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1 Preface

This tutorial explains how to build a model predictive control system in RTC-Tools 2 and intro-
duces the basic concepts of RTC-Tools 2. Basic knowledge on mathematical optimization in
general and model predictive control in particular is required. Furthermore, basic experience
with computer code, preferrably Python, is useful.

RTC-Tools 2 comprises the following third-party components:

� the JModelica.org compiler
� CasADi
� IPOPT

The RTC-Tools 2 user specifies the equations within the Modelica sotware. The user can
choose from pre-defined components (“models” in Modelica terms) for the modeling of

� reservoirs
� nodes and branches of an open channel flow network
� hydraulic structures like weirs and orifices
� pumps.

Modelica was chosen because users can specify components for their individual needs, like

� agricultural models
� population growth models
� unit outages to model maintenance actions in hydro power plants
� . . .

Modelica works on is a declarative, equation-based language. This means that the user does
not have to develop all the computer code for his/her mathematical model, but can specify the
mathematical equations to be used.

The compiler, JModelica.org, compiles the Modelica equations to a symbolic representa-
tion. These symbols are differentiated with the help of the algorithmic differentiation pack-
age CasADi (??). The equations and their first- and second-order derivatives are provided
to the optimizer. RTC-Tools 2 is generally used with IPOPT, but may also be integrated with
commercial packages such as Gurobi.

JModelica compiler CasADi symbolic 
tree

Optimization 
problem (Python)

Timeseries and 
parameters (csv 

files)

Modelica model Shared library Ipopt

Figure 1.1: Software components of RTC-Tools 2
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2 Installation

Run the file RTCTools2Installer.exe. This installs the following software on your com-
puter:

� JModelica.org
� Python 2.7
� CasADi
� the OpenModelica Connection Editor
� the scientific plotting package Veusz
� the Python development environment Spyder

The installation tree will look like this:

� c:\RTCTools2

� mo
� system

◦ JModelica
◦ OpenModelica
◦ python27

� tutorial
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3 Introduction to Python

3.1 Basic concepts

The hello world programme in Python:

1 print('Hello world!')

A simple for loop prints the word “Hooray” three times:

1 for i in range (3):
print ('Hooray ')

Note that Python does not require a type declaration for the variable i, and that indexing is
zero-based. The range of 3 (i. e.: range(3)) returns a list of integers starting from 0:

[0,1,2]

Different to other programming languages, instead of brackets Python uses indentations.
Statements close with a colon. Function arguments are in round brackets. Commands do
not need to be closed with a semicolon.

Python is dynamically typed. This means, that types are implicit (more or less).

1 c = 1.4142 # Float
n = 3 # Integer

3 b = True # Boolean
s = 'Hello' # String

5 l = [1, 2, 3,] # List (of Integers)
d = {'key1': 'Zebra', 'key2': 'Horse', 'key3': 'Donkey '}

7 # Dictionary (key -value
pairs)

The search for key1

1 print(d['key1'])

returns ‘Zebra’.

It is important to be aware of the distinction between integer and float division:

1 a = 3
b = 2

3 c = 2.0
print(a / b)

This returns ’1’, the largest whole integer of the result, meaning the decimals are disregarded
because the result of an operation of two integers is also an integer. However:

print(a / c)

returns ’1.5’ because Python recognizes the type mismatch and converts the integer variable
’a’ to a float before conducting the division operation. Note that in Python 3 float division is the
default behaviour.

If-statement example:
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1 if x > 1:
print ('x is greater than 1')

returns “x is greater than 1”.

The for-loop

for s in ['a', 'b', 'c', 'd']:
2 print(s)

returns “a b c d”

for i in range (10):
2 print(i)

returns “0 1 2 3 4 5 6 7 8 9”

The following example shows how to define a class:

class Example:
2 def __init__(self , message):

self.message = message
4 def say(self):

print(self.message)

__init__ is the built-in name of the constructor method. The constructor is called on object
creation.

message is an attribute of the object. The first argument to a method is the object itself.

say is a method for all instances of the class.

