consists of the economic valuations in the hydroeconomic model.

Tiaravanni Hermawan A-2

Optimization model A mathematical model that runs to identify the local minimum

of objective function limited to the constraints which represent

the system

PS Particle Swarm Optimization, is a population-based stochastic

optimization approach inspired by social behaviour of bird

flocking

RIBASIM River Basin Simulation Model, a software package by that

provides the sources of analysis in water allocation of a

network (Deltares, 2015)

RTC-Tools Real-Time Control Tools, an open-source toolbox for real-time

control and optimization of hydraulic systems by (Deltares,

2016).

Sequences of objectives Several specific numeric goals that are derived based on the

priorities to set the series of objective functions

Simulations model A rule-based algorithm that reproduces the system complex-

ities in integrated water resources management, planning and

policies to answer “what if” type of questions.

Soft constraints Each goal’s lower and upper bounds that allow violations from

the goal programming model

SOP Standard Operating Procedure, a reservoir operation procedure

to support maximum safety and operational efficiency

depending on the hydrological data of current or forecast year.

SPK-TPA Sekretariat Pelaksana Koordinasi - Tata Pengaturan Air, the

secretariat of coordination committee on the water resources

management.

Stochastic model A model that incorporates the probabilistic character of model

inputs to generate the probability results rather than a

deterministic, single set of results.

Tiaravanni Hermawan B-1

APPENDIX B: MODELICA SCRIPT - MODEL SCHEMATIZATION

The nodes and links of the model schematization on Modelica graphical user interface

automatically generate the code that needs to be adjusted like in the following scripting.

This scripting is mostly divided into four parts.

1. Classification of variables along with their units, whether they are a parameter,

an input or an output. This part of the scripting is very crucial to balance the

number of equation and free variables

2. Each objects’ name and annotation, some include the value of physical

characteristics’ parameters

3. Description of the connection between declared objects

4. Declaration of equations that connect the clarification in the first part of this

scripting and the name of the Modelica objects in the second part of this scripting.

I. Goal programming on the linear reservoir model schematization

model citarum

 import SI = Modelica.SIunits;

/*1. DEFINE input to balance the number of equation and free variables*/

 input SI.VolumeFlowRate inflow_Saguling_Q;

 input SI.VolumeFlowRate inflow_Cirata_Q;

 input SI.VolumeFlowRate inflow_Jatiluhur_Q;

 input SI.Velocity Saguling_evaporation;

 input SI.Velocity Cirata_evaporation;

 input SI.Velocity Jatiluhur_evaporation;

 input SI.VolumeFlowRate reservoirCompact_Saguling_Qturbine;

 input SI.VolumeFlowRate reservoirCompact_Cirata_Qturbine;

 input SI.VolumeFlowRate reservoirCompact_Jatiluhur_Qturbine;

 output SI.VolumeFlowRate spill_Saguling_Q;

 output SI.VolumeFlowRate spill_Cirata_Q;

 output SI.VolumeFlowRate spill_Jatiluhur_Q;

 input SI.VolumeFlowRate node_Agriculture_QOut;

 input SI.VolumeFlowRate node_Drinking_QOut;

/*2. Each objects’ name and annotation*/

/*INPUT hard constraints and physical parameters*/

 Deltares.Flow.SimpleRouting.BoundaryConditions.Inflow inflow_Saguling

annotation(Placement(visible = true, transformation(origin = {-90, 74}, extent = {{-10, -

10}, {10, 10}}, rotation = 0)));

Tiaravanni Hermawan B-2

 Deltares.Flow.SimpleRouting.BoundaryConditions.Inflow inflow_Cirata

annotation(Placement(visible = true, transformation(origin = {-90, 40}, extent = {{-10, -

10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.BoundaryConditions.Inflow inflow_Jatiluhur

annotation(Placement(visible = true, transformation(origin = {-90, 8}, extent = {{-10, -

10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.Nodes.Node node1(nout = 1, nin = 2)

annotation(Placement(visible = true, transformation(origin = {-54, 40}, extent = {{-10, -

10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.Reservoir.Linear reservoirCompact_Saguling(H_b =

622.6, area = 20000000, H_tail = 280, turbine_efficiency=0.87)

annotation(Placement(visible = true, transformation(origin = {-70, 74}, extent = {{-10, -

10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.Reservoir.Linear reservoirCompact_Cirata(H_b = 180,

area = 30000000, H_tail = 107, turbine_efficiency=0.87) annotation(Placement(visible

= true, transformation(origin = {-34, 40}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.Nodes.Node node2(nout = 1, nin = 2)

annotation(Placement(visible = true, transformation(origin = {-18, 8}, extent = {{-10, -

10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.Nodes.Node node_Drinking(nout = 2)

annotation(Placement(visible = true, transformation(origin = {34, 8}, extent = {{-10, -

10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.Nodes.Node node_Agriculture(nout = 2)

annotation(Placement(visible = true, transformation(origin = {50, -20}, extent = {{-10, -

10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.BoundaryConditions.Terminal terminal_Agriculture

annotation(Placement(visible = true, transformation(origin = {82, -6}, extent = {{-10, -

10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.BoundaryConditions.Terminal terminal_River

annotation(Placement(visible = true, transformation(origin = {82, -28}, extent = {{-10, -

10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.BoundaryConditions.Terminal terminal_Drinking

annotation(Placement(visible = true, transformation(origin = {82, 8}, extent = {{-10, -

10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.Reservoir.Linear reservoirCompact_Jatiluhur(H_b =

74.89, area = 53000000, H_tail = 28, turbine_efficiency=0.87)

annotation(Placement(visible = true, transformation(origin = {2, 8}, extent = {{-10, -10},

{10, 10}}, rotation = 0)));

/*3. DEFINE connection*/

equation

 connect(node2.QOut[1], reservoirCompact_Jatiluhur.QIn) annotation(Line(points = {{-

10, 8}, {-6, 8}}));

 connect(reservoirCompact_Jatiluhur.QOut, node_Drinking.QIn[1])

annotation(Line(points = {{10, 8}, {26, 8}}));

Tiaravanni Hermawan B-3

 connect(node_Drinking.QOut[1], terminal_Drinking.QIn) annotation(Line(points =

{{42, 8}, {74, 8}}));

 connect(node_Agriculture.QOut[2], terminal_River.QIn) annotation(Line(points = {{58,

-20}, {58, -28}, {74, -28}}));

 connect(node_Agriculture.QOut[1], terminal_Agriculture.QIn) annotation(Line(points

= {{58, -20}, {61, -20}, {61, -6}, {74, -6}}));

 connect(node_Drinking.QOut[2], node_Agriculture.QIn[1]) annotation(Line(points =

{{42, 8}, {42, -20}}));

 connect(reservoirCompact_Cirata.QOut, node2.QIn[2]) annotation(Line(points = {{-26,

40}, {-26, 8}}));

 connect(inflow_Jatiluhur.QOut, node2.QIn[1]) annotation(Line(points = {{-82, 8}, {-26,

8}}));

 connect(node1.QOut[1], reservoirCompact_Cirata.QIn) annotation(Line(points = {{-46,

40}, {-42, 40}}));

 connect(reservoirCompact_Saguling.QOut, node1.QIn[2]) annotation(Line(points = {{-

62, 74}, {-62, 40}}));

 connect(inflow_Saguling.QOut, reservoirCompact_Saguling.QIn)

annotation(Line(points = {{-82, 74}, {-78, 74}}));

 connect(inflow_Cirata.QOut, node1.QIn[1]) annotation(Line(points = {{-82, 40}, {-62,

40}}));

/*4. DECLARE additional equation, mostly to connect time series and object*/

 inflow_Saguling.Q = inflow_Saguling_Q;

 inflow_Cirata.Q = inflow_Cirata_Q;

 inflow_Jatiluhur.Q = inflow_Jatiluhur_Q;

 reservoirCompact_Saguling.evaporation_protected=Saguling_evaporation;

 reservoirCompact_Cirata.evaporation_protected=Cirata_evaporation;

 reservoirCompact_Jatiluhur.evaporation_protected=Jatiluhur_evaporation;

 node_Drinking_QOut=terminal_Drinking.Q;

 terminal_Drinking.Q = 0;

 reservoirCompact_Saguling_Qturbine = reservoirCompact_Saguling.Q_turbine;

 reservoirCompact_Cirata_Qturbine = reservoirCompact_Cirata.Q_turbine;

 reservoirCompact_Jatiluhur_Qturbine = reservoirCompact_Jatiluhur.Q_turbine;

 spill_Saguling_Q = reservoirCompact_Saguling.Q_spill;

 spill_Cirata_Q = reservoirCompact_Cirata.Q_spill;

 spill_Jatiluhur_Q = reservoirCompact_Jatiluhur.Q_spill;

annotation(Icon(coordinateSystem(extent = {{-100, -100}, {100, 100}},

preserveAspectRatio = true, initialScale = 0.1, grid = {2, 2})),

Diagram(coordinateSystem(extent = {{-100, -100}, {100, 100}}, preserveAspectRatio =

true, initialScale = 0.1, grid = {2, 2})));

end citarum;

