
RTC-Tools 2.0: An open source toolbox for control and
multi-objective convex optimization of environmental systems under

forecast uncertainty

J.H. Baayena,∗, M. den Tooma, P. Gijsbersa,b, D. J. Vreekenc, D. Schwanenberga,d

aDepartment of Operational Water Management, Deltares, P.O. Box 177, 2600 MH Delft, The Netherlands
bDepartment of Water Resources Management, Deltares, P.O. Box 177, 2600 MH Delft, The Netherlands

cDepartment of Industrial Hydraulics, Deltares, P.O. Box 177, 2600 MH Delft, The Netherlands
dKisters AG, Pascalstraße 8+10, 52076 Aachen, Germany

Abstract

A new open source toolbox for control and optimization of environmental systems is introduced.
RTC-Tools 2.0 distinguishes itself from other environmental optimization packages by incorpo-
rating forecast uncertainty on the one hand, and supporting multiple nonlinear goals on the
other. The latter is of direct practical relevance for hydro power dispatch, by removing the
need for linear approximation of power generation. The convex, multi-objective formulation of
hydropower optimization goals introduced in this work allows simultaneous and nonlinear vari-
ation of turbine flow and head to be accounted for without creating local minima. RTC-Tools
2.0 distinguishes itself from the earlier 1.x versions by a framework that enables the formulation
of convex, i.e., unimodal and stable, optimization problems, by its use of the generic modelling
language Modelica, as well as by introducing prioritized multi-objective optimization through
sequential goal programming. Applications include hydro power dispatch, energy efficient polder
drainage, and water allocation.

Keywords: environmental systems, water allocation, reservoir management, hydropower
dispatch, model predictive control, multi-objective optimization, convex optimization, forecast
uncertainty

1. Introduction

Environmental systems differ from those designed by man in the degree of control we exert
over them. Environmental systems predate and probably will outlive human existence. These
systems are, in that sense, a given. We may modify environmental systems by, for instance,
adding human-built structures, or by modifying the geography of the surface of the land. At the
same time, the system remains in a setting that remains more or less constant on the timescale of
a human life. The geological and atmospheric dynamics acting on the system are mostly beyond
human control, and our failure to predict these dynamics exactly results forecast uncertainty.
Resource flows from neighbouring systems are also, from the perspective of the system under
consideration, a given. The consequence is that the ability of humans to control environmental
systems is limited.

∗Corresponding author
Email address: jorn.baayen@deltares.nl (J.H. Baayen)

Preprint submitted to Elsevier November 11, 2016

This stands in stark constrast to those systems that are designed by man. Machines, for
example, are designed specifically for particular tasks. The behaviour of a machine remains
unchanged, as long as the environment it exists in remains within the design space envisioned
by the engineer. Furthermore, the machine is engineered with actuators and degrees of freedom
that allow it to perform the tasks it is designed for exactly and completely.

Around the time of second millenium A.D., engineers started to experiment with ways to
automate machines, leading to the invention of the centrifugal governor in the 17th century. In
the early 20th century, this led to the invention of the PID controller, a way to automatically
compute an actuator setting based on measurements of the system state [1]. In the 1980s,
techniques from operations research started to be applied to the control of machines, leading to
optimization-based or model predictive control [2].

In the second half of the 20th century, environmental engineers started to apply optimization-
based planning and control techniques to environmental systems [3]. The principle of feedback
control, i.e., the computation of actuator input based on the measured system state, could be
applied directly to environmental systems. Weir levels, for example, could be controlled based
on measured water levels. However, whereas for machines, a given target state can, generally
speaking, always be achieved, this is not the case in environmental systems. A target water level
might never be reached, due to insufficient inflow frow the upstream.

The significance of the inability to steer an environmental state to any desired value is ap-
parent once we consider multiple system states. The degrees of freedom of a machine are often
equipped with independent actuators, facilitating full and independent control authority over all
states of the system. In environmental systems, however, states commonly influence each other.
For instance, when considering a reservoir, the need to lower the water level when a flood wave
is forecasted reduces the amount of water available for power generation. Control techniques
designed for machines with independently actuated states fail to take this interdependence into
account.

The interdependence among states implies that the fulfillment of one control goal may impact
or prohibit the attainment of other control goals. This circumstance calls for an approach
that is able to make trade-offs between control objectives. In turn, the ability to make trade-
offs requires awareness of the interdependence of the states, i.e., a system model. The system
behaviour may be linearized using an appropriate feedback law [4], energy functions may be used
to derive control laws [5], or the system model may be endowed with multiple goal functions and
constraints, leading to a multi-objective optimization problem [6, 7]. The use of system models
and optimization to compute control input may be extended to predict and optimize for the
future system state, leading to multi-objective model predictive control [8].

A second distinguishing feature of environmental systems is the uncertainty present when
trying to forecast their evolution in time. System inflows, for example, may be predicted based
on meteorological forecasts. The meteorological forecasts contain a high degree of uncertainty,
but so do hydrological rainfall runoff models. Deterministic optimization with a single forecast
would therefore run the risk of optimizing for one very specific future, and therefore be suboptimal
when applied to reality as it unfolds. Optimization under forecast uncertainty calls for techniques
that explicitly take the uncertainty into account: be it through forecast ensembles [9, 10, 11], or
through a mathematical description of an uncertainty set and/or probability distribution [12, 13].

In this paper, we introduce RTC-Tools 2.0, an open source toolbox for multi-objective model
predictive control of environmental systems under forecast uncertainty. RTC-Tools 2.0 is a
reincarnation of the RTC-Tools 1.x package developed by Schwanenberg at al. [14], rebasing it
on generic modelling principles, a new mathematical footing designed for operational stability,
and adding multi-objective optimization using lexicographic goal programming.

We pose six requirements that an operational model predictive controller for an environmen-

2

0 1 2 3 4 5 6 7 8 9 10

Goal

State

Control

Figure 1: Model predictive control: Computing controls so that the system state reaches a prescribed target over
a given prediction horizon.

tal system should satisfy. We will show that many of these requirements can be satisfied by
making sure that the optimization problems satisfy certain mathematical properties, leading us
to the field of convex optimization. We then review two multi-objective optimization techniques,
exploring their relative pros and cons in the context of environmental systems. Subsequently,
we review the stochastic optimization techniques available in the toolbox. In the final sections
we discuss the model library, the ideas behind the software architecture and how to use it, and
finally, a pilot application implemented for the Dutch Ministry of Infrastructure & Environment.

2. Model predictive control

Model predictive control (MPC) computes the control inputs for a system that maximize a
given performance target over a predetermined time horizon. The optimal control inputs are com-
puted using an embedded system model, forecasts of the boundary conditions, and optimization
techniques.

A model predictive controller has the following components:

• An embedded predictive model of the system.

• A set of measurements to describe the current state of the system, acting as initial condi-
tions for the predictive model.

• A set of boundary condition forecasts (e.g. water inflow to the systems, water extractions,
energy costs), i.e. a future scenario.

• A set of variables singled out as control inputs, i.e., as decision variables.

• Goals (e.g. minimum and maximum water levels, cost minimization) to evaluate the system
performance against.

The predictive model is discretized in time and forms, together with the goals, an optimization
problem. A mathematical optimization algorithm then determines the optimal control inputs
such that the model meets the goals as well as possible for the prediction horizon under the given
scenario. See Figure 1.

3

Classical MPC systems optimize for a single performance target only, whereas RTC-Tools
2.0 is able to optimize for multiple, possibly competing, targets in a structured way using multi-
objective optimization techniques. Multiple competing targets are common in water systems,
where there is often too little or too much water to fully attend to all requests.

3. Reliability axioms

When using optimization in an operational context, it is essential that six conditions are
always fulfilled:

1. Accuracy : Any solution is physically correct.

2. Feasibility : A feasible solution always exists.

3. Quality : Any solution is a “good” solution.

4. Stability : The solutions are stable in the sense that small perturbations in the configuration
result in small changes in the solution.