To create an object instance of our ’Example’ class:

1 ex1 = Example('hello1 ')

A method of a class instance is called as follows:

1 ex1.say() # Output: hello1

For a single class multiple object instances may exist:

1 ex2 = Example('hello2 ')
ex2.say() # Output: hello2

3.2 Exercise

3.2.1 Task
1 Create a class Creature, with a variable Color.
2 Create a subclass of Creature called Fish.
3 Create a subclass of Creature called Crab with a variable number_legs
4 Create a class Sea with a list of creatures, and a method Catch with an argument Color

returning a list of matching creatures.
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5 Test your classes by creating a Sea with several Fish and Crabs of different colors. Call
the Catch method with some colors, and output the number of matching creatures.

3.2.2 Solution

We here show how the (sub)classes can be defined in different files, and instances of these
classes are called inside another file (all files must be located in the same folder). For reasons
of code reusability, it is generally advisable to separate the files that define classes or other
objects from those calling them (scripts). This solution also serves to illustrate also some
commonly used pythonic idiomes not yet discussed.

1 Open the Python development environment Spyder.
2 Create a file sea_creatures.py and add the Creature class:

class Creature:
2 def __init__(self , color):

self.color = color

Note that file names are in lower case and use underscores by convention.
3 Add the Fish subclass below the Creature class:

1 class Fish(Creature):
pass

4 Add the Crab subclass below this (note the added number_legs variable and how it is
made a sublass of Creature):

class Crab(Creature):
2 def __init__(self , color , number_legs):

Creature.__init__(self , color)
4 self.number_legs = number_legs

5 Make a file called sea.py and add the Sea class, with a method for counting the number of
creatures with a specific color that are found in the sea; a collection of Creature objects,
for example a list object. Also note how the counting is done.

class Sea:
2 def __init__(self , creatures):

self.creatures = creatures
4

def catch(self , color):
6 '''return the number of creatures with a

particular color with a group
of creatures '''

8 n = 0
for creature in self.creatures:

10 if creature.color == color:
n += 1

12 return n

6 Make a file called main.py and import the SeaCreatures and Sea modules:

from sea_creatures import Crab , Fish
2 from sea import Sea

Then define some crabs and fishes; note the different ways this is done here.

# Define some crabs , stating the attributes explicitly:
2 c1 = Crab(color='red', number_legs =8)
c2 = Crab(color='blue', number_legs =8)
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4

# Define a group of fishes using list apprehension (a
short loop), without

6 # stating the attributes explicitly
fishes = [Fish(c) for c in ['red', 'green', 'blue']]

Finally, define a Sea (list object) and print the number of creatures per color by running
the script:

1 sea = Sea(fishes + [c1, c2])
for color in ['red', 'green', 'blue']:

3 print('There are {} {} creatures in the sea'.
format(sea.catch(color), color))
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4 Modelica

4.1 Introduction and basic concepts

Modelica is a mathematical modeling language. The basic element are equations.

The differential equation

ẋ = kx (4.1)

or

dx

dt
= kx (4.2)

looks in a Modelica model as follows:

1 model Example // comment
parameter Real k = -1.0;

3 Real x(start = 1.0);
equation

5 der(x) = k * x;
end Example;

A Modelica model consists of one or multiple equation(s) and the variable declarations. Ba-
sically, variables are treated as time variant, like the variable x in the current example. A
time-invariant variable is called parameter and declared accordingly. The value of k does,
unlike x, not change over time. Note that the equality sign (“=”) is not a declaration like in
programming languages, but declares an equality in a mathematical sense between the ex-
pressions left and right of the equality sign.

The simulation parameters given in Table 4.1 produces the simulation results plot in Figure
4.1. The start value for x that corresponds to the starting time has been set to 1.0 in the
current model.