Tiaravanni Hermawan B-4

II. Goal programming on look-up table reservoirs model schematization

model citarum

 import SI = Modelica.SIunits;

 input SI.VolumeFlowRate inflow_Saguling_Q;

 input SI.VolumeFlowRate inflow_Cirata_Q;

 input SI.VolumeFlowRate inflow_Jatiluhur_Q;

 input SI.VolumeFlowRate spill_Saguling_Q;

 input SI.VolumeFlowRate spill_Cirata_Q;

 input SI.VolumeFlowRate spill_Jatiluhur_Q;

 output SI.VolumeFlowRate reservoirCompact_Saguling_Qturbine;

 output SI.VolumeFlowRate reservoirCompact_Cirata_Qturbine;

 output SI.VolumeFlowRate reservoirCompact_Jatiluhur_Qturbine;

 input SI.Velocity Saguling_evaporation;

 input SI.Velocity Cirata_evaporation;

 input SI.Velocity Jatiluhur_evaporation;

 input SI.VolumeFlowRate node_Agriculture_QOut;

 output SI.VolumeFlowRate terminal_River_Q;

 input SI.VolumeFlowRate node_Drinking_Qout;

 input SI.Area Saguling_area(nominal = 1e8);

 input SI.Volume Saguling_volume(nominal = 1e9);

 input SI.Area Cirata_area(nominal = 1e8);

 input SI.Volume Cirata_volume(nominal = 1e9);

 input SI.Area Jatiluhur_area(nominal = 1e8);

 input SI.Volume Jatiluhur_volume(nominal = 1e10);

 Deltares.Flow.SimpleRouting.BoundaryConditions.Inflow inflow_Saguling

annotation(Placement(visible = true, transformation(origin = {-90, 74}, extent = {{-10,

-10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.BoundaryConditions.Inflow inflow_Cirata

annotation(Placement(visible = true, transformation(origin = {-90, 40}, extent = {{-10,

-10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.BoundaryConditions.Inflow inflow_Jatiluhur

annotation(Placement(visible = true, transformation(origin = {-90, 8}, extent = {{-10, -

10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.Nodes.Node node1(nout = 1, nin = 2)

annotation(Placement(visible = true, transformation(origin = {-54, 40}, extent = {{-10,

-10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.Nodes.Node node_Drinking(nin = 1, nout = 2)

annotation(Placement(visible = true, transformation(origin = {34, 8}, extent = {{-10, -

10}, {10, 10}}, rotation = 0)));

Tiaravanni Hermawan B-5

 Deltares.Flow.SimpleRouting.Nodes.Node node_Agriculture(nin = 1, nout = 2)

annotation(Placement(visible = true, transformation(origin = {50, -20}, extent = {{-10,

-10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.BoundaryConditions.Terminal terminal_Agriculture

annotation(Placement(visible = true, transformation(origin = {82, -6}, extent = {{-10, -

10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.BoundaryConditions.Terminal terminal_River

annotation(Placement(visible = true, transformation(origin = {82, -28}, extent = {{-10,

-10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.BoundaryConditions.Terminal terminal_Drinking

annotation(Placement(visible = true, transformation(origin = {82, 8}, extent = {{-10, -

10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.Reservoir.LookupTable

reservoirCompact_Cirata(H_tail = 107, turbine_efficiency = 0.87)

annotation(Placement(visible = true, transformation(origin = {-30, 40}, extent = {{-10,

-10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.Reservoir.LookupTable

reservoirCompact_Jatiluhur(H_tail = 104, turbine_efficiency = 0.87)

annotation(Placement(visible = true, transformation(origin = {8, 8}, extent = {{-10, -

10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.Reservoir.LookupTable

reservoirCompact_Saguling(H_tail = 280, turbine_efficiency = 0.87)

annotation(Placement(visible = true, transformation(origin = {-70, 74}, extent = {{-10,

-10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.Nodes.Node node2(nout = 1, nin = 2)

annotation(Placement(visible = true, transformation(origin = {-16, 8}, extent = {{-10, -

10}, {10, 10}}, rotation = 0)));

equation

 connect(inflow_Jatiluhur.QOut, node2.QIn[1]) annotation(Line(points = {{-82, 8}, {-

24, 8}}));

 connect(reservoirCompact_Cirata.QOut, node2.QIn[2]) annotation(Line(points = {{-

22, 40}, {-24, 40}, {-24, 8}}));

 connect(node2.QOut[1], reservoirCompact_Jatiluhur.QIn) annotation(Line(points =

{{-8, 8}, {0, 8}}));

 connect(reservoirCompact_Saguling.QOut, node1.QIn[2]) annotation(Line(points =

{{-62, 74}, {-62, 40}}));

 connect(inflow_Saguling.QOut, reservoirCompact_Saguling.QIn)

annotation(Line(points = {{-82, 74}, {-78, 74}}));

 connect(node1.QOut[1], reservoirCompact_Cirata.QIn) annotation(Line(points = {{-

46, 40}, {-38, 40}, {-38, 40}, {-38, 40}}));

 connect(node_Drinking.QOut[1], terminal_Drinking.QIn) annotation(Line(points =

{{42, 8}, {74, 8}}));

 connect(node_Agriculture.QOut[2], terminal_River.QIn) annotation(Line(points =

{{58, -20}, {58, -28}, {74, -28}}));

Tiaravanni Hermawan B-6

 connect(node_Agriculture.QOut[1], terminal_Agriculture.QIn)

annotation(Line(points = {{58, -20}, {61, -20}, {61, -6}, {74, -6}}));

 connect(node_Drinking.QOut[2], node_Agriculture.QIn[1]) annotation(Line(points =

{{42, 8}, {42, -20}}));

 connect(inflow_Cirata.QOut, node1.QIn[1]) annotation(Line(points = {{-82, 40}, {-62,

40}}));

 Saguling_area = reservoirCompact_Saguling.A;

 Saguling_volume = reservoirCompact_Saguling.V;

 Cirata_area = reservoirCompact_Cirata.A;

 Cirata_volume = reservoirCompact_Cirata.V;

 Jatiluhur_area = reservoirCompact_Jatiluhur.A;

 Jatiluhur_volume = reservoirCompact_Jatiluhur.V;

 inflow_Saguling.Q = inflow_Saguling_Q;

 inflow_Cirata.Q = inflow_Cirata_Q;

 inflow_Jatiluhur.Q = inflow_Jatiluhur_Q;

 reservoirCompact_Saguling.evaporation_protected=Saguling_evaporation;

 reservoirCompact_Cirata.evaporation_protected=Cirata_evaporation;

 reservoirCompact_Jatiluhur.evaporation_protected=Jatiluhur_evaporation;

 reservoirCompact_Saguling_Qturbine = reservoirCompact_Saguling.Q_turbine;

 reservoirCompact_Cirata_Qturbine = reservoirCompact_Cirata.Q_turbine;

 reservoirCompact_Jatiluhur_Qturbine = reservoirCompact_Jatiluhur.Q_turbine;

 node_Agriculture_QOut = node_Agriculture.QOut_control[1];

 terminal_River_Q = terminal_River.Q;

 terminal_Drinking.Q = 0;

 node_Drinking_Qout = node_Drinking.QOut_control[1];

 spill_Saguling_Q = reservoirCompact_Saguling.Q_spill;

 spill_Cirata_Q = reservoirCompact_Cirata.Q_spill;

 spill_Jatiluhur_Q = reservoirCompact_Jatiluhur.Q_spill;

 annotation(Icon(coordinateSystem(extent = {{-100, -100}, {100, 100}},

preserveAspectRatio = true, initialScale = 0.1, grid = {2, 2})),

Diagram(coordinateSystem(extent = {{-100, -100}, {100, 100}}, preserveAspectRatio =

true, initialScale = 0.1, grid = {2, 2})));

end citarum;

Tiaravanni Hermawan B-7

II. Hydroeconomic optimization on the linear reservoir model schematization

The total economic benefit summarises the hydroeconomic objective function which

comprises of economic valuations based on the hydropower generation, agricultural

delivered demand and flood damage reduction. This hydroeconomic objective function is

declared in the Modelica file and it is optimized by the linear programming with the

assistance of RTC-Tools 2.0. In this scripting, the economic valuations are mostly

adapted from Van der Vat (2015) while the commented economic valuations, which

mainly consist of penalty functions, are appraised in this study.