5. Determinism: Given the same initial solution guess and configuration, the solution is always
identical.

6. Bounded solution time: A solution is found within a predetermined amount of time.

The accuracy condition can be satisfied by ensuring that the physical models used for the
optimization are validated for the entire control input search space. This hinges on the expertise
of the modeller.

The feasibility condition can be satisfied by formulating operational constraints using priori-
tized multi-objective optimization using lexicographic goal programming. This will be discussed
in the next section.

The quality and bounded solution time conditions may be fulfilled by ensuring that the op-
timization problems are convex. Convex optimization problems can be solved efficiently, and,
in a convex setting, any locally optimal solution is also globally optimal [15]. Note that linear
optimization problems, so called linear programs, are also convex. Yet the class of convex opti-
mization problems is broader, allowing, for instance, quadratic as well as logarithmic constraints
and objectives:

Linear ⊂ Convex ⊂ Nonlinear.

This allows RTC-Tools to operate as reliably as if it were solving linear programs, while allowing
a broad class of nonlinear optimization problems to be solved without approximation.

The global optimality property of convex optimization problems also ensures that small per-
turbations in, e.g., the numerical settings of the optimization algorithm will not result in changes
of the objective value. Furthermore, the use of lexicographic goal programming precludes the
use of real-valued weighting factors in most cases, resulting in the elimination of most, and in
most cases all, tuneable parameters in the optimization problem itself. This covers the stability
condition.

The final condition is obtained by using deterministic methods of optimization. As convex
optimization problems only have global optima, deterministic gradient-based algorithms may be
used.

4

Figure 2: Example of a convex function. Source: Wikipedia. Licensed under the terms of the Creative Commons
Attribution-ShareAlike license version 4.0.

3.1. Convexity and continuity
As discussed above, to ensure that our axioms are satisfied, we want to ensure the convexity of

our optimization problems. In the present section, we introduce the notions of convex functions,
convex sets, and convex optimization problems, and briefly touch upon continuity requirements.

3.1.1. Convex functions
A functions f : X → Y is convex on the set X whenever the following inequality holds:

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

for all x, y ∈ X and t ∈ [0, 1]. See Figure 2. A function f is concave if the inequality is reversed.

Example 3.1. The function f = x2 is convex, whereas f = −x2 is concave. The function
f = log x is concave, but the function f = − log x is convex. Affine functions f = ax + b are
both convex and concave.

3.1.2. Convex sets
A set X is convex whenever, for all x, y ∈ X and t ∈ [0, 1], tx+ (1− t)y ∈ X. In other words,

whenever for each and every points x, y ∈ X the straight line connecting x and y also lies in X.
See Figure 3.

It is easily verified that the sublevel sets of a convex function f , i.e., the sets {x ∈ X : f(x) ≤
y} for y ∈ f(X), are convex sets.

3.1.3. Convex optimization
An optimization problem is called convex whenever its objective function is convex, and its

constraints result in a convex search space. In other words, the objective function must be
well-behaved, and the search space must not contain any nooks or crannies.

Formally, an optimization problem of the form

min
x
f(x) subject to

g(x) ≤ 0

is convex if S := {x : g(x) ≤ 0} is a convex set, and if f is convex on S.

5

x

y

(a) A convex set

x

y

(b) A set that is not convex

Figure 3: Examples of convex and non-convex sets. Source: Wikipedia. Licensed under the terms of the Creative
Commons Attribution-ShareAlike license version 4.0.

A sufficient condition for convexity of the search space S is for the functions g to be convex.
This condition is, however, not necessary. For example, the constraint log(x) ≤ 0 also defines a
convex set in R+, but log is not a convex function1.

In the present work, we will limit our attention to inequality constraints defined using convex
functions. This is useful, as convexity is preserved under a number of algebraic operations, such
as multiplication with positive scalars and addition: the set of convex functions forms a cone.
This algebraic structure allows us to use knowledge of the convexity of elementary functions to
construct more complex convex funtions.

To include equality constraints h(x) = 0, note that this is equivalent to demanding that
h(x) ≤ 0 and −h(x) ≤ 0. The function h must therefore be both convex and concave at the
same time, i.e., it must be affine.

3.1.4. Continuity
To satisfy gradient-based interior point solvers such as the open source IPOPT, the optimiza-

tion problem must be twice continuously differentiable [16].
RTC-Tools 2.0 is designed to formulate convex and twice continuously differentiable opti-

mization problems.

4. Multi-objective optimization

Typically, optimization problems are treated as having a single, well-defined goal function.
Yet this model is not sufficiently rich to capture multiple, possibly conflicting, goal functions.
Optimization problems with multiple goal functions are known as multi-objective problems.
Characteristic of multi-objective optimization problems is the presence of a so-called Pareto
front. The Pareto front is the space of solutions satisfying the constraints for which no goal can
be improved without negatively impacting another [6]. Methods for multi-objective optimization
problems seek to find one or more solutions on the Pareto front. See Figure 4. Solution on the
Pareto front are known as Pareto optimal.

1It is, however, quasiconvex : All sublevel sets of the function are convex. The set of quasiconvex functions
is however not closed under addition, and therefore quasiconvex functions are much more difficult to work with
than convex functions.

6

Goal #1

G
o
a
l
#

2

Figure 4: Pareto front with a typical weighting method solution in red, and a typical goal programming solution
in blue.

In the following, we discuss two families of methods to parametrize the relative importance of
the goal functions. We consider the translation of the multi-objective optimization problem into
one or more single-objective optimization problems, yielding a single Pareto-optimal solution:
We restrict our discussion to a-priori methods [6].

4.1. Weighting method
The idea of the weighting method is to assign real-valued weights, here denoted λi, to the goal

functions, denoted fi. The resulting single objective function becomes f(x) :=
∑N
i=1 λifi(x). Let

the optimization problem be subject to a set of constraints g(x) ≤ 0.
The resulting optimization problem is:

min
x

N∑
i=1

λifi(x) subject to (1)

g(x) ≤ 0

The primary attraction of the weighting method is its simplicity and ease of implementation.
On the other hand, the optimal solution of the weighted optimization problem is a function of

the weights. The implicition is that if there is a degree of arbitrariness in the choice of weighting
factors, the location of the solution on the Pareto front likewise is arbitrary to a degree. An
obvious remedy might seem to translate the different goal values into prices by means of the
weighting factors. Oftentimes, however, it is hard or impossible to price a goal accurately.

In cases where the goals cannot be priced accurately, the meaning of the weighting factors
becomes arbitrary, and designers resort to trial-and-error tuning of the factors. Such lack of
clarity in the meaning of the weighting factors makes the weighting method opaque and hard to
use for operators.

The weighting method has been applied to decision support for the short-term operation of
hydropower resources [17, 18].

4.2. Lexicographic goal programming
The idea of lexicographical goal programming (LGP) is to optimize the goal funcions fi in

a given order, prioritizing earlier goals over later goals. Let us order the goals by assigning

7

each a nonnegative integer priority value pi. The goals are then solved in their priority order.
Following the optimization of a goal fi, its attainment level is fixed and added as a constraint to
the optimization problem. The optimization of all following goals, in this way, will not worsen
the attainment of any preceding goal. At each stage of LGP, optimization takes place within the
degrees of freedom left open by the fixation of the attainment levels of the previous goals.

LGP results in a series of optimization problems. Let k be the priority level under considera-
tion, and let the overall problem be constrained by the equation g(x) ≤ 0. The k’th optimization
problem is then

min
x
fk(x) subject to (2)

g(x) ≤ 0

fi(x) = εi ∀i < k,

with the attainment level of the ith goal

εi := fi(xopt,i)

and optimal solution of the ith optimization problem xopt,i.
Contrary to the weighting method, here we see a direct relationship between the choice of

priority level and the relative importance assigned to a particular goal. In LGP, higher priority
goals take absolute precedence over lower priority goals. As a result, LGP solutions generally
exists at extremal points of the Pareto front. See Figure 4 for an illustration of this phenomenon.