Modelica knows different data types, among others:

� Real
� Integer
� Boolean
� String

The relation to the environment is defined with the help of the following statements:

� input indicates that a variable is to be provided by the environment, i. e. another model
or an external time series

� output says that this variable is published outside the model and can be used by other
models.

Table 4.1: Simulation parameters

parameter value

start time 0
stop time 10
interval 0.1
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Figure 4.1: Simulation result plot for the Modelica model of Equation 4.1 in the open Mod-
elica editor OMEdit

It is good modeling practice to use real-type variables annotated with a physical SI unit. The
package Modelica.SIunits provides real types with SI units.

Models must be balanced, i. e. the number of equations must be equal to the number of
non-input, non-constant variables. Only balanced models can be solved numerically.

Models can inherit from other models with the extends statement:

model MoreComplexExample
2 extends Example;

Real z;
4 equation

z^2 = x;
6 end MoreComplexExample;

Models that are not complete (i. e. not balanced), but are meant to be inherited by other
models, are referred to as partial models.

Nesting of models is possible by declaring the child model as a variable in the parent model:

model ChildModel // child model
2 parameter Real k = 1.0;

Real x(start = 0.0);
4 input Real u; // needs an input for u from another model
equation

6 der(x) = k * x + u;
end ChildModel;

8

model ParentModel // parent model
10 ChildModel s; // declaration of s refers to child model

equation
12 s.u = sin(time); // an equation for the input variable u

in the child model
end ParentModel;
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A connector is an interface for a model to handle the exchange of variables.

1 connector HQPort "Connector with potential water level (H)
and flow discharge (Q)"

Modelica.SIunits.Position H "Level above datum";
3 flow Modelica.SIunits.VolumeFlowRate Q "Volume flow (

positive inwards)";
end HQPort;

In this example, two variables H and Q are defined. The connector makes sure that variables
that represent a potential H are equal (by default all variables are interpreted as potential)
and that the sum of flux variables indicated as flow Q sum up to zero:

Hi = Hj (4.3)∑
Qi = 0 (4.4)

Consequently, for flow variables a sign convention is required. For RTC-Tools 2 models this
convention is

� inflow towards an element (i. e. a Modelica model) is positive
� outflow from an element is negative.

Two models are connected with the help of the connect statement. Two models model1 and
model2 based on the partial model HQTwoPort, which has been designed for models that are
to be connected on two sides

partial model HQTwoPort "Partial model of two port"
2 HQPort HQUp;

HQPort HQDown;
4 end HQTwoPort;

are connected with the connect statement as follows:

connect (model1.HQUp, model2.HQDown);

4.2 Exercise

4.2.1 Task

To get familiar with Modelica, we build a simple population model for a biological equilibrium
of wolves and sheep.

1 Create a partial model “Population” with state variable x (i. e. the sheep population), input
variable u for a foreign population, a growth parameter r and a probability p for the meeting
of wolves and sheep.

2 Create a model “SheepPopulation” that extends “Population” with the equation

dx

dt
= rx− pxu (4.5)

Set the growth parameter to r = 0.04 and the initial population to 100.
3 Create a model “WolfPopulation” by extending “Population” with the equation

dx

dt
= rpxu− dx (4.6)

where d denotes a mortality rate of 0.2. the growth rate is r = 0.8 and the start population
is 30.
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Table 4.2: Simulation parameters for the wolf sheep population model. One time step
represents one year.

parameter value

start time 0
stop time 250
interval 1

4 Connect the two population models in a master model “World”: the wolf population is
the input for the sheep population model, and vice versa. The probability of meeting is
p = 0.0003.

5 Simulate the model for a time span of 250 years. Plot both the sheep and the wolf popu-
lation in a single graph.

4.2.2 Solution
1 Open the Modelica editor OMEdit. If the RTC-Tools 2 has been installed correctly, you can

open OMEdit via the Windows start menu.