/*APPLY hydroeconomic valuations*/

/*COMMENT modified hydroeconomic valuations and additional constraints*/

model citarum

 import SI = Modelica.SIunits;

/*DEFINE input to balance the number of equation and free variables*/

/*MODELICA variables*/

 input SI.VolumeFlowRate inflow_Saguling_Q;

 input SI.VolumeFlowRate inflow_Cirata_Q;

 input SI.VolumeFlowRate inflow_Jatiluhur_Q;

 input SI.Velocity Saguling_evaporation;

 input SI.Velocity Cirata_evaporation;

 input SI.Velocity Jatiluhur_evaporation;

 input SI.VolumeFlowRate reservoirCompact_Saguling_Qturbine;

 input SI.VolumeFlowRate reservoirCompact_Cirata_Qturbine;

 input SI.VolumeFlowRate reservoirCompact_Jatiluhur_Qturbine;

 input SI.VolumeFlowRate spill_Saguling_Q;

 input SI.VolumeFlowRate spill_Cirata_Q;

 input SI.VolumeFlowRate spill_Jatiluhur_Q;

 input SI.VolumeFlowRate node_Agriculture_QOut;

 input SI.VolumeFlowRate out_Jatiluhur_Q;

 input SI.VolumeFlowRate terminal_Drinking_Qin;

/*HYDROECONOMIC VALUATION*/

/*HYDROPOWER*/

 parameter Real auxcon_Saguling (unit = "1")=0.01;

 parameter Real auxcon_Cirata (unit = "1")=0.01;

 parameter Real auxcon_Jatiluhur (unit = "1")=0;

 parameter Real c (unit = "1")=1/(1e9*3600);

 output Real output_Saguling (unit = "GWh");

 output Real output_Cirata (unit = "GWh");

 output Real output_Jatiluhur (unit = "GWh");

Tiaravanni Hermawan B-8

 parameter Real fr_peakSaguling (unit = "1")=1;

 parameter Real fr_peakCirata (unit = "1")=1;

 parameter Real fr_peakJatiluhur (unit = "1")=0.2;

 parameter Real value_Powerrest (unit = "dollar/GWh")=31.59*1000;

 parameter Real value_Powerpeak (unit = "dollar/GWh")=65.85*1000;

 output Real benefit_PowerSaguling (unit="1e6*dollar/GWh");

 output Real benefit_PowerCirata (unit="1e6*dollar/GWh");

 output Real benefit_PowerJatiluhur (unit="1e6*dollar/GWh");

 output Real benefit_Power (unit="1e6*dollar", start = 0.0, fixed = true);

/*MODIFIED HYDROPOWER

 parameter Real value_Powerpeakpenalty (unit = "dollar/GWh")=2*66*1e3;

 output Real penalty_PowerSaguling (unit="1e6*dollar/GWh");

 output Real penalty_PowerCirata (unit="1e6*dollar/GWh");

 output Real penalty_Power (unit="1e6*dollar", start = 0.0, fixed = true);

*/

/*IRRIGATION*/

 parameter Real value_Irrigationbenefit (unit="1e6*dollar/1e6*m3")=0.02;

 output Real benefit_Irrigation (unit="1e6*dollar", start = 0.0, fixed = true);

/*MODIFIED IRRIGATION

 input value_Irrigationpenalty;

 output penalty_Irrigation;

 output benefitpenalty_Irrigation;

*/

/*FLOOD DAMAGE*/

 parameter SI.VolumeFlowRate returnperiod_Q=320;

 input Real value_Floodinitial (unit="1e6*dollar/s");

 parameter Real value_Floodpenalty (unit="1e6*dollar/s")=14/(3600*24*30);

 output Real penalty_Flood (unit="1e6*dollar");

 output Real benefit_Flood (unit="1e6*dollar", start = 0.0, fixed = true);

/*MODIFIED FLOOD DAMAGE

 input value_Irrigationpenalty;

 output penalty_Irrigation;

 output benefitpenalty_Irrigation;

*/

 output Real benefit_Total (unit="1e6*dollar");

Tiaravanni Hermawan B-9

 Deltares.Flow.SimpleRouting.BoundaryConditions.Inflow inflow_Saguling

annotation(Placement(visible = true, transformation(origin = {-90, 74}, extent = {{-10, -

10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.BoundaryConditions.Inflow inflow_Cirata

annotation(Placement(visible = true, transformation(origin = {-90, 40}, extent = {{-10, -

10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.BoundaryConditions.Inflow inflow_Jatiluhur

annotation(Placement(visible = true, transformation(origin = {-90, 8}, extent = {{-10, -

10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.Nodes.Node node1(nout = 1, nin = 2)

annotation(Placement(visible = true, transformation(origin = {-54, 40}, extent = {{-10, -

10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.Reservoir.Linear reservoirCompact_Saguling(H_b =

622.6, area = 31000000, H_tail = 280, turbine_efficiency=0.95)

annotation(Placement(visible = true, transformation(origin = {-70, 74}, extent = {{-10, -

10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.Reservoir.Linear reservoirCompact_Cirata(H_b = 180,

area = 33000000, H_tail = 107, turbine_efficiency=0.87) annotation(Placement(visible

= true, transformation(origin = {-34, 40}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.Nodes.Node node2(nout = 1, nin = 2)

annotation(Placement(visible = true, transformation(origin = {-18, 8}, extent = {{-10, -

10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.Nodes.Node node_Drinking(nout = 2)

annotation(Placement(visible = true, transformation(origin = {34, 8}, extent = {{-10, -

10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.Nodes.Node node_Agriculture(nout = 2)

annotation(Placement(visible = true, transformation(origin = {50, -20}, extent = {{-10, -

10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.BoundaryConditions.Terminal terminal_Agriculture

annotation(Placement(visible = true, transformation(origin = {82, -6}, extent = {{-10, -

10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.BoundaryConditions.Terminal terminal_River

annotation(Placement(visible = true, transformation(origin = {82, -28}, extent = {{-10, -

10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.BoundaryConditions.Terminal terminal_Drinking

annotation(Placement(visible = true, transformation(origin = {82, 8}, extent = {{-10, -

10}, {10, 10}}, rotation = 0)));

 Deltares.Flow.SimpleRouting.Reservoir.Linear reservoirCompact_Jatiluhur(H_b =

74.89, area = 79000000, H_tail = 28, turbine_efficiency=1)

annotation(Placement(visible = true, transformation(origin = {2, 8}, extent = {{-10, -10},

{10, 10}}, rotation = 0)));

equation

 connect(node2.QOut[1], reservoirCompact_Jatiluhur.QIn) annotation(Line(points = {{-

10, 8}, {-6, 8}}));

Tiaravanni Hermawan B-10

 connect(reservoirCompact_Jatiluhur.QOut, node_Drinking.QIn[1])

annotation(Line(points = {{10, 8}, {26, 8}}));

 connect(node_Drinking.QOut[1], terminal_Drinking.QIn) annotation(Line(points =

{{42, 8}, {74, 8}}));

 connect(node_Agriculture.QOut[2], terminal_River.QIn) annotation(Line(points = {{58,

-20}, {58, -28}, {74, -28}}));

 connect(node_Agriculture.QOut[1], terminal_Agriculture.QIn) annotation(Line(points

= {{58, -20}, {61, -20}, {61, -6}, {74, -6}}));

 connect(node_Drinking.QOut[2], node_Agriculture.QIn[1]) annotation(Line(points =

{{42, 8}, {42, -20}}));

 connect(reservoirCompact_Cirata.QOut, node2.QIn[2]) annotation(Line(points = {{-26,

40}, {-26, 8}}));

 connect(inflow_Jatiluhur.QOut, node2.QIn[1]) annotation(Line(points = {{-82, 8}, {-26,

8}}));

 connect(node1.QOut[1], reservoirCompact_Cirata.QIn) annotation(Line(points = {{-46,

40}, {-42, 40}}));

 connect(reservoirCompact_Saguling.QOut, node1.QIn[2]) annotation(Line(points = {{-