LGP, including its hybridized variant described below, has been applied to decision support
for the short-term operation of hydropower resources [19, 20, 21, 22], to surface water allocation
[23, 24], to water quality management [25, 26].

Finally, note that hybrid solutions are possible, where some goals in LGP are weighted sums
of subgoals. The hybrid method is useful when some of the goals can be priced, and others can’t.
The priceable goals may be endowed with a single priority value, whereas the non-priceable goals
are given other priorities.

4.2.1. Inequality goals
In water systems, one often encouters the need to keep variables within a desired range. A

reservoir is a typical case, where one encounters desired lower and upper bounds for the water
level. It may not always be possible to keep the water level within the desired range, as in case
of drought or flooding. Inequality, or range, goals are therefore an important ingredient in a
multi-objective optimization framework.

Let fi a goal function, and let [mi,Mi] be its desired range, with mi ∈ R ∪ {−∞}, Mi ∈
R ∪ {∞}, and mi ≤ Mi. Let k be the priority level under consideration, and let the overall
problem be constrained by the equation g(x) ≤ 0. The k’th optimization problem is then

min
x,δk
‖δk‖p subject to

fk(x) ≥ mk + δk(f
k
−mk)

fk(x) ≤ Mk + δk(fk −Mk)

δk ≥ 0

δk ≤ 1

g(x) ≤ 0

8

t

δk(fk −Mk)

Function enclosure

Target range

Water level

Figure 5: The notions of function enclosure, target range, and violation variable.

t

Target range

Relaxed range

Water level

Figure 6: Constraint relaxation exaple.

with violation variable δk and goal function enclosure [27] [f
k
, fk] such that f

k
≤ fk(x) ≤ fk

for all feasible x. The order p ≥ 1 denotes the norm under consideration. Typically, one would
select p = 1 or p = 2. The concept of violation variables is illustrated in Figure 5.

When δk = 1 the goal function merely lies within its enclosure, whereas when δk = 0 the goal
is fully satisfied. One therefore tries to minimize the value of δk, starting from a feasible seed
value of δk = 1.

In addition, for every i < k, the following constraint is added to fix the goal attainment level:

mi + δi(f i −mi) ≤ fi(x) ≤Mi + δi(f i −Mi),

When applying an inequality goal for every discretized time instance along the prediction
horizon, the effect of an inequality goal is best described as a soft constraint. First, the optimizer
will try to find a state trajectory that lies within the desired range. All trajectories that lie
within the range incur no penalty cost and are therefore equally preferable. If it is not possible
to find a trajectory that fully lies within the desired range, the optimizer will select a trajectory
that lies outside of it as little as possible. The desired range, relaxed just enough to accomodate
the actual trajectory, is taken as a standard (hard) constraint for subsequent goals. This idea is
illustrated in Figure 6.

LGP with inequality goals has been applied to decision support for the short-term operation
of hydropower resources [19].

9

Parametrization Solver calls Pricing
Weighting method Real weights 1 Yes
Lexicographic goal programming Integer priorities n No

Table 1: Overview of multi-objective optimization methods. n is the number of goals.

4.3. Comparison
In Table 1 we present an overview of the multi-objective optimization methods discussed

in the previous section, indicating the type of trade-off parametrization of the method, the
computational cost (in number of calls to the single-objective optimization solver), the location
of the optimal solution on the Pareto front, the interactivity of the method, and whether or
not the method can transparently handle non-priceable goals. Both methods are available in
RTC-Tools 2.0.

5. Forecast uncertainty

In this section, we assume that the forecast uncertainty present in our boundary conditions
is captured by an ensemble of predictions. Other ways of encoding uncertainty, such as the
uniformly distributed parametric uncertainty [28], or ensemble dressing [29], are beyond the
scope of this work.

In multi-stage stochastic optimization, we divide the optimization time horizon into stages.
Conceptually, the time instance when a stage starts corresponds to a point in time when new
information becomes available, i.e., when we can estimate the realized state of the system. The
ability of the operator or control system to react to new information is modelled as a branching
tree of control inputs, with every branching point corresponding to a transition between stages.
Every forecast, i.e., every ensemble member, is associated with a – possibly different – sequence
of control inputs, so that we end up simultaneously optimizing for all predicted futures with a
set of controls that is partially shared between the ensemble members.

Yet a single here-and-now decision is required to implement the computed control strategy.
This implies that, at the first discretization point, a single control input must be computed and
applied to all ensemble members. At subsequent timesteps, we may recursively split the control
trajectory into a number of new branches, assigning each ensemble member to a path through the
tree. Every ensemble member consequently receives the control inputs associated to the branch
segments that lie along the assigned path through the tree of control inputs.

There are many possible tree topologies, and many ways to assign ensemble members to paths
through the tree. See [30, 31] for an overview.

Furthermore, it is also possible to reduce the size of the optimization problem by collapsing
the ensemble itself into a tree structure [31, 9]. However, in this way, information on the pruned
ensemble members is lost. The latter defect may be repaired by computing probability-weighted
averages of clustered ensemble member segments. This, however, results in discontinuities be-
tween the segments, which may lead to unintended consequences when propagating these through
the discretization of the system dynamics. In the present work, our aim is to present the basic
method, and we therefore limit our attention to the original forecast ensemble.

We will furthermore limit our discussion to k-ary trees, as illustrated in Figure 7 for k = 2.
At every branching point, we evaluate the distance between the ensemble member segments
allocated to the branch preceding the branching point. We take the distance to be the 2-norm
of the difference between the relevant ensemble member segments

dkl = ‖{Qkin(ti)−Qlin(ti)}i=i0...i1−1‖

10

0 2 4 6 8 10
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Q
in

(a) A forecast ensemble.

0 2 4 6 8 10
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Q
in

(b) Stochastic tree.

Figure 7: A forecast ensemble, and the ensemble forecasts assigned to paths through a stochastic tree.

and the distance to all other ensemble members

Dk =
∑
l 6=k

dkl.

For i ∈ {1, . . . , k}, we select the k such that Dk is largest, and assign it to the kth local branch.
We then set Dk to a negative number, and continue until either the local braches, or the ensemble
members, are exhausted. Any remaining ensemble members are clustured to these two ensemble
members based on distance.

This yields the recursive algorithm 1. Let n be the number of time steps, m the number
of branching points such that m + 1 | n, and k the number of branches per branching point.
Number each branch locally with an integer number. We assign each ensemble member k ∈ E to
a path through the tree, b ∈ Nm. The set Nm is equipped with an operator + : (Nm,N) 7→ Nm+1.
Let B denote the t0, the branching points, and tN .

The above control tree discretization is implemented in RTC-Tools 2.0. It is, however, possible
for the modeller to extend the discretization algorithm, or to write a plugin that also collapses
the ensemble itself into a tree. We will return to the extensibility built into the software in
subsequent sections.

6. Modelling framework

Following the design principle of separation of concerns, the RTC-Tools 2.0 modelling frame-
work is independent from its optimization core. This allows application of the toolbox in differ-
ent (environmental) applications by giving modellers flexibility in building new model libraries
or extending existing ones, without having in-depth knowledge of numerical discretization and
optimization techniques. Models are composed using the freely-available systems specification
language Modelica [32], developed by the non-profit Modelica Association. Modelica is object-
oriented, equation-based (acausal), and domain-neutral. As such it is suited for multi-domain
modelling of large, complex systems. Various tools are available, both as open source product
[33] and commerically, that can translate a Modelica model into an object suitable for simulation.
For optimization, RTC-Tools relies on the JModelica.org compiler [34].