Figure 4.2: OMEdit start screen

Create a new Modelica class via File�New Modelica Class and name it “Population”.
Code the population model (task 1) as follows:

1 partial model Population
// Population

3 Real x;
// Foreign population
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5 input Real u;
// Growth factor

7 parameter Real r;
// Wolf-sheep meeting probability factor

9 parameter Real p;
end Population;

2 Create a new Modelica class for the sheep population model:

model SheepPopulation
2 extends Population(r = 0.04, x(start = 100)); // set

initial population of sheep and growth parameter
equation

4 der(x) = r * x - p * x * u;
end SheepPopulation;

3 Now prepare the wolf population model:

1 model WolfPopulation
extends Population(r = 0.8, x(start = 30));

3 // mortality rate
parameter Real d = 0.2;

5 equation
der(x) = r * p * x * u - d * x;

7 end WolfPopulation;

4 The “world model” that connects the population of wolves and sheep looks as follows:

1 model World
parameter Real p = 0.0003;

3 WolfPopulation wpl(p = p);
SheepPopulation spl(p = p);

5 equation
wpl.x = spl.u;

7 spl.x = wpl.u;
end World;

Here we declare the probability that wolves and sheep meet and define a value. This
parameter is the same in both populations. In the equation section the two population
models are connected via the equality statement and the corresponding variables: the
state (i. e. the state) of the first model is the input of the second model and vice versa.

5 Before running the model, the simulation parameters listed in Table 4.2 must be entered in
the Simulation Setup (Simulation�Simulation Setup, in the Simulation Interval
tab). After saving and checking the model, the simulation can be started. The simulation
results are presented in Figure 4.3; Note how the (state) variable x is selected in the
Variable Browser pane for plotting both the sheep and wolf populations.
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Figure 4.3: Sheep and wolf population over time, OMEditor
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5 A simple RTC-Tools model predictive control model example

5.1 Introduction

The folder <installation directory>\RTCTools2\tutorial contains a complete RTC-
Tools 2 model. The purpose of this chapter is to understand the technical setup of an RTC-
Tools 2 model with the help of this example, to run the model, and to understand the results.

The directory has the following structure:

� input with the model input data. These are several files in comma separated value format
(csv).

� model contains the Modelica model. The Modelica model contains the physics of the
RTC-Tools 2 model.

� In the output folder the simulation output is saved in the file timeseries_export.csv.
� src contains a Python file. This file contains the configuration of the model and can be

used to run the model.

5.2 The physical part: Modelica

Load the Deltares library <installation directory>\RTCTools2\mo\Deltares\
package.mo via the menu File�Open Model/Library File(s).

The Deltares library contains a package with pre-defined water related models. Figure 5.1
shows the OMEdit with the Deltares library loaded. The lookup table reservoir model has
been selected in the text view mode.

Load the tutorial model <installation directory>\RTCTools2\tutorial\model\
Tutorial.mo and open it in diagram view. The Libraries Browser and the mouse-over
feature help to identify the pre-defined models from the Deltares library (Figure 5.2).

The model “tutorial” represents a simple water system with the following elements:

� a canal segment, modelled as storage element (Deltares.Flow.OpenChannel.Storage.
LookupTable) with the waterlevel–storage relation given in Table 5.1. This relation is
specified as input file in the folder input.

� a discharge boundary condition on the right side
� a water level boundary condition on the left side
� two hydraulic structures, both modeled as Deltares.Flow.OpenChannel.Structures.

Pump:

� a pump
� an orifice

The model represents a typical setup for the dewatering of lowland areas. Water is routed
from the hinterland (modeled as discharge boundary condition, right side) through a canal
(modeled as storage element) towards the sea (modeled as water level boundary condition
on the left side). Keeping the lowland area dry requires that enough water is discharged to
the sea. If the sea water level is lower than the water level in the canal, the water can be
discharged to the sea via gradient flow through the orifice (or a weir). If the sea water level is
higher than in the canal, water must be pumped.