62, 74}, {-62, 40}}));

 connect(inflow_Saguling.QOut, reservoirCompact_Saguling.QIn)

annotation(Line(points = {{-82, 74}, {-78, 74}}));

 connect(inflow_Cirata.QOut, node1.QIn[1]) annotation(Line(points = {{-82, 40}, {-62,

40}}));

/*DECLARE additional equation, mostly to connect time series and object*/

 inflow_Saguling.Q = inflow_Saguling_Q;

 inflow_Cirata.Q = inflow_Cirata_Q;

 inflow_Jatiluhur.Q = inflow_Jatiluhur_Q;

 reservoirCompact_Saguling.evaporation=Saguling_evaporation;

 reservoirCompact_Cirata.evaporation=Cirata_evaporation;

 reservoirCompact_Jatiluhur.evaporation=Jatiluhur_evaporation;

 terminal_Drinking.Q = 0;

 reservoirCompact_Saguling_Qturbine = reservoirCompact_Saguling.Q_turbine;

 reservoirCompact_Cirata_Qturbine = reservoirCompact_Cirata.Q_turbine;

 reservoirCompact_Jatiluhur_Qturbine = reservoirCompact_Jatiluhur.Q_turbine;

 spill_Saguling_Q = reservoirCompact_Saguling.Q_spill;

 spill_Cirata_Q = reservoirCompact_Cirata.Q_spill;

 spill_Jatiluhur_Q = reservoirCompact_Jatiluhur.Q_spill;

 out_Jatiluhur_Q=spill_Jatiluhur_Q+reservoirCompact_Jatiluhur_Qturbine;

/*ADD constraints for domestic/drinking water demand

 Environmental flow is added to bounds in RTC-Tools 2.0

terminal_Drinking.Q = 35;

*/

Tiaravanni Hermawan B-11

/*

 --

 BENEFIT AND PENALTY FUNCTIONS

 --

*/

/*----------------------------HYDROPOWER GENERATION----------------------------*/

output_Saguling=c*(1-auxcon_Saguling)*reservoirCompact_Saguling.P;

output_Cirata=c*(1-auxcon_Cirata)*reservoirCompact_Cirata.P;

output_Jatiluhur=c*(1-auxcon_Jatiluhur)*reservoirCompact_Jatiluhur.P;

benefit_PowerSaguling=(output_Saguling*((fr_peakSaguling*value_Powerpeak)+((1-

fr_peakSaguling)*value_Powerrest)))/1e6;

benefit_PowerCirata=(output_Cirata*((fr_peakCirata*value_Powerpeak)+((1-

fr_peakCirata)*value_Powerrest)))/1e6;

benefit_PowerJatiluhur=(output_Jatiluhur*((fr_peakJatiluhur*value_Powerpeak)+((1-

fr_peakJatiluhur)*value_Powerrest)))/1e6;

der(benefit_Power)=(benefit_PowerSaguling+benefit_PowerCirata+benefit_PowerJatilu

hur);

/*---------------------------------------IRRIGATION--------------------------------------*/

der(benefit_Irrigation)=terminal_Agriculture.Q*value_Irrigationbenefit/1e6;

/*------------------------------MODIFIFED IRRIGATION-----------------------------*/

/*

benefit_Irrigation+=terminal_Agriculture.Q*value_Irrigationbenefit;

penalty_Irrigation+=(Qagr-terminal_Agriculture.Q)*value_Irrigationpenalty;

benefitpenalty_Irrigation+=benefit_Irrigation-penalty_Irrigation

*/

/*------------------------------------FLOOD REDUCTION-------------------------------------*/

if out_Jatiluhur_Q>returnperiod_Q then

 penalty_Flood=value_Floodpenalty;

else

 penalty_Flood=0;

end if;

der(benefit_Flood)=(value_Floodinitial/(3600*24*30))-penalty_Flood;

/*----------------------------MODIFIED FLOOD REDUCTION----------------------------*/

/*

returnperiod_Q5=66;

returnperiod_Q25=334;

Tiaravanni Hermawan B-12

value_Floodpenalty=14000000;

if reservoirCompact_Jatiluhur_Qout>=returnperiod_Q25 then

 penalty_Flood=value_Floodpenalty;

elseif reservoirCompact_Jatiluhur_Qout>= returnperiod_Q5 &

linear_Jatiluhur.HQ.Q<returnperiod_Q25:

 penalty_Flood=(linear_Jatiluhur.HQ.Q-

returnperiod_Q5)*value_Floodpenalty/(returnperiod_Q25-returnperiod_Q5)

else:

 penalty_Flood=0

benefit_Flood+=value_Floodinitial-penalty_Flood;

*/

/*----------------------------TOTAL BENEFIT----------------------------*/

benefit_Total=benefit_Power+benefit_Irrigation+benefit_Flood;

annotation(Icon(coordinateSystem(extent = {{-100, -100}, {100, 100}},

preserveAspectRatio = true, initialScale = 0.1, grid = {2, 2})),

Diagram(coordinateSystem(extent = {{-100, -100}, {100, 100}}, preserveAspectRatio =

true, initialScale = 0.1, grid = {2, 2})));

end citarum

Tiaravanni Hermawan C-1

APPENDIX C: PYTHON SCRIPT – OPTIMIZATION

The following python scripting in this appendix might need to be slightly adjusted

depending on the new development of RTC-Tools 2.0.

I. Goal programming of the sequences of hydrological objectives

The Python script below has been run in Docker that incorporate distributed

applications integrated by RTC-2.0 Tools under 32-bits Python 2.7.3. This

hydroeconomic optimization (~40 goals) took 20 minutes simulation time Intel(R)

Core(TM) i5 2.5GHz. This python scripting is linked to the model schematization of the

linear reservoirs.

"""

OTPIMIZATION of hydrological problems on the linear cascade reservoirs

Author: Tiaravanni Hermawan

Date : July 28, 2016

"""

#IMPORT modules

from rtctools.optimization.collocated_integrated_optimization_problem import

CollocatedIntegratedOptimizationProblem

from rtctools.optimization.goal_programming_mixin import GoalProgrammingMixin,

Goal

from rtctools.optimization.modelica_mixin import ModelicaMixin

from rtctools.optimization.timeseries import Timeseries

from rtctools.optimization.csv_mixin import CSVMixin

from rtctools.util import run_optimization_problem

from casadi import MX

import logging

import numpy as np

import sys

import os

import csv

from time import sleep

logger = logging.getLogger("rtctools")

Tiaravanni Hermawan C-2

#PRIORITIES are based on RIBASIM, including rule curves and hedging rules

#ONLINE adjusted gate: Most upstream reservoir has the highest priority for a specific

rule curves

#IF NOT ONLINE: Most upstream reservoir has the highest priority

#TARGET before lowest hedging

#A class for a specific goal, either range of soft constraints or minimize a function

class Saguling_P10(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

#OBJETIVE function on a Modelica variable

def function(self, o):

 return o.state_at('reservoirCompact_Saguling.P', self.time)

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e11)

 # HIGHER priority =lower number

 @property

 def priority(self):

 return 1

class Cirata_P10(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('reservoirCompact_Cirata.P', self.time)

 @property

 def min(self):

Tiaravanni Hermawan C-3

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e11)

 @property

 def priority(self):

 return 2

#Water level of hedging 4

class Saguling_H4(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('reservoirCompact_Saguling.H', self.time)

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e3)

 @property

 def priority(self):

 return 3

class Cirata_H4(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

Tiaravanni Hermawan C-4

 self._max = _max

 def function(self, o):

 return o.state_at('reservoirCompact_Cirata.H', self.time)

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e3)

 @property

 def priority(self):

 return 4

class Jatiluhur_H4(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('reservoirCompact_Jatiluhur.H', self.time)

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e3)

 @property

 def priority(self):

 return 5

Tiaravanni Hermawan C-5

#TARGET

class Saguling_P30(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('reservoirCompact_Saguling.P', self.time)

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e11)

 @property

 def priority(self):

 return 6

class Cirata_P30(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('reservoirCompact_Cirata.P', self.time)

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

Tiaravanni Hermawan C-6

 @property

 def function_range(self):

 return (0,1e11)

 @property

 def priority(self):

 return 7

class Jatiluhur_P50(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('reservoirCompact_Jatiluhur.P', self.time)

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e11)

 @property

 def priority(self):

 return 8

class Agriculture_Q50(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('terminal_Agriculture.Q', self.time)