While Modelica is used extensively in industry, only few examples exist of its use in envi-
ronmental applications [35, 36], where the use of tailor-made software is widespread. In many
cases capturing Earth system dynamics requires consideration of a space-continuous system, de-

11

Algorithm 1 Stochastic tree generation.
function branch(b)

i0 ← B(dim b+ 0)
i1 ← B(dim b+ 1)
Cki ← o+ i ∀i ∈ {i0, . . . , i1 − 1} ∀k, l ∈ b
o← o+ i1 − i0
if dim b ≥ m then

return
end if
dkl ← ‖{Qkin(ti)−Qlin(ti)}i=i0...i1−1‖ ∀k, l ∈ Bb
Dk ←

∑
l 6=k dkl

for i ∈ 1 . . . k do
Mb+i ← argmaxkDk

Dk ← −∞
end for
for i ∈ 1 . . . k do

Bb+i ← {k}k ∀k such that dk,Mb+i
= minj dk,Mb+j

branch(b+ i)
end for

end function
o← 0 . Offset in the vector of optimization variables
B∅ ← E . Map of branch identifiers to ensemble member indices
branch(∅)

scribed by a set of partial differential equations, for which Modelica is currently not well suited2.
Especially in control applications, however, it is often possible to use simpler, lower-dimensional
models that still satisfy the required accuracy at the temporal and spatial scales of interest. The
Deltares model library, which is part of the RTC-Tools 2.0 distribution, provides a number of
components that can be used in various water related control problems. The library is described
in this section; specific applications are presented further down.

6.1. Deltares ChannelFlow
The ChannelFlow namespace (or package in Modelica terminology) groups together a number

of classes for modeling one-dimensional free surface flow. It includes different types of nodes and
links that can be used to be build a network of rivers and channels, as well as models for various
types of controlled structures. The top-level structure of the ChannelFlow package is shown in
Figure 8. The Interfaces and Internal packages contain supporting classes.

The SimpleRouting package consist of empirical-type models. Apart from water volume
there are no conserved quantities, and flows are not explicitly related to potential differences. The
implication is that water level is not part of the model formulation, but a diagnostic variable only.
In Modelica the interface between components is formed by so-called connectors. SimpleRouting
models employ two types of connectors, one marked as model input (QInPort) and the other
marked as output (QOutPort). This means that the relation between components is causal: the
flow at an output connector is not influenced by the component it is connected to.

2Various researchers have developed extensions to the Modelica language to make it capable of modelling
certain classes of PDE. See, e.g., [37]. None of these features are currently available in mainline Modelica.

12

Deltares

ChannelFlow

Interfaces

Internal

SimpleRouting

Figure 8: Top-level structure of the Deltares.ChannelFlow namespace.

The classes within the SimpleRouting package are structured as follows:

• BoundaryConditions: Package containing the classes Inflow and Terminal for specifying
an (upstream) inflow boundary condition, and marking a (downstream) location where
water exits the network, respectively.

• Branches: Several classes for flow routing, where

– Steady implements steady state routing, i.e. outflow is set equal to inflow;

– Delay is used for modeling a constant travel time along branches; and

– Muskingum implements the linear Muskingum routing model.

• Nodes: The class Node is used for modeling flow confluences, bifurcations, or combina-
tions thereof. Instances of Node may have one or more QInPorts, the flows of which are
summed and distributed over one or more QOutPorts according to an externally provided
distribution (e.g. from the optimizer).

• Reservoir: Contains the Reservoir class which implements the volume (V) conservation
equation, supporting a distinction between turbine flow QT and spill flow QS for releases
from the reservoir. Denoting inflow by QI the governing equation is given by

dV

dt
= QI −QT −QS . (3)

Note that Equation 3 is implemented in Modelica in its continuous form. Time discretiza-
tion is carried out by RTC-Tools, as will be discussed in the next section.

The power output P of a hydropower reservoir depends in a non-linear way on V and
QT,S . By the discussion of convexity above, the computation of power can therefore not
be included as an equality constraint in our optimization problem, and is therefore left out
of the Modelica class. As will be discussed below, it is still possible to include power in the
optimization objectives.

• Storage: The class Storage is similar to Reservoir, but with a single variable for flow re-
lease. It is intended to be used in combination with Branches.Delay to form an Integrator-
Delay model.

• Structures: Contains Pump, which implements controlled flow across a structure.

13

6.2. Water levels
The relationship between water level and storage in a reservoir or a channel reach is typically

nonlinear, and we therefore do not want to include such relations into the optimization model as
equality constraints.

However, storage is a strictly increasing function of water level, and therefore the relation is
invertible.

By using the level/storage relation to transform target water levels into equivalent storage
values prior to running an optimization, the optimization problem may be formulated in terms
of volumes only. Since bookkeeping of volumes is linear in the flow variables (see Equation 3),
we obtain a fully linear model without sacrificing accuracy.

After the optimization has run, the volumes may be converted back to water levels using the
inverse of the level-storage relation.

6.3. Hydropower generation
When modelling a reservoir system including hydropower generation, we need a model to

relate turbine flow and head to power generation. The instantaneous power generation P of a
hydroelectric turbine is given by

P = ηρgQ∆H, (4)

with turbine efficiency η, water density ρ, gravitational constant g, turbine flow Q and head
difference ∆H = Hu −Hd with upstream water level Hu and downstream water level Hd.

The power generation P , viewed as function of the turbine flow Q and head ∆H, is a nonlinear
function that is neither convex nor concave3. Direct inclusion of Equation 4 into an optimization
problem would therefore render the problem nonconvex.

However, our interest in the power generation is typically related to an optimization goal: We
either aim to track a generation request over time, or we want to maximize generation revenue,
taking into account fluctuations of the energy price.

With an appropriate variable transformation, we can reformulate either of these goals as
convex, multi-objective optimization problems. In the following, we will show how this can be
done for tracking generation requests. Revenue maximization is left as an exercise to the reader.

The transformation hinges on the use of logarithms to replace the multiplication with an
addition, to obtain the intermediate equation

logP = log(ηρg) + log(Q) + log(∆H).

This equation is nonlinear in Q and ∆H. However, since log is a concave function and Pt is
fixed, the constraint

logPt ≤ log(ηρg) + log(Q) + log(∆H) (5)

is convex. Generation request tracking is obtained by embedding the logarithmic constraint 5 in
a goal programming context:

G1 : logPt ≤ log(ηρg) + log(Q) + log(∆H),

G2 : minQ.

3To see this, note that a function is convex if and only if its Hessian is positive semidefinite on the interior of
the convex set [15], and that the Hessian matrix of a product of two variables is indefinite.

14

The second priority goal, G2, makes sure that the power production is no higher than necessary
by minimizing release flows. In some cases, this goal may further reduce Q by increasing ∆H.
The latter is considered beneficial as it conserves water inside the reservoirs. Different behaviour
may be requested by obtaining additional goals in the optimization problem.

In a reservoir management context, one would typically add more goals to ensure that reser-
voir water levels remain within the desired bounds.

Note that ∆H may be a concave function of the turbine flow Q and the reservoir volume, V .
If ∆H is concave, then so is log(∆H) as log is a non-decreasing concave function. For example,
a storage volume-water level relation is typically concave and may be used in the definition of
∆H.

This can be extended to multi-reservoir systems as follows. Introduce additional optimization
variables li, and the constraints ∑

i

eli ≤ Pt

and
li ≤ log(ηρg) + log(Qi) + log(∆Hi).

In order to ensure that as much as possible of Pt is realized, we first maximize the li. Then, to
make sure that no more than Pt is realized, we minimize the turbine flows:

G1 : max
∑
i li,

G2 : min
∑
iQi.

It can be shown that the optimum solution of G1 is an equal distribution of generation
targets across the reservoirs, if this is feasible. If some reservoirs are to be preferred over others,
preference may be expressed by splitting G1 into individual goals for each reservoir.