To discharge water via gradient flow is cheap, pumping costs money. The control task is to
keep the water level in the canal below a given flood warning level at minimum costs. The
expected result is that the model computes a control pattern that makes use of gradient flow
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Figure 5.1: Deltares library loaded, the lookup table reservoir model selected in text view

Figure 5.2: Model “tutorial” in OMEdit diagram view. Libraries Browser is open and
mouse-over is active on a Boundary Conditions object.
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Table 5.1: Waterlevel-storage relation

Volume Water level

0 -0.75
0 -0.5
0 -0.25
0 0

100000 0.25
500000 0.5

1000000 0.75

Figure 5.3: Sluice and pump complex “Eefde” in the Twenthe Canal near the IJssel river,
the Netherlands (source: https://nl.wikipedia.org/wiki/Sluis_
Eefde )
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whenever possible and activates the pump only when necessary.

In text mode the Modelica model looks as follows (annotation statements have been cleaned
up):

Listing 5.1: Modelica model Tutorial.mo

model Tutorial
2 Deltares.Flow.OpenChannel.Storage.LookupTable storage;

Deltares.Flow.OpenChannel.BoundaryConditions.Discharge
discharge;

4 Deltares.Flow.OpenChannel.BoundaryConditions.Level level;
Deltares.Flow.OpenChannel.Structures.Pump pump;

6 Deltares.Flow.OpenChannel.Structures.Pump orifice;
input Modelica.SIunits.Volume V_storage;

8 input Modelica.SIunits.VolumeFlowRate Q_in;
input Modelica.SIunits.Position H_sea;

10 input Modelica.SIunits.VolumeFlowRate Q_pump;
input Modelica.SIunits.VolumeFlowRate Q_orifice;

12 equation
connect(orifice.HQDown, level.HQ);

14 connect(storage.HQ, orifice.HQUp);
connect(storage.HQ, pump.HQUp);

16 connect(discharge.HQ, storage.HQ);
connect(pump.HQDown, level.HQ);

18 storage.volume = V_storage;
discharge.Q = Q_in;

20 level.H = H_sea;
pump.Q = Q_pump;

22 orifice.Q = Q_orifice;
end Tutorial;

The five water system elements

� storage with lookup table (i. e., a level-storage relation)
� discharge boundary condition
� water level boundary condition
� pump
� orifice

appear under the model statement. The input variables

� V_storage
� Q_in
� H_sea
� Q_pump
� Q_orifice

are assigned to the water system elements.

The equation part connects these five elements with the help of connections.

Note that Pump extends the partial model HQTwoPort which inherits from the connector HQPort.
With HQTwoPort, Pump can be connected on two sides. level represents a model boundary
condition (model is meant in a hydraulical sense here), so it can be connected to one other
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Figure 5.4: Map symbols are shown for interfaces, here shown for the level boundary
condition model and the pump model from the “tutorial” example, connections
are hidden.

element only. It extends the HQOnePort which again inherits from the connector HQPort. For
the interfaces HQTwoPort and HQOnePort map symbols are shown in the diagram view in
OMEdit. These map symbols are loosely connected to the map symbols of the feature they
belong to (Fig. 5.4).

5.3 The Python master script for the optimization problem

5.3.1 Introduction
Listing 5.2: Python master script tutorial.py

1 from rtctools.optimization.
hybrid_shooting_optimization_problem import
HybridShootingOptimizationProblem

from rtctools.optimization.modelica_mixin import
ModelicaMixin

3 from rtctools.optimization.csv_mixin import CSVMixin
from rtctools.optimization.csv_lookup_table_mixin import