 @property

 def min(self):

 return self._min

Tiaravanni Hermawan C-7

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e3)

 @property

 def priority(self):

 return 8

#LEVEL Hedging 3

class Saguling_H3(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('reservoirCompact_Saguling.H', self.time)

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e3)

 @property

 def priority(self):

 return 9

class Cirata_H3(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

Tiaravanni Hermawan C-8

 def function(self, o):

 return o.state_at('reservoirCompact_Cirata.H', self.time)

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e3)

 @property

 def priority(self):

 return 10

class Jatiluhur_H3(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('reservoirCompact_Jatiluhur.H', self.time)

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e3)

 @property

 def priority(self):

 return 11

Tiaravanni Hermawan C-9

#TARGET

class Saguling_P50(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('reservoirCompact_Saguling.P', self.time)

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e11)

 @property

 def priority(self):

 return 5

class Cirata_P50(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('reservoirCompact_Cirata.P', self.time)

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

Tiaravanni Hermawan C-10

 @property

 def function_range(self):

 return (0,1e11)

 @property

 def priority(self):

 return 12

class Jatiluhur_P90(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('reservoirCompact_Jatiluhur.P', self.time)

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e11)

 # Because we want to satisfy our water level target first, this has a

 # higher priority (=lower number).

 @property

 def priority(self):

 return 13

class Agriculture_Q90(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('terminal_Agriculture.Q', self.time)

 @property

Tiaravanni Hermawan C-11

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e3)

 @property

 def priority(self):

 return 14

#LEVEL Hedging 2

class Saguling_H2(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('reservoirCompact_Saguling.H', self.time)

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e3)

 @property

 def priority(self):

 return 15

class Cirata_H2(Goal):

Tiaravanni Hermawan C-12

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('reservoirCompact_Cirata.H', self.time)

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e3)

 @property

 def priority(self):

 return 16

class Jatiluhur_H2(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('reservoirCompact_Jatiluhur.H', self.time)

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e3)

Tiaravanni Hermawan C-13

 @property

 def priority(self):

 return 17

#TARGET

class Saguling_P70(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('reservoirCompact_Saguling.P', self.time)

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e11)

 @property

 def priority(self):

 return 18

class Cirata_P70(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('reservoirCompact_Cirata.P', self.time)

 @property

 def min(self):

 return self._min

 @property

Tiaravanni Hermawan C-14

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e11)

 @property

 def priority(self):

 return 19

class Jatiluhur_PFirm(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('reservoirCompact_Jatiluhur.P', self.time)

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e11)

 @property

 def priority(self):

 return 20

class Agriculture_QOut(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('node_Agriculture.QOut_control[1]', self.time)

Tiaravanni Hermawan C-15

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e3)

 @property

 def priority(self):

 return 21

#LEVEL Hedging 1

class Saguling_H1(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('reservoirCompact_Saguling.H', self.time)

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e3)

 @property

 def priority(self):

 return 22

class Cirata_H1(Goal):

Tiaravanni Hermawan C-16

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('reservoirCompact_Cirata.H', self.time)

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e3)

 @property

 def priority(self):

 return 23

class Jatiluhur_H1(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('reservoirCompact_Jatiluhur.H', self.time)

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e3)

Tiaravanni Hermawan C-17

 @property

 def priority(self):

 return 24

#TARGET

class Saguling_P90(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('reservoirCompact_Saguling.P', self.time)

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e11)

 @property

 def priority(self):

 return 25

class Cirata_P90(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('reservoirCompact_Cirata.P', self.time)

 @property

 def min(self):

 return self._min

 @property

Tiaravanni Hermawan C-18

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e11)

 @property

 def priority(self):

 return 26

#LEVEL Firm

class Saguling_HFirm(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('reservoirCompact_Saguling.H', self.time)

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e3)

 @property

 def priority(self):

 return 27

class Cirata_HFirm(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

Tiaravanni Hermawan C-19

 return o.state_at('reservoirCompact_Cirata.H', self.time)

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e3)

 @property

 def priority(self):

 return 28

class Jatiluhur_HFirm(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('reservoirCompact_Jatiluhur.H', self.time)

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e3)

 @property

 def priority(self):

 return 29

#TARGET Firm

Tiaravanni Hermawan C-20

class Saguling_PFirm(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('reservoirCompact_Saguling.P', self.time)

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e11)

 @property

 def priority(self):

 return 30

class Cirata_PFirm(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('reservoirCompact_Cirata.P', self.time)

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e11)

Tiaravanni Hermawan C-21

 @property

 def priority(self):

 return 31

#LEVEL Target

class Saguling_HTarget(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('reservoirCompact_Saguling.H', self.time)

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e3)

 @property

 def priority(self):

 return 32

class Cirata_HTarget(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('reservoirCompact_Cirata.H', self.time)

 @property

 def min(self):

 return self._min

Tiaravanni Hermawan C-22

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e3)

 @property

 def priority(self):

 return 33

class Jatiluhur_HTarget(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('reservoirCompact_Jatiluhur.H', self.time)

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e3)

 @property

 def priority(self):

 return 34

#OPTIMIZATION problem

class CitarumGP(GoalProgrammingMixin, CSVMixin, ModelicaMixin,

CollocatedIntegratedOptimizationProblem):

def __init__(self, model_folder, input_folder, output_folder):

 # Call constructors

 GoalProgrammingMixin.__init__(self)

 CSVMixin.__init__(self,

Tiaravanni Hermawan C-23

 input_folder=input_folder,

 output_folder=output_folder,

 equidistant=False)

 ModelicaMixin.__init__(self,

 model_name='citarum',

 model_folder=model_folder,

 #HEADER of .csv time series

 constant_inputs=['inflow_Saguling_Q',

 'inflow_Cirata_Q',

 'inflow_Jatiluhur_Q',

 'node_Agriculture_Q50',

 'node_Agriculture_Q90',

 'node_Agriculture_QOut',

 'Saguling_evaporation',

 'Cirata_evaporation',

 'Jatiluhur_evaporation',

 'Saguling_H4',

 'Saguling_H3',

 'Saguling_H2',

 'Saguling_H1',

 'Saguling_HFirm',

 'Saguling_HTarget',

 'SagulingHFlood',

 'Cirata_H4',

 'Cirata_H3',

 'Cirata_H2',

 'Cirata_H1',

 'Cirata_HFirm',

 'Cirata_HTarget',

 'CirataHFlood',

 'Jatiluhur_H4',

 'Jatiluhur_H3',

 'Jatiluhur_H2',

 'Jatiluhur_H1',

 'Jatiluhur_HFirm',

 'Jatiluhur_HTarget',

 'JatiluhurHFlood'])

 CollocatedIntegratedOptimizationProblem.__init__(self)

 # We keep track of our intermediate results, so that we can print some

 # information about the progress of goals at the end of our run.

 self.intermediate_results = []

 # Store settings

Tiaravanni Hermawan C-24

 #self.output_folder = output_folder

 def bounds(self):

 # HARD CONSTRAINTS

 return {'reservoirCompact_Saguling.P': (0.0, 700000000),

 'reservoirCompact_Cirata.P': (0.0, 1008000000),

 'reservoirCompact_Jatiluhur.P': (0.0, 180000000),

 'reservoirCompact_Jatiluhur.H': (74.89,106.89),

 'reservoirCompact_Cirata.H': (180, 220),

 'reservoirCompact_Saguling.H': (622.6, 643),

 'reservoirCompact_Saguling.Q_spill': (0.0, None),

 'reservoirCompact_Cirata.Q_spill': (0.0, None),

 'reservoirCompact_Jatiluhur.Q_spill': (0.0, None),

 'reservoirCompact_Saguling.Q_turbine': (0.0, None),

 'reservoirCompact_Cirata.Q_turbine': (0.0, None),

 'reservoirCompact_Jatiluhur.Q_turbine': (0.0, None),

 'node_Agriculture.QOut_control[1]': (0,

self.timeseries('node_Agriculture_QOut')),

 'terminal_River.Q':(0.0, None),

 'reservoirCompact_Saguling.V':(0.0, None),

 'reservoirCompact_Cirata.V':(0.0, None),

 'reservoirCompact_Jatiluhur.V':(0.0, None)}

 @property

 def goals(self):

 g = []