Finally, note that this a non-linear, albeit convex, treatment of turbine power generation.
Unlike in packages such as Riverware [38], no linearization has been performed and consequently,
head variations over the prediction horizon are fully taken into account.

7. Optimization framework

In an operational setting, the physical system model typically is set up once, is validated,
and is then used time and again. But the goals and objectives of an optimization problem are
more dynamic in nature. Depending on the situation they are facing, operators may decide to
modify, include, or exclude particular goals and constraints.

Whereas there are extensions to the Modelica language that give the modeller the ability to
specify an objective funtion and constraints, such as Optimica [39], these models would need to
be heavily parametrized to be sufficiently customizable from within an operational user interface.

Instead, RTC-Tools 2.0 leverages the existing general purpose programming language Python
to define optimization problems. The general approach is that each optimization problem is a
Python class that inherits from a set of base feature classes defined by RTC-Tools. See Figure
9. These classes do all the heavy lifting in discretizing the model and importing the data from a
certain file format. See Figure 10. To choose between the various types of data input, or between
the different approaches in multi-objective optimization, the modeller selects a particular set of
feature classes. To complete the problem definition Python class, the user is then left to specify
the remaining required methods, e.g. for the objective or list of goals.

In many cases the standard feature classes are sufficient, but the power and flexibility of using
a general purpose language like Python lies in the freedom it offers. One can change or extend

15

CollocatedOptimization
Problem

User problem

ModelicaMixin PIMixin

Figure 9: Inheritance structure of a typical optimization problem.

all of RTC-Tools’s default behavior just by overriding methods in the problem definition, or by
developing additional features in new feature classes. Feature classes are known as mixins in
RTC-Tools.

7.1. Data input and output
As discussed previously, environmental models typically require boundary condition forecasts

of run. For complex systems, the forcing variables may number in the hundreds. Furthermore,
continuously getting all required data into an operational system can be challenging. Not only
is there the aggregation of data from different sources, but there is also interpolation and ex-
trapolation of missing data, as well as data validity checking. Delft-FEWS is an open platform,
developed at Deltares, that facilitates these tasks [40]. RTC-Tools 2.0 can run as an adapter
inside a Delft-FEWS configuration, with data I/O using the Delft-FEWS Published Interface
(PI) file format.

For stand-alone applications, CSV files may be used for data I/O. Support for data I/O with
CSV files is also part of the standard RTC-Tools package.

7.2. Goal programming
As described in Section 4.2, it can be desireable to optimize a problem using a prioritized

list of goals instead of specifying a single (weighted) objective and constraints. In RTC-Tools,
lexicographical goal programming is available by using the GoalProgrammingMixin.

The GoalProgrammingMixin takes care of translating a list of Goal objects to lists of objec-
tives and constraints, ordered by priority. The optimization problem is solved for each priority,
starting with the highest priority goals. The solution at after solving for a certain priority is
remembered, and used as a constraint for the next priority. In this way, solving for a lower
priority cannot make the solution for a higher priority worse.

Every Goal object consists of a priority attribute, a function definition, and target minimum
and maximum values for this function. It is also possible to specify only a minimum or maximum
target value, or no target value at all. In the latter case, the definined function is minimized for
in the optimization.

7.3. Software implementation
RTC-Tools 2.0 uses the open-source JModelica.org compiler [34] to compile Modelica models

into a differential-algebraic equation (DAE) [41] representation in CasADi [42], an open-source
package for symbolic computation and algorithmic differentation. It subsequently discretizes
the DAE in time using a combination of integration and/or collocation. Model parameters,
initial conditions, and boundary condition forecasts are read from any of the various supported
file formats and inserted into the optimization problem. The final, discretized optimal control
problem is then interfaced with IPOPT [16] for continuous problems, and with BONMIN [43]
for mixed-integer problems. The full chain is summarized in Figure 10.

16

Modelica model CasADi DAE Optimizer

Parameters

One-step
discretization Accumulation

Time series

Figure 10: Process chain.

0 1 2 3 4 5 6 7 8 9 10

(a) θ = 0

0 1 2 3 4 5 6 7 8 9 10

(b) θ = 1

Figure 11: Influence of control inputs for different values of θ.

7.3.1. Time discretization
RTC-Tools discretizes differential equations of the form

ẋ = f(x, u)

using the θ-method

xi+1 = xi + ∆t [θf(xi+1, ui+1) + (1− θ)f(xi, ui)] (6)

The default is θ = 1, resulting in the implicit or backward Euler method. In this case, the control
input at the initial time step is not used.

By default, the discretized differential equations 6 are included as collocation constraints in
the optimization problem. Optionally, it is possible to mark certain states to be integrated. In
this case, the equations 6 are solved using a rootfinding method, and the derivatives propagated
using the implicit function theorem.

Note that depending on the value of θ, the control inputs used to compute the trajectory
between two subsequent time steps are either sourced from the first step (θ = 0), the second step
(θ = 1), or both (0 < θ < 1). For θ = 0, this means that the control input computed for the very
last time step of the prediction horizon is not used to compute the dynamics. Similarly, for θ = 1,
the control input computed for the very first time step has no influence on system dynamics.
In the latter case, the input at the first time step may be provided as historical data, so that
smoothing goals may be used to ensure that newly computed controls transition smoothly from
the currently implemented control. See Figure 11.

7.3.2. Multirate dynamics
In RTC-Tools, all states, control inputs, and external time series may be provided at arbitrary

resolution. An internal interpolation layer makes sure that interpolation is used automatically
whenever necessary.

17

7.3.3. Scaling
To ensure that optimization problems converge reliabily and quickly, proper scaling of vari-

ables and constraints is essential [16]. RTC-Tools reads the nominal attribute on variables in
Modelica models, and uses this to perform a change of variables

nx · xscaled = x,

with original variable x and nominal value nx ∈ R+. In this way, scaling is taken care of explicitly
at the model level.

7.3.4. Derivatives
Gradient-based optimization algorithms such as IPOPT require estimates of the derivatives

of the objective and constraint functions. Interior point methods such as IPOPT also benefit
from second order derivatives [16].

Derivative information could be obtained using finite difference approximation. However, this
is computationally expensive, and does not give exact results for nonlinear functions. In order
to be able to obtain first and second order derivative information efficiently for any problem,
we use the algorithmic differentation package CasADi [42]. CasADi facilitates the construction
of symbolic expressions as graphs, and then uses the rules of calculus to produce new symbolic
graphs representing the derivatives. These symbolic graphs may then be evaluated with numerical
inputs directly, or compiled and then evaluated.

7.3.5. Solvers
CasADi also supports interfacing its symbolic expressions with a variety of optimization

packages through a generic interface. By default, RTC-Tools 2.0 uses the IPOPT [16] interface
for continuous problems, and the BONMIN [43] interface for mixed-integer problems. However,
RTC-Tools can also be configured to use other interfaces supported by CasADi, for instance to
access commercial solvers.

7.4. Availability
RTC-Tools 2.0 is available online under the terms of the GNU General Public License version

3 [44]. Precompiled binaries, source code, and documentation are available from the project
website at https://www.deltares.nl/en/software/rtc-tools/.