CSVLookupTableMixin
5 from rtctools.util import run_optimization_problem

7 class Tutorial(CSVLookupTableMixin , CSVMixin , ModelicaMixin
, HybridShootingOptimizationProblem):
def __init__(self , model_folder , input_folder ,

output_folder):
9 # Call constructors

CSVLookupTableMixin.__init__(self ,
11 input_folder=

input_folder)
CSVMixin.__init__(self ,

13 input_folder=input_folder ,
output_folder=output_folder)
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15 ModelicaMixin.__init__(self ,
model_name='Tutorial ',

17 model_folder=model_folder ,
control_inputs =['Q_pump ', '

Q_orifice '],
19 lookup_tables =['V_storage '])

HybridShootingOptimizationProblem.__init__(self)
21

def objective(self):
23 # Minimize water pumped

return self.integral('Q_pump ')
25

def constraints(self):
27 constraints = []

# Pump uphill only
29 for q, h_up , h_down in zip(self.states_in('Q_pump ')

, self.states_in('storage.HQ.H'), self.states_in
('level.H')):
constraints.append ((q * (h_down - h_up), 0.0, 1

e10))
31 # Release through orifice downhill only

for q, h_up , h_down in zip(self.states_in('
Q_orifice '), self.states_in('storage.HQ.H'),
self.states_in('level.H')):

33 constraints.append ((q * (h_up - h_down), 0.0, 1
e10))

return constraints
35

def bounds(self):
37 # Bound variables

return {'Q_pump ': (0.0, 10.0),
39 'Q_orifice ': (0.0, 10.0),

'storage.HQ.H': (0.0, 0.5)}
41

# Run
43 run_optimization_problem(Tutorial , base_folder='..')

Load the script <installation directory>\RTCTools2\tutorial\src\tutorial.py into
a Python editor. This Python script connects the components of RTC-Tools 2 (Chapter 1, Fig-
ure 1.1). We briefly introduce the most important parts of the script, here displayed in Listing
5.2.

The basic idea is that the RTC-Tools 2 modeler modifies this script according to his individual
needs. This is more configuration work in Python than programming in Python.

The script consists of the following blocks:

1 import of Python packages
2 definition of the class

� constructor

� definition of the optimization problem:
� objective function
� definition of constraints
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� definition of varieable bounds

3 a run statement

5.3.2 Import of packages

The first block imports the necessary RTC-Tools 2 classes:

� HybridShoothingOptimizationProblem time-discretizes the continuous physical model
(in the current case represented with Modelica) and prepares the optimization problem for
the optimizer.

� ModelicaMixin reads the model from the Modelica input file (*.mo) and lets JModellica
put out the model to Python.

� CSV(LookupTable)Mixin is the interface to CSV files for input and output in time series,
initial states, and lookup tables.

� run_optimization_problem runs the optimization problem (the simulation).

These classes are available as pre-compiled Python bytecode. The files are located in the
folder <installation directoru>\system\python27\Lib\site-
packages\rtctools\optimization\*.pyd.

5.3.3 Class declaration and initialization

After the import block follows the class definition. In the current example, the class name is
“Tutorial”, but it can be a different name, too. The class arguments refer to the classes being
inherited from (see above). The class has the following methods:

� the constructor __init__
� the method objective for the objective function of the optimization problem
� the method constraints and
� the method bounds for the variable bounds.

5.3.4 The constructor

The constructor initializes the imported classes with the following arguments:

� model folder
� input folder
� output folder

The arguments input folder and output folder are used to feed the first two constructor
methods CSVLookupTableMixin and CSVMixin with the information where to find the input
files and the output files.

The constructor method ModelicaMixin connects to the Modelica model from Section 5.2:

1 ModelicaMixin.__init__(self ,
model_name='Tutorial ',

3 model_folder=model_folder ,
control_inputs =['Q_pump ', '

Q_orifice '],
5 lookup_tables =['V_storage '])

Variables from the Modelica model can be used for computations within the class “Tutorial”.
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The model_name ‘Tutorial’ refers to the name of the Modelica model to use as root model for
the simulation. model_folder refers to the folder where the Modelica model can be found.