 # Use a for loop to add goals for every time step

 for t in self.times():

 g.append(Saguling_P10(t, 13440860,700000000))

 g.append(Saguling_P30(t, 40322581,700000000))

 g.append(Saguling_P50(t, 67204301,700000000))

 g.append(Saguling_P70(t, 94086022,700000000))

 g.append(Saguling_P90(t, 120967742,700000000))

 g.append(Saguling_PFirm(t, 134402602,700000000))

 g.append(Cirata_P10(t, 8064516,1008000000))

 g.append(Cirata_P30(t, 24193548,1008000000))

 g.append(Cirata_P50(t, 40322581,1008000000))

 g.append(Cirata_P70(t, 56451613,1008000000))

 g.append(Cirata_P90(t, 72580645,1008000000))

 g.append(Cirata_PFirm(t, 80645161,1008000000))

 g.append(Jatiluhur_P50(t, 46841398,187000000))

 g.append(Jatiluhur_P90(t, 84314516,187000000))

 g.append(Jatiluhur_PFirm(t, 93682796,187000000))

Tiaravanni Hermawan C-25

 g.append(Saguling_H4(t, self.interpolate(t, self.timeseries('Saguling_H4').times,

self.timeseries('Saguling_H4').values), self.interpolate(t,

self.timeseries('SagulingHFlood').times, self.timeseries('SagulingHFlood').values)))

 g.append(Saguling_H3(t, self.interpolate(t, self.timeseries('Saguling_H3').times,

self.timeseries('Saguling_H3').values), self.interpolate(t,

self.timeseries('SagulingHFlood').times, self.timeseries('SagulingHFlood').values)))

 g.append(Saguling_H3(t, self.interpolate(t, self.timeseries('Saguling_H2').times,

self.timeseries('Saguling_H2').values), self.interpolate(t,

self.timeseries('SagulingHFlood').times, self.timeseries('SagulingHFlood').values)))

 g.append(Saguling_H1(t, self.interpolate(t, self.timeseries('Saguling_H1').times,

self.timeseries('Saguling_H1').values), self.interpolate(t,

self.timeseries('SagulingHFlood').times, self.timeseries('SagulingHFlood').values)))

 g.append(Saguling_HFirm(t, self.interpolate(t,

self.timeseries('Saguling_HFirm').times, self.timeseries('Saguling_HFirm').values),

self.interpolate(t, self.timeseries('SagulingHFlood').times,

self.timeseries('SagulingHFlood').values)))

 g.append(Saguling_HTarget(t, self.interpolate(t,

self.timeseries('Saguling_HTarget').times, self.timeseries('Saguling_HTarget').values),

self.interpolate(t, self.timeseries('SagulingHFlood').times,

self.timeseries('SagulingHFlood').values)))

 g.append(Cirata_H4(t, self.interpolate(t, self.timeseries('Cirata_H4').times,

self.timeseries('Cirata_H4').values), self.interpolate(t,

self.timeseries('CirataHFlood').times, self.timeseries('CirataHFlood').values)))

 g.append(Cirata_H3(t, self.interpolate(t, self.timeseries('Cirata_H3').times,

self.timeseries('Cirata_H3').values), self.interpolate(t,

self.timeseries('CirataHFlood').times, self.timeseries('CirataHFlood').values)))

 g.append(Cirata_H3(t, self.interpolate(t, self.timeseries('Cirata_H2').times,

self.timeseries('Cirata_H2').values), self.interpolate(t,

self.timeseries('CirataHFlood').times, self.timeseries('CirataHFlood').values)))

 g.append(Cirata_H1(t, self.interpolate(t, self.timeseries('Cirata_H1').times,

self.timeseries('Cirata_H1').values), self.interpolate(t,

self.timeseries('CirataHFlood').times, self.timeseries('CirataHFlood').values)))

 g.append(Cirata_HFirm(t, self.interpolate(t,

self.timeseries('Cirata_HFirm').times, self.timeseries('Cirata_HFirm').values),

self.interpolate(t, self.timeseries('CirataHFlood').times,

self.timeseries('CirataHFlood').values)))

 g.append(Cirata_HTarget(t, self.interpolate(t,

self.timeseries('Cirata_HTarget').times, self.timeseries('Cirata_HTarget').values),

self.interpolate(t, self.timeseries('CirataHFlood').times,

self.timeseries('CirataHFlood').values)))

Tiaravanni Hermawan C-26

 g.append(Jatiluhur_H4(t, self.interpolate(t, self.timeseries('Jatiluhur_H4').times,

self.timeseries('Jatiluhur_H4').values), self.interpolate(t,

self.timeseries('JatiluhurHFlood').times, self.timeseries('JatiluhurHFlood').values)))

 g.append(Jatiluhur_H3(t, self.interpolate(t, self.timeseries('Jatiluhur_H3').times,

self.timeseries('Jatiluhur_H3').values), self.interpolate(t,

self.timeseries('JatiluhurHFlood').times, self.timeseries('JatiluhurHFlood').values)))

 g.append(Jatiluhur_H3(t, self.interpolate(t, self.timeseries('Jatiluhur_H2').times,

self.timeseries('Jatiluhur_H2').values), self.interpolate(t,

self.timeseries('JatiluhurHFlood').times, self.timeseries('JatiluhurHFlood').values)))

 g.append(Jatiluhur_H1(t, self.interpolate(t, self.timeseries('Jatiluhur_H1').times,

self.timeseries('Jatiluhur_H1').values), self.interpolate(t,

self.timeseries('JatiluhurHFlood').times, self.timeseries('JatiluhurHFlood').values)))

 g.append(Jatiluhur_HFirm(t, self.interpolate(t,

self.timeseries('Jatiluhur_HFirm').times, self.timeseries('Jatiluhur_HFirm').values),

self.interpolate(t, self.timeseries('JatiluhurHFlood').times,

self.timeseries('JatiluhurHFlood').values)))

 g.append(Jatiluhur_HTarget(t, self.interpolate(t,

self.timeseries('Jatiluhur_HTarget').times, self.timeseries('Jatiluhur_HTarget').values),

self.interpolate(t, self.timeseries('JatiluhurHFlood').times,

self.timeseries('JatiluhurHFlood').values)))

 g.append(Agriculture_Q50(t, self.interpolate(t,

self.timeseries('node_Agriculture_Q50').times,

self.timeseries('node_Agriculture_Q50').values), self.interpolate(t,

self.timeseries('node_Agriculture_QOut').times,

self.timeseries('node_Agriculture_QOut').values)))

 g.append(Agriculture_Q90(t, self.interpolate(t,

self.timeseries('node_Agriculture_Q90').times,

self.timeseries('node_Agriculture_Q90').values), self.interpolate(t,

self.timeseries('node_Agriculture_QOut').times,

self.timeseries('node_Agriculture_QOut').values)))

 g.append(Agriculture_QOut(t, self.interpolate(t,

self.timeseries('node_Agriculture_QOut').times,

self.timeseries('node_Agriculture_QOut').values), self.interpolate(t,

self.timeseries('node_Agriculture_QOut').times,

self.timeseries('node_Agriculture_QOut').values)))

 return g

Run

run_optimization_problem(CitarumGP, base_folder='..')

Tiaravanni Hermawan C-27

II. Conventional linear programming of a hydroeconomic objective

The Python script below has been run in Docker that incorporate distributed

applications integrated by RTC-2.0 Tools under 32-bits Python 2.7.3. This

hydroeconomic optimization took 3 minutes simulation time (~150 iterations) in Intel(R)

Core(TM) i5 2.5GHz. The simulation time is likely to strongly depend on the formulation

of the objective function. This python scripting is linked to the model schematization of

the linear reservoirs.