8. Applications

While RTC-Tools 1.x has numerous applications in the field of reservoir optimization for
hydropower generation [14] and flood control in polder systems e.g. [45], the new capabilities of
RTC-Tools 2.0 allow the field of application to be expanded. Water allocation among competing
sectors has been the first. Within a river basin, surface water fulfills services for amongst others
the public water sector, irrigated agriculture, power generation, recreation and navigation. At
the same time environmental conservation is in demand for water as well, while flood wave
attenuation may be desired to preserve properties at stake. Upstream uses of water influences
availability for downstream uses both in timing, volume and quality. Some users extract water
from the river system, and discharge it elsewhere, possibly to another water system. Other uses
such as recreation, navigation and hydropower generation leave the water in the river system.
Each functional use has its own demand pattern in volume, timing and location. Water policies
and legal requirements generally determine which water users will have the first priority to the
water. Within the Netherlands the concept of the Verdringingsreeks has been introduced in the

18

https://www.deltares.nl/en/software/rtc-tools/

Water Law (art.2.9) with the actual order of priority defined in the Waterbesluit (art.2.1)[46].
Highest priority is given to prevention on irreplaceable damage to infrastructure, land subsidence
and nature. Second priority is given to public utilities for drinking water and energy supply.
Third priority is given to small scale uses with high economic value and fourth priority is given
to limiting societal and economic consequences for navigation, agriculture, nature, industries,
recreation, fisheries and other uses.

8.1. Pilot: Water allocation in The Netherlands
Within the Netherlands, the National Coordination Commission for Water Allocation is

tasked to implement the Waterbesluit and make operational decisions on water allocation during
periods of drought. Generally decisions focus on trade-off between priority 4 water uses. Since
2009, an important information source for the commission is RWsOS-Waterbeheer [47]. RWsOS-
Waterbeheer is a real-time operational forecast system of Rijkswaterstaat which produces on
daily basis a 10-day ahead forecast for the entire Dutch water system using the National Hydro-
logical Model [48]. This National Hydrological Model is a detailed integrated surface-groundwater
system of the Netherlands, combining a 250x250m grid model for groundwater (Modflow) and
unsaturated zone (Metaswap) with a 8800 network elements based surface water balance and
allocation model. This water allocation model uses a heuristic approach to allocate water to var-
ious prioritized purposes following the legal Verdringingsreeks. While the model provides useful
insight in the current state of the system and the expected situation in the coming 10 days,
it’s runtimes hinders the commission to conduct multiple what-if analysis to assess trade-offs
between different water allocation patterns.

Hence the need arose for a so-called Quick Scan Tool, a tool that can be used for screening
various allocation strategies and assessing its regional and sectoral impacts. This Quick Scan Tool
(QST) has been developed with RTC-Tools 2.0 as the core model engine. The model underlying
this tool is composed of a coarse network of the Dutch water system including the major water
storages, water distribution points and delivery routes to the various uses. See Figure 12. The
model is fed with initial conditions for the storages, timeseries of forcings (discharge) on the
upstream boundaries, and timeseries of soft constraints at each network element representing
physical limitations in channel flow and pool level capacities and requests for discharges or
abstractions. All time series are prioritized as illustrated in the following table.

As can be noted, the physical limitations have been assigned higher priority over the societal
requests for water. The physical limitations are treated as critical goals meaning that an error
will be given if these goals cannot be met. While crafting this priority table, specific attention
is needed to define the maximum flow constraints such that water follows the rivers and only
enters the canal systems when this is desired by a functional water request. For this purpose,
priority 10 is introduced to cap the outflow of canal outlets in case the outlet does not act as a
primary delivery path for downstream elements.

Also note that the soft constraints with lower priority need to shrink the search space as
compared to high priority constraints. Therefore the soft constraint for the instream flow goal
P7 is based on the highest value of goal P6 and the flushing request:

P7_QOut = max{P6_QOut, QF lush}.

For lateral flow goals, each new lateral request (e.g. for utility purposes) needs to be added to
the previous lateral goal (e.g. P1).

P5_QLat = P1_QLat+QLat_utility.

Within the Quick Scan Tool the forecast of RWsOS-Waterbeheer is used as input, where the
high-resolution data is spatially aggregated to obtain abstraction and instream flow requests,

19

Figure 12: Network schematization for the Quick Scan Tool. Red blocks indicate storages, pink rectangles
terminals, and pink stars inflows.

20

P
ur
po

se
P
ri
or
it
y

M
od

el
ic
aI
d

M
in
C
on

st
ra
in
tI
d

M
in
C
on

st
ra
in
tI
d

N
at
ur
al
Lo

ss
1

<
el
em

en
ti
d>

:Q
La

t
<
el
em

en
ti
d>

:P
1_

Q
La

t
<
el
em

en
ti
d>

:P
9_

Q
La

t
P
hy

si
ca
lM

in
/M

ax
Q

2
<
el
em

en
ti
d>

:Q
In

<
el
em

en
ti
d>

:P
2_

Q
In
_
P
hy

si
ca
lM

in
<
el
em

en
ti
d>

:P
2_

Q
In
_
P
hy

si
ca
lM

ax
P
hy

si
ca
lM

in
/M

ax
H

3
<
el
em

en
ti
d>

:H
<
el
em

en
ti
d>

:P
3_

H
_
P
hy

si
ca
lM

in
<
el
em

en
ti
d>

:P
3_

H
_
P
hy

si
ca
lM

in
P
re
ve
nt

da
m
ag
e

4
<
el
em

en
ti
d>

:H
<
el
em

en
ti
d>

:P
4_

H
_
T
ar
ge
tM

in
<
el
em

en
ti
d>

:P
7_

H
_
T
ar
ge
tM

ax
U
ti
lit
ie
s

5
<
el
em

en
ti
d>

:Q
La

t
<
el
em

en
ti
d>

:P
5_

Q
La

t
-

N
av
ig
at
io
nL

oc
ks

6
<
el
em

en
ti
d>

:Q
O
ut

<
el
em

en
ti
d>

:P
6_

Q
O
ut

-
F
lu
sh
in
g

7
<
el
em

en
ti
d>

:Q
O
ut

<
el
em

en
ti
d>

:P
7_

Q
O
ut

-
G
re
en
ho

us
es

8
<
el
em

en
ti
d>

:Q
La

t
<
el
em

en
ti
d>

:P
8_

Q
La

t
-

Ir
ri
ga
ti
on

9
<
el
em

en
ti
d>

:Q
La

t
<
el
em

en
ti
d>

:P
9_

Q
La

t
-

(c
ap

)
10

<
el
em

en
ti
d>

:Q
O
ut

-
<
el
em

en
ti
d>

:P
8_

Q
O
ut

a

T
ab

le
2:

G
en
er
al
iz
ae
d
ve
rs
io
n
of

pr
io
ri
ti
es

ta
bl
e
un

de
rl
yi
ng

w
at
er

al
lo
ca
ti
on

m
od

el
fo
r
Q
ui
ck

sc
an

T
oo

l

a
L
im

it
ed

se
t
of

lo
ca
ti
on

s
on

ly
.

21

subdivided by functional purpose, at the QST network. As discussed the functional request are
ordered by priority and where needed added together, to obtain total abstraction requests, or
maximized to obtain the overall request for instream flows. The QST user can manipulate the
time series requests using a simple multiplier per functional purpose. In addition to flow and
abstraction requests, the model also copes with water level requests for the various storages.

One of the challenges was to address a non-convex water diversion function which represents
a diversion governed by open channel hydraulics as well as weir manipulation in one of the
downstream branches. Diversion rules are available to subdivide the inflow at the diversion node
in two outflows based on the flow at the model boundary. Using these rules and the boundary
flow, a time series of diversion fractions is derived which the model uses to split to flow coming
out of the first branch.

Once the sequential goal programming has completed its computation, the resulting flows
need to be split according to the different purposes, such that flow delivery rates by purpose
can be derived and presented. The results of the model meet the expectations, although a
more detailed validation is needed to identify whether more stringent solution constraints or an
adjusted objective penalty is desired.