The control_inputs are Q_pump and Q_orifice. These two variables show up in the
Modelica model ‘Tutorial’ as two of five input variables (see Listing 5.1). Note that Modelica
does not distinguish between control variables and other variables, so the user is responsible
for keeping track of variables how are used.

Lookup tables from CSV files are transferred to Modelica also via the master script and the
ModelicaMixin method. Here the lookup table data from input file V_storage.csv is fed
towards input variable V_storage.

5.3.5 The objective function

The method objective defines the objective function, also referred to as cost function. Within
the objective function targets and soft constraints are specified. The optimization aims to
minimize this objective function. In the current example the objective function has one term.
The goal is to minimize the total pump volume over all time steps. integral is a method from
the RTC-Tools 2 Python libraries and accumulates values of a variable – in the current case
the total discharge Q_pump – over the simulation time. Q_pump is provided by Modelica under
the given input data and control variables.

5.3.6 Constraints and variable bounds

Most optimization problems are subject to mathematical constraints. In RTC-Tools 2 the con-
straints of the optimization problem are specified in the methods constraints and bounds.

For the current case there are two constraints defined in the method constraints. The first
constraint is that pump flow must only allow upstream discharge, i. e.: pump discharge times
the head difference at the pump (q * (h_down - h_up)) must be larger than zero. The sec-
ond constraint is that discharge through the orifice discharge is allowed only in downstream
direction. The constraints.append method is part of the RTC-Tools 2 library. Note that the
constraints use the variables 'Q_pump', 'Q_orifice', 'storage.HQ.H' and 'level.H'.
These four variables are part of the Modelica model “Tutorial”.

While constraints are mathematical expressions, bounds define a feasible range for variables.
Variable bounds are specified in the method bounds. Often these variable bounds specify
physical limits like the minimum and maximum water level of a reservoir, pump capacities or
river bed levels. In the current example the pump capacity and the discharge capacity of the
orifice have been set to a range between 0 and 10, and the water level in the canal segment
must be between 0 and 0.5. Note that the range for the water level does not cover the whole
range of the waterlevel-storage relation given in Table 5.1.

Note that constraints limit the solution space. If no optimal solution can be found within the
solution space, the optimizer returns an infeasible solution. This means, that hard constraints
can not be violated. Constraints specified in the constraints and bounds method are also
referred to as hard constraints.

5.3.7 Run the optimization problem

The last command executes the optimization with the help of the command run_optimiza
tion_problem. This command is part of an import library, and an object instance of the
“Tutorial” class is created within this command.
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5.4 Run the Python master script

To run the Python master script search for Tutorial in the Windows start menu and run
it. The command behind this start menu entry is <installationdirectory>\RTCTools2\
system\JModelica\RTC2_Python.batC:\RTCTools2\tutorial\src\tutorial.py

You can check this in the properties dialogue (right mouse button → “Properties”. This
shortcut ensures two things: 1), that the Python distribution that was installed as part of
the RTC-Tools 2 package is used (i. e., <installationdirectory>\RTCTools2\system\
python27\python.exe), and 2), that this Python distribution is used within a properly set-up
environment (as defined in <installationdirectory>\RTCTools2\system\JModelica\
RTC2_setenv.bat). A terminal window opens, and the first lines should look like

******************************************************************************
This program contains Ipopt, a library for large-scale nonlinear optimization.
Ipopt is released as open source code under the Eclipse Public License (EPL).

For more information visit http://projects.coin-or.org/Ipopt
******************************************************************************

NOTE: You are using Ipopt by default with the MUMPS linear solver.
Other linear solvers might be more efficient (see Ipopt documentation).

This is Ipopt version 3.10.3, running with linear solver mumps.