#IMPORT modules

from rtctools.optimization.collocated_integrated_optimization_problem import

CollocatedIntegratedOptimizationProblem

from rtctools.optimization.modelica_mixin import ModelicaMixin

from rtctools.optimization.timeseries import Timeseries

from rtctools.optimization.csv_mixin import CSVMixin

from rtctools.util import run_optimization_problem

from casadi import MX

import logging

import numpy as np

import sys

import os

logger = logging.getLogger("rtctools")

#DEFINE the optimization problem

class TestProblem(CSVMixin, ModelicaMixin,

CollocatedIntegratedOptimizationProblem):

 def __init__(self, model_folder, input_folder, output_folder):

 # CALL constructors

 CSVMixin.__init__(self,

 input_folder=input_folder,

 output_folder=output_folder,

 equidistant=False)

 ModelicaMixin.__init__(self,

 model_name='citarum',

 model_folder=model_folder,

 constant_inputs=['inflow_Saguling_Q',

 'inflow_Cirata_Q',

 'inflow_Jatiluhur_Q',

 'node_Agriculture_QOut',

 'Saguling_evaporation',

 'Cirata_evaporation',

 'Jatiluhur_evaporation',

 'value_Floodinitial'])

 CollocatedIntegratedOptimizationProblem.__init__(self)

Tiaravanni Hermawan C-28

 # STORE settings

 self.output_folder = output_folder

 #DEFINE a single hydroeconomic objective function

 def objective(self,ensemble_member):

 # MAXIMIZE generation

 return -self.state_at('benefit_Total', self.times()[-1])

 def bounds(self):

 # HARD CONSTRAINT

 return {'reservoirCompact_Saguling.P': (0.0, 700000000),

 'reservoirCompact_Cirata.P': (0.0, 1008000000),

 'reservoirCompact_Jatiluhur.P': (0.0, 180000000),

 'reservoirCompact_Jatiluhur.H': (74.89,106.89),

 'reservoirCompact_Cirata.H': (180, 220),

 'reservoirCompact_Saguling.H': (622.6, 643),

 'reservoirCompact_Saguling.Q_spill': (0.0, None),

 'reservoirCompact_Cirata.Q_spill': (0.0, None),

 'reservoirCompact_Jatiluhur.Q_spill': (0.0, None),

 'reservoirCompact_Saguling.Q_turbine': (0.0, None),

 'reservoirCompact_Cirata.Q_turbine': (0.0, None),

 'reservoirCompact_Jatiluhur.Q_turbine': (0.0, None),

 'node_Agriculture.QOut_control[1]': (0.0,

 self.timeseries('node_Agriculture_QOut')),

 'terminal_River.Q':(0.0, None),

 #Environmental flow 'terminal_River.Q':(1.4, None),

 'reservoirCompact_Saguling.V':(0.0, None),

 'reservoirCompact_Cirata.V':(0.0, None),

 'reservoirCompact_Jatiluhur.V':(0.0, None)}

 def constraints(self,ensemble_member):

 return []

RUN optimization problem

run_optimization_problem(TestProblem, log_level=logging.INFO)

Tiaravanni Hermawan C-29

III. Conventional linear programming of a hydroeconomic objective (lookup table)

The Python script below has been run in Docker that incorporates distributed

applications integrated by RTC-2.0 Tools under 32-bits Python 2.7.3. This

hydroeconomic optimization took 30 minutes simulation time in Intel(R) Core(TM) i5

2.5GHz. The simulation time is likely to strongly depend on the formulation of the

objective function. This python scripting is linked to the model schematization of the

look-up table reservoirs. The curves fitting of the look-up table of reservoirs are

presented below.

"""

Linear programming/linear optimization of a single hydroeconomic objective funtion

Author: Tiaravanni Hermawan

Date : 11 August, 2016

"""

from rtctools.optimization.collocated_integrated_optimization_problem import

CollocatedIntegratedOptimizationProblem

from rtctools.optimization.goal_programming_mixin import GoalProgrammingMixin,

Goal

from rtctools.optimization.modelica_mixin import ModelicaMixin

from rtctools.optimization.csv_lookup_table_mixin import CSVLookupTableMixin

from rtctools.optimization.timeseries import Timeseries

from rtctools.optimization.csv_mixin import CSVMixin

from rtctools.util import run_optimization_problem

from casadi import MX

import logging

import numpy as np

import sys

import os

import csv

from time import sleep

import numpy as np

from abc import ABCMeta, abstractmethod

from sets import Set

import scipy.interpolate

import itertools

import logging

import glob

import datetime

import matplotlib

matplotlib.use('Agg')

Tiaravanni Hermawan C-30

import pylab

logger = logging.getLogger("rtctools")

class MaximizeBenefit(Goal):

 def function(self, optimization_problem):

 return -optimization_problem.integral('benefit_total')

 @property

 def function_range(self):

 return (1e2, 1e5)

 @property

 def priority(self):

 return 1

class Lookup(CSVLookupTableMixin,GoalProgrammingMixin, CSVMixin,

ModelicaMixin, CollocatedIntegratedOptimizationProblem):

 def __init__(self, model_folder, input_folder, output_folder):

 #lookup_tables = [splitext(f)[0] for f in listdir(join(input_folder, 'lookup_tables'))]

 # Call constructors

 CSVLookupTableMixin.__init__(self, input_folder=input_folder)

 GoalProgrammingMixin.__init__(self)

 CSVMixin.__init__(self,

 input_folder=input_folder,

 output_folder=output_folder,

 equidistant=False)

 ModelicaMixin.__init__(self,

 model_name='citarum',

 model_folder=model_folder,

 constant_inputs=['inflow_Saguling_Q',

 'inflow_Cirata_Q',

 'inflow_Jatiluhur_Q',

 'node_Agriculture_QOut',

 'Saguling_evaporation',

 'Cirata_evaporation',

 'Jatiluhur_evaporation',

 lookup_tables=['Saguling_area',

 'Saguling_volume'

 'Cirata_area'

 'Cirata_volume'

 'Jatiluhur_area'

 'Jatiluhur_volume'])

 CollocatedIntegratedOptimizationProblem.__init__(self)

Tiaravanni Hermawan C-31

 for filename in glob.glob(os.path.join(self, input_folder, "lookup_tables/*.csv")):

 logger.debug("Reading lookup tables from {}".format(filename))

 csvinput = np.genfromtxt(filename, delimiter=",", dtype=None, names=True,

deletechars="")

 input_name = csvinput.dtype.names[0]

 input_values = csvinput[input_name]

 for output_name in csvinput.dtype.names[1:]:

 logger.debug("Reading lookup table from {} to {}".format(input_name,

output_name))

 #Plot lookup table

 tck = scipy.interpolate.splrep(input_values, csvinput[output_name], k=3, s=0)

 t_ = np.linspace(input_values[0], input_values[-1], 1000)

 o = scipy.interpolate.splev(t_, tck)

 pylab.clf()

 pylab.plot(t_, o)

 pylab.title(input_name + ' to ' + output_name)

 pylab.savefig(os.path.join(self, output_folder, input_name.replace(':','_') + '_' +

output_name.replace(':','_') + '.png'))

 logger.debug("Done computing B-Spline coefficients")

 # We keep track of our intermediate results, so that we can print some

 # information about the progress of goals at the end of our run.

 self.intermediate_results = []

 # Store settings

 #self.output_folder = output_folder

 @property

 def bounds(self):

 # Bounds

 return {'reservoirCompact_Saguling.P': (0.0, 700000000),

 'reservoirCompact_Cirata.P': (0.0, 1008000000),

 'reservoirCompact_Jatiluhur.P': (0.0, 180000000),

 'reservoirCompact_Jatiluhur.H': (74.89,106.89),

 'reservoirCompact_Cirata.H': (180, 220),

 'reservoirCompact_Saguling.H': (622.6, 643),

 'reservoirCompact_Saguling.Q_spill': (0.0, None),

 'reservoirCompact_Cirata.Q_spill': (0.0, None),

 'reservoirCompact_Jatiluhur.Q_spill': (0.0, None),

 'reservoirCompact_Saguling.Q_turbine': (0.0, None),

 'reservoirCompact_Cirata.Q_turbine': (0.0, None),

 'reservoirCompact_Jatiluhur.Q_turbine': (0.0, None),

Tiaravanni Hermawan C-32

 'node_Agriculture.QOut_control[1]': (0,

self.timeseries('node_Agriculture_QOut')),

 'terminal_River.Q':(0.0, None),

 'reservoirCompact_Saguling.V':(0.0, None),

 'reservoirCompact_Cirata.V':(0.0, None),

 'reservoirCompact_Jatiluhur.V':(0.0, None)}

 @property

 def goals(self):

 g = []

 g.append(MaximizeBenefit())

return g

Run

run_optimization_problem(Lookup, base_folder='..')

Tiaravanni Hermawan C-33

Tiaravanni Hermawan C-34

IV. Hybrid optimization between goal programming and conventional linear

programming

The Python script below has been run in Docker that incorporates distributed

applications integrated by RTC-2.0 Tools under 32-bits Python 2.7.3. This

hydroeconomic optimization (~4 sequences of objectives and a single hydroeconomic

objective) took 5 minutes simulation time Intel(R) Core(TM) i5 2.5GHz.