9. Conclusion

In this paper we presented RTC-Tools 2.0, a new open source framework for the control
and optimization of environmental systems. We started out by posing six axioms that capture
the requirements posed by an operational system. Departing from the axioms, we selected
convex optimization as our framework, thereby striking a balance between nonlinear accuracy
and stability. Within the framework of convex optimization, we presented lexicographic goal
programming as the natural approach to multi-objective opimization of water systems. Multi-
stage stochastic optimization was selected as our framework for considering forecast uncertainty.
We also presented a generic, extensible model library using the standardized modelling language
Modelica. As a further contribution, we demonstrated how multi-objective optimization may
be used to derive fully convex, yet exact, formulations for hydropower optimization problems,
taking into account simultaneous variations in turbine flow and head. In the final section, we
discussed a pilot application developed for the Dutch Ministry of Infrastructure & Environment.

10. Acknowledgements

We are grateful for the support of the Operational Water Management and Industrial Hy-
draulics departments at Deltares. In particular, we would like to mention Jesse vanderWees for
developing B-Spline fitting routines with convexity and monotonicity constraints, for many bug
fixes, as well as for his tireless work on writing documentation and examples, Olav van Duin for
his work on robust I/O of CSV and Delft-FEWS PI files, Tiaravanni Hermawan for months of
early testing, Bernhard Becker for writing a tutorial, and Joris Gillis of Yacoda/KU Leuven for
teaching us how to use CasADi most efficiently. TKI Delta Technology provided a part of the
funding under project DEL010.

References

[1] S. Bennett, A brief history of automatic control, Control Systems, IEEE 16 (3) (1996) 17–25.
doi:10.1109/37.506394.

22

http://dx.doi.org/10.1109/37.506394

[2] C. E. García, D. M. Prett, M. Morari, Model predictive control: Theory and practice-A
survey, Automatica 25 (3) (1989) 335–348. doi:10.1016/0005-1098(89)90002-2.

[3] P.-J. Van Overloop, Model predictive control on open water systems, IOS Press, 2006.

[4] H. K. Khalil, Nonlinear Systems, Third Edition, Prentice Hall, 2002. doi:10.1016/j.
physa.2006.08.011.

[5] R. Kalman, J. Bertram, Control system analysis and design via the second method of Lya-
punov: (I) continuous-time systems, IRE Transactions on Automatic Control 4 (3) (1959)
394–400. doi:10.1109/TAC.1959.1104895.

[6] Y. Collette, P. Siarry, Multiobjective optimization: principles and case studies, Springer,
2003. doi:10.1007/978-3-662-08883-8.

[7] R. T. Marler, J. S. Arora, Survey of multi-objective optimization methods for engineering
(2004). doi:10.1007/s00158-003-0368-6.

[8] W. Wojsznis, A. Mehta, P. Wojsznis, D. Thiele, T. Blevins, Multi-objective optimization for
model predictive control, ISA Transactions 46 (3) (2007) 351–361. doi:10.1016/j.isatra.
2006.10.002.

[9] L. Raso, D. Schwanenberg, N. C. van de Giesen, P. J. van Overloop, Short-term optimal
operation of water systems using ensemble forecasts, Advances in Water Resources 71 (2014)
200–208. doi:10.1016/j.advwatres.2014.06.009.

[10] D. Schwanenberg, F. M. Fan, S. Naumann, J. I. Kuwajima, R. A. Montero, A. Assis dos
Reis, Short-Term Reservoir Optimization for Flood Mitigation under Meteorological and
Hydrological Forecast Uncertainty: Application to the Três Marias Reservoir in Brazil,
Water Resources Management 29 (5) (2015) 1635–1651. doi:10.1007/s11269-014-0899-1.

[11] S. Naumann, D. Schwanenberg, D. Karimanzira, F. Fan, C. Allen, Short-term management
of hydropower reservoirs under meteorological uncertainty by means of multi-stage optimiza-
tion, At-Automatisierungstechnik 63 (7) (2015) 535–542. doi:10.1515/auto-2014-1168.

[12] S. V. Braaten, O. Gjønnes, K. Hjertvik, S.-E. Fleten, Linear Decision Rules for Seasonal
Hydropower Planning: Modelling Considerations, Energy Procedia 87 (2016) 28–35. doi:
10.1016/j.egypro.2015.12.354.

[13] C. Gauvin, E. Delage, M. Gendreau, A robust optimization model for the risk averse reservoir
management problem, Tech. rep., GERAD HEC Montréal (2015).

[14] D. Schwanenberg, B. P. J. Becker, M. Xu, The open real-time control (RTC)-Tools software
framework for modeling RTC in water resources sytems, Journal of Hydroinformatics 17 (1)
(2015) 130. doi:10.2166/hydro.2014.046.

[15] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004. arXiv:
1111.6189v1, doi:10.1109/TMI.2010.2080282.

[16] A. Wächter, L. T. Biegler, On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming, Mathematical Programming 106 (1) (2006)
25–57. doi:10.1007/s10107-004-0559-y.

23

http://dx.doi.org/10.1016/0005-1098(89)90002-2
http://dx.doi.org/10.1016/j.physa.2006.08.011
http://dx.doi.org/10.1016/j.physa.2006.08.011
http://dx.doi.org/10.1109/TAC.1959.1104895
http://dx.doi.org/10.1007/978-3-662-08883-8
http://dx.doi.org/10.1007/s00158-003-0368-6
http://dx.doi.org/10.1016/j.isatra.2006.10.002
http://dx.doi.org/10.1016/j.isatra.2006.10.002
http://dx.doi.org/10.1016/j.advwatres.2014.06.009
http://dx.doi.org/10.1007/s11269-014-0899-1
http://dx.doi.org/10.1515/auto-2014-1168
http://dx.doi.org/10.1016/j.egypro.2015.12.354
http://dx.doi.org/10.1016/j.egypro.2015.12.354
http://dx.doi.org/10.2166/hydro.2014.046
http://arxiv.org/abs/1111.6189v1
http://arxiv.org/abs/1111.6189v1
http://dx.doi.org/10.1109/TMI.2010.2080282
http://dx.doi.org/10.1007/s10107-004-0559-y

[17] D. Schwanenberg, M. Xu, T. Ochterbeck, C. Allen, D. Karimanzira, Short-term management
of hydropower assets of the Federal Columbia River Power System, Journal of Applied Water
Engineering and Research 2 (1) (2014) 25–32. doi:10.1080/23249676.2014.912952.

[18] S. M. Hosseini, B. Zahraie, Development of reservoir operation policies using integrated
optimization-simulation approach, Journal of Agricultural Science and Technology 12 (2010)
433–446.

[19] E. A. Eschenbach, T. Magee, E. Zagona, M. Goranflo, R. Shane, Goal Programming De-
cision Support System for Multiobjective Operation of Reservoir Systems, Journal of Wa-
ter Resources Planning and Management 127 (2) (2001) 108–120. doi:10.1061/(ASCE)
0733-9496(2001)127:2(108).

[20] E. K. Can, M. H. Houck, Real-time reservoir operations by goal programming, Journal of
Water Resources Planning and Management 110 (3) (1984) 297–309.

[21] G. V. Loganathan, D. Bhattacharya, Goal-programming techniques for optimal reservoir
operations, Journal of Water Resources Planning and Management 116 (6) (1990) 820–838.

[22] B. A. Foued, M. Sameh, Application of goal programming in a multi-objective reservoir
operation model in Tunisia, European Journal of Operational Research 133 (2) (2001) 352–
361.

[23] M. J. McGregor, J. B. Dent, An application of lexicographic goal programming to resolve
the allocation of water from the Rakaia River (New Zealand), Agricultural Systems 41 (3)
(1993) 349–367. doi:10.1016/0308-521X(93)90009-Q.

[24] M. Bravo, I. Gonzalez, Applying stochastic goal programming: A case study on water
use planning, European Journal of Operational Research 196 (3) (2009) 1123–1129. doi:
10.1016/j.ejor.2008.04.034.

[25] S. R. Agha, Use of goal programming and integer programming for water quality manage-
ment – A case study of Gaza Strip, European journal of operational research 174 (3) (2006)
1991–1998.