Number of nonzeros in equality constraint Jacobian...: 359
Number of nonzeros in inequality constraint Jacobian.: 120
Number of nonzeros in Lagrangian Hessian.............: 100

Total number of variables............................: 200
variables with only lower bounds: 0

variables with lower and upper bounds: 60
variables with only upper bounds: 0

Total number of equality constraints.................: 160
Total number of inequality constraints...............: 42

inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 42

inequality constraints with only upper bounds: 0

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls

0 7.0199930e+002 3.02e+002 3.30e+001 -1.0 0.00e+000 - 0.00e+000 0.00e+000 0

The last lines should look like the following:

64 7.9999765e+003 1.69e-009 7.28e-012 -8.6 2.52e-005 - 1.00e+000 1.00e+000h 1

Number of Iterations....: 64

(scaled) (unscaled)
Objective...............: 2.2222156933433118e+002 7.9999764960359225e+003
Dual infeasibility......: 7.2759576141834259e-012 2.6193447411060333e-010
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Constraint violation....: 1.6880221664905547e-013 1.6880221664905548e-009
Complementarity.........: 2.5084101706846311e-009 9.0302766144646727e-008
Overall NLP error.......: 8.2934654460433754e-010 9.0302766144646727e-008

Number of objective function evaluations = 77
Number of objective gradient evaluations = 65
Number of equality constraint evaluations = 77
Number of inequality constraint evaluations = 77
Number of equality constraint Jacobian evaluations = 65
Number of inequality constraint Jacobian evaluations = 65
Number of Lagrangian Hessian evaluations = 64
Total CPU secs in IPOPT (w/o function evaluations) = 0.179
Total CPU secs in NLP function evaluations = 0.031

EXIT: Optimal Solution Found.
time spent in eval_f: 0.004 s. (77 calls, 0.0519481 ms. average)
time spent in eval_grad_f: 0.008 s. (66 calls, 0.121212 ms. average)
time spent in eval_g: 0.001 s. (77 calls, 0.012987 ms. average)
time spent in eval_jac_g: 0.006 s. (67 calls, 0.0895522 ms. average)
time spent in eval_h: 0.01 s. (65 calls, 0.153846 ms. average)
time spent in main loop: 0.216 s.
time spent in callback function: 0 s.
time spent in callback preparation: 0 s.
2016-06-14 10:59:38,548 INFO Solver succeeded with status Solve_Succeeded
2016-06-14 10:59:38,548 INFO Extracting results
2016-06-14 10:59:38,552 INFO Done extracting results
2016-06-14 10:59:38,558 INFO Done with optimize()
>>>

The message “Optimal Solution Found” is a log message from the optimizer IPOPT that in-
dicates that the simulation has terminated successfully. The objective function value has
developed within 64 iteration steps from 7.0199930E + 002 to 7.9999765E + 003. In our
case the objective function value is the total pumped volume. The fact that the objective func-
tion is larger than zero means that the optimizer was not able to operate the water system
without pumping. For more information about the IPOPT convergence info see ?, Appendix
F.

5.5 Input data and results

Figure 5.5 shows simulation results from the file <installation directory>\RTCTools2\
tutorial\output\timeseries_export.csv. This file can be opened with Microsoft Excel
or Veusz.

In the top diagram the sea level (downstream boundary condition, level.H) and the water
level in the canal segment (which is the water level that corresponds to the discharge boundary
condition of 5 m3/s discharge.HQ.H) are shown. The bottom diagram shows the pump
discharge and the discharge of the orifice. At times where the water level in the canal segment
is higher than the sea level the water is discharged via the orifice. A significant pump usage is
not applied before the water level in the canal reaches the maximum value (hard constraint) at
2013-05-20 12:00 hours. A very small pump discharge is applied before this point in time, but
the optimizer chooses to have the bulk of pumping activity when the canal water level is high
and the sea level is low, because the head difference is small then, which leads to a small
objective function value.
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Figure 5.5: Water levels and discharges over time
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