"""

Hybrid optimization on the linear cascade reservoirs

Author: Tiaravanni Hermawan

Date : August 10, 2016

"""

from rtctools.optimization.collocated_integrated_optimization_problem import

CollocatedIntegratedOptimizationProblem

from rtctools.optimization.goal_programming_mixin import GoalProgrammingMixin,

Goal

from rtctools.optimization.modelica_mixin import ModelicaMixin

from rtctools.optimization.timeseries import Timeseries

from rtctools.optimization.csv_mixin import CSVMixin

from rtctools.util import run_optimization_problem

from casadi import MX

import logging

import numpy as np

import sys

import os

logger = logging.getLogger("rtctools")

#LATEST PRIORITY

class MaxTotalBenefit(Goal):

 # If we do not specify any minimum or maximum value in this class, the

 # goal programming mixin will try to minimize the following function.

 def function(self, optimization_problem):

 # Maximize generation

 return optimization_problem.state_at('benefit_Total',

optimization_problem.times()[-1])

 # Every goal needs a rough (over)estimate of the range of the function

defined above.

decent estimate.

 @property

 def function_range(self):

 return (0, 1e6)

Tiaravanni Hermawan C-35

 # The lower the number returned by this function, the higher the priority.

 @property

 def priority(self):

 return 100

#HIGHEST PRIORITY: FIRM DEMAND

#Put the firm target of the cascade linear reservoirs in the similar level

class Saguling_PFirm(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('reservoirCompact_Saguling.P', self.time)

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e12)

 # Lowest number is the highest priority

 @property

 def priority(self):

 return 1

class Cirata_PFirm(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('reservoirCompact_Cirata.P', self.time)

 @property

Tiaravanni Hermawan C-36

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e12)

 @property

 def priority(self):

 return 1

class Jatiluhur_PFirm(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('reservoirCompact_Jatiluhur.P', self.time)

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e12)

 @property

 def priority(self):

 return 1

class Agriculture_QOut(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

Tiaravanni Hermawan C-37

 def function(self, o):

 return o.state_at('terminal_Agriculture.Q', self.time)

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e3)

 @property

 def priority(self):

 return 1

class Jatiluhur_QOut(Goal):

 def __init__(self, time, _min, _max):

 self.time = time

 self._min = _min

 self._max = _max

 def function(self, o):

 return o.state_at('out_Jatiluhur_Q', self.time)

 @property

 def min(self):

 return self._min

 @property

 def max(self):

 return self._max

 @property

 def function_range(self):

 return (0,1e3)

 @property

 def priority(self):

 return 1

Tiaravanni Hermawan C-38

#OPTIMIZATION PROBLEM

class Hybrid(GoalProgrammingMixin, CSVMixin, ModelicaMixin,

CollocatedIntegratedOptimizationProblem):

 def __init__(self, model_folder, input_folder, output_folder):

 # Call constructors

 GoalProgrammingMixin.__init__(self)

 CSVMixin.__init__(self,

 input_folder=input_folder,

 output_folder=output_folder,

 equidistant=False)

 ModelicaMixin.__init__(self,

 model_name='citarum',

 model_folder=model_folder,

 constant_inputs=['inflow_Saguling_Q',

 'inflow_Cirata_Q',

 'inflow_Jatiluhur_Q',

 'node_Agriculture_QOut',

 'Saguling_evaporation',

 'Cirata_evaporation',

 'Jatiluhur_evaporation',

 'value_Floodinitial'])

 CollocatedIntegratedOptimizationProblem.__init__(self)

 # We keep track of our intermediate results, so that we can print some

 # information about the progress of goals at the end of our run.

 self.intermediate_results = []

 def bounds(self):

 #HARD CONSTRAINTS

 return {'reservoirCompact_Saguling.P': (0.0, 700000000),

 'reservoirCompact_Cirata.P': (0.0, 1008000000),

 'reservoirCompact_Jatiluhur.P': (0.0, 180000000),

 'reservoirCompact_Jatiluhur.H': (74.89,106.89),

 'reservoirCompact_Cirata.H': (180, 220),

 'reservoirCompact_Saguling.H': (622.6, 643),

 'reservoirCompact_Saguling.Q_spill': (0.0, None),

 'reservoirCompact_Cirata.Q_spill': (0.0, None),

 'reservoirCompact_Jatiluhur.Q_spill': (0.0, None),

 'reservoirCompact_Saguling.Q_turbine': (0.0, None),

 'reservoirCompact_Cirata.Q_turbine': (0.0, None),

 'reservoirCompact_Jatiluhur.Q_turbine': (0.0, None),

 'node_Agriculture.QOut_control[1]': (0.0,

self.timeseries('node_Agriculture_QOut')),

 'terminal_River.Q':(1.4, None),

Tiaravanni Hermawan C-39

 @property

 def goals(self):

 g = []

 #MAX Total benefit at the latest goal

 g.append(MaxTotalBenefit())

 #SATISFY firm demand as soft constraints at the higher goal

 # Use a for loop to add goals for every time step

 for t in self.times():

 g.append(Saguling_PFirm(t, 148814016.428571,700000000))

 g.append(Cirata_PFirm(t, 89285713.9642857,1008000000))

 g.append(Jatiluhur_PFirm(t, 103720238.428571,187000000))

 g.append(Agriculture_QOut(t, 0, self.interpolate(t,

self.timeseries('node_Agriculture_QOut').times,

self.timeseries('node_Agriculture_QOut').values)))

 g.append(Jatiluhur_QOut(t, 57.6,200))

 return g

 def configure_solver(self, options):

 # Guideline: O(goal tolerance) = |QSTGoal.function_range| * tol

 options['tol']=1e-6

 options['expand']=True

Run

run_optimization_problem(Hybrid, log_level=logging.DEBUG)

Tiaravanni Hermawan C-1

APPENDIX D: PYTHON SCRIPT – BATCH FILE

The batch file below is developed to automatically run RTC-Tools 2.0 several times with

different input data but similar objective functions.

#DEFINE folder location

directory = os.path.join(sys.path[0], '../longinput/')

directory2 = os.path.join(sys.path[0], '../input/')

directory3 = os.path.join(sys.path[0], '../output/')

#SPECIFY the length of cutting and simulation period

cutting=12

ts=1200

run=int(ts/cutting)

numrun=0

EXTRACT output file of the cut time series to a single extract.csv file (function)

def extract():

 for o in range(cutting):

 f_ext.write(line_out[(o+2)])

 f_out.close()

for numrun in range(run):

 print numrun

 #CUT time series input

 for subdir, dirs, files in os.walk(directory):

 for file in files:

 o=0

 f=open(directory+file,'rb')

 with open(directory+file,'rb') as openfile:

 listsdata = []

 for linedata in openfile:

 linesdata = linedata.split(',')

 linesdata[-1] = linesdata[-1].replace('\n', '').replace('\r', '')

 listsdata.append(linesdata)

 i=0

 f_cut = open(directory2+file,'wb')

 #lines = f.readlines()

 a=csv.writer(f_cut, delimiter=",", dtype=None, names=True, deletechars="")

 a.writerow(listsdata[i])

 #f_cut.write(listsdata[i])

Tiaravanni Hermawan C-2

 for i in range(cutting+2):

 #print lines[(cutting*(numrun))+(i+1)]

 a.writerow(listsdata[(cutting*(numrun))+(i+1)])

 f.close()

 #EXECUTE run.py in RTC-Tools 2.0

 os.system("python run.py")

 with open(directory3+'timeseries_export.csv','r') as openfile:

 lines = []

 for line in openfile:

 lists = line.split(',')

 lines.append(lists)

 column_jat = lines[0].index('reservoirCompact_Jatiluhur.H')

 value_jat = float(lines[-1][column_jat])

 column_cir = lines[0].index('reservoirCompact_Cirata.H')

 value_cir = float(lines[-1][column_cir])

 column_sag = lines[0].index('reservoirCompact_Saguling.H')

 value_sag = float(lines[-1][column_sag])

head=['reservoirCompact_Saguling.H', 'reservoirCompact_Cirata.H',

 'reservoirCompact_Jatiluhur.H']

 b= [value_sag,value_cir,value_jat]

 f_init = open(directory2+'initial_state.csv','w')

f_init.write('reservoirCompact_Saguling.H, reservoirCompact_Cirata.H,

 reservoirCompact_Jatiluhur.H\n')

 a=csv.writer(f_init)

 a.writerow(b)

f_init.close()

 #EXTRACT output file

 f_out=open(directory3+'timeseries_export.csv','r')

 f_ext=open(directory3+'extract.csv','a')

 line_out = f_out.readlines()

 if numrun==0:

 f_ext.write(line_out[0])

 extract()

 else:

 extract()