[26] C.-S. Lee, C.-G. Wen, Application of multiobjective programming to water quality manage-
ment in a river basin, Journal of environmental management 47 (1) (1996) 11–26.

[27] R. E. Moore, F. Bierbaum, Methods and applications of interval analysis, Vol. 2, SIAM,
1979.

[28] A. Ben-Tal, L. El Ghaoui, A. Nemirovski, Robust Optimization, Vol. 53, Princeton Univer-
sity Press, 2009. doi:10.1137/080734510.

[29] T. C. Pagano, D. L. Shrestha, Q. J. Wang, D. Robertson, P. Hapuarachchi, Ensemble
dressing for hydrological applications, Hydrological Processes 27 (1) (2013) 106–116. doi:
10.1002/hyp.9313.

[30] J. Dupačová, G. Consigli, S. W. S. W. Wallace, J. Dupacova, G. Consigli, S. W. S. W.
Wallace, J. Dupačová, G. Consigli, S. W. S. W. Wallace, J. Dupacova, G. Consigli, S. W.
S. W. Wallace, Scenarios for multistage stochastic programs, Annals of Operations Research
100 (1–4) (2000) 25–53. doi:10.1023/A:1019206915174.

24

http://dx.doi.org/10.1080/23249676.2014.912952
http://dx.doi.org/10.1061/(ASCE)0733-9496(2001)127:2(108)
http://dx.doi.org/10.1061/(ASCE)0733-9496(2001)127:2(108)
http://dx.doi.org/10.1016/0308-521X(93)90009-Q
http://dx.doi.org/10.1016/j.ejor.2008.04.034
http://dx.doi.org/10.1016/j.ejor.2008.04.034
http://dx.doi.org/10.1137/080734510
http://dx.doi.org/10.1002/hyp.9313
http://dx.doi.org/10.1002/hyp.9313
http://dx.doi.org/10.1023/A:1019206915174

[31] N. Gröwe-Kuska, H. Heitsch, W. Römisch, Scenario reduction and scenario tree construc-
tion for power management problems, in: 2003 IEEE Bologna PowerTech - Conference
Proceedings, Vol. 3, 2003, pp. 152–158. doi:10.1109/PTC.2003.1304379.

[32] H. Elmqvist, Modelica – A unified object-oriented language for physical systems modeling,
Simulation Practice and Theory 5 (6) (1997) p32. doi:10.1016/S0928-4869(97)84257-7.

[33] P. Fritzson, P. Aronsson, H. Lundvall, K. Nyström, A. Pop, L. Saldamli, D. Broman, The
OpenModelica Modeling, Simulation, and Software Development Environment, Simulation
News Europe 44 (45).

[34] J. Åkesson, M. Gäfvert, H. Tummescheit, JModelica - An Open Source Platform for Opti-
mization of Modelica Models, MATHMOD 2009 - 6th Vienna International Conference on
Mathematical Modelling (2009) 8.

[35] K. Berg, K. Nyström, Hydrological modeling in Modelica, in: G. Schmitz (Ed.), Proceedings
of the 4th International Modelica Conference, Hamburg, March 7-8, 2005, 2005.

[36] B. Lie, Y. Ruan, I. Andreassen, Modeling for control of run-of-river power plant, in: Pro-
ceedings, 54th International Conference of Scandinavian Simulation Society (SIMS 2013),
October 16-17 2013, Bergen, Norway, 2013.

[37] L. Saldamli, P. Fritzson, B. Bachmann, Extending Modelica for partial differential equations,
in: 2nd International Modelica Conference, proceedings, 2002, pp. 307–314.

[38] S. H. Biddle, Optimizing the TVA Reservoir System Using RiverWare, in: Bridging the
Gap: Meeting the World’s Water and Environmental Resources Challenges, 2001, pp. 1–6.
doi:10.1061/40569(2001)149.

[39] J. Åkesson, Optimica - an extension of Modelica supporting dynamic optimization, in: 6th
International Modelica Conference 2008, 2008.

[40] M. Werner, J. Schellekens, P. Gijsbers, M. van Dijk, O. van den Akker, K. Heynert, The
Delft-FEWS flow forecasting system, Environmental Modelling and Software 40 (2013) 65–
77. doi:10.1016/j.envsoft.2012.07.010.

[41] P. Kunkel, V. Mehrmann, Differential-Algebraic Equations, European Mathematical Society
Publishing House, 2006.

[42] J. Andersson, J. Åkesson, M. Diehl, CasADi: A symbolic package for automatic differ-
entiation and optimal control, in: Lecture Notes in Computational Science and Engi-
neering, Vol. 87 LNCSE, 2012, pp. 297–307. arXiv:arXiv:1011.1669v3, doi:10.1007/
978-3-642-30023-3_27.

[43] P. Bonami, L. T. Biegler, A. R. Conn, G. Cornuejols, I. E. Grossmann, C. D. Laird, J. Lee,
A. Lodi, F. Margot, N. Sawaya, A. Waechter, An algorithmic framework for convex mixed
integer nonlinear programs, Discrete Optimization 5 (2) (2008) 186–204. doi:10.1016/j.
disopt.2006.10.011.

[44] GNU General Public License.
URL http://www.gnu.org/licenses/gpl.html

25

http://dx.doi.org/10.1109/PTC.2003.1304379
http://dx.doi.org/10.1016/S0928-4869(97)84257-7
http://dx.doi.org/10.1061/40569(2001)149
http://dx.doi.org/10.1016/j.envsoft.2012.07.010
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1007/978-3-642-30023-3_27
http://dx.doi.org/10.1007/978-3-642-30023-3_27
http://dx.doi.org/10.1016/j.disopt.2006.10.011
http://dx.doi.org/10.1016/j.disopt.2006.10.011
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html

[45] J. Talsma, D. Schwanenberg, J. Gooijer, K.-J. van Heeringen, B. P. J. Becker, Model Pre-
dictive Control For Real Time Operation Of Hydraulic Structures For Draining The Oper-
ational Area Of The Dutch Water Authority Noorderzijlvest, in: International Conference
on Hydroinformatics, 2014.

[46] Rijksoverheid, Waterbesluit van 30 november 2009.
URL http://wetten.overheid.nl/BWBR0026872/2016-07-01/#Hoofdstuk2_
Paragraaf1_Artikel2.1

[47] A. Weerts, G. Prinsen, S. Patzke, W. van Verseveld, H. Berger, T. Kroon, Operational
Water Resources Forecasting System for The Netherlands, in: AGU Fall Meeting Abstracts,
Vol. 1, 2011, p. 1498.

[48] W. Berendrecht, A. Weerts, A. B. Veldhuizen, T. Kroon, An operational drought forecasting
system using coupled models for groundwater, surface water and unsaturated zone, IAHS-
AISH publication 341 (2010) 3–8.

26

http://wetten.overheid.nl/BWBR0026872/2016-07-01/#Hoofdstuk2_Paragraaf1_Artikel2.1
http://wetten.overheid.nl/BWBR0026872/2016-07-01/#Hoofdstuk2_Paragraaf1_Artikel2.1
http://wetten.overheid.nl/BWBR0026872/2016-07-01/#Hoofdstuk2_Paragraaf1_Artikel2.1

	Introduction
	Model predictive control
	Reliability axioms
	Convexity and continuity
	Convex functions
	Convex sets
	Convex optimization
	Continuity

	Multi-objective optimization
	Weighting method
	Lexicographic goal programming
	Inequality goals

	Comparison

	Forecast uncertainty
	Modelling framework
	Deltares ChannelFlow
	Water levels
	Hydropower generation

	Optimization framework
	Data input and output
	Goal programming
	Software implementation
	Time discretization
	Multirate dynamics
	Scaling
	Derivatives
	Solvers

	Availability

	Applications
	Pilot: Water allocation in The Netherlands

	Conclusion
	Acknowledgements

