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Schedule 

• 09:00: Introduction of participants 
• 09:15: Introduction to RTC-Tools 2.0 

• 10:30: Coffee break 
 

• 11:00: Multi-objective optimization with RTC-Tools 

• 11:30: Optimization under forecast uncertainty 
• 12:00: Software installation 
• 12:30: Lunch 

 
• 14:00: Breakout session #1 
• 15:30: Coffee break 

 
• 16:00: Breakout session #2 
• 17:30: Drinks 



Breakout sessions 

Room Taught by 

Multi-objective optimization of 

a reservoir system 

Colloquium Olav van Duin, Matthijs den 

Toom (in partial absentia) 

Water allocation High Tech Peter Gijsbers 

Energy-efficient polder 

drainage 

Ambition Tjerk Vreeken, Jan Talsma 

Every session will be held twice: From 14:00 to 15:30, and from 16:00 to 17:30. 



Outline for first slot 

• Introduction round. 

 

• RTC-Tools: What is it? 

• The history of RTC-Tools. 

 

• Model predictive control. 

• Reliability conditions for operational optimization. 

• Convex optimization. 

 

• Modelling with Modelica and RTC-Tools. 



Introduction round 

Who is who? 

 

• Why are you interested in RTC-Tools? 

• What are your expectations for the day? 



RTC-Tools: Scope 

RTC-Tools is the Deltares toolbox for 

control and optimization of 

environmental systems. 

 

Delft-FEWS is an open data handling 

platform, used for the aggregation of 

(real-time) environmental data flows. 

 

Together, they provide a platform for the 

development of decision support 

systems. 

 



Netherlands: Noorderzijlvest water board 

A decision support and control system for the Noorderzijlvest water 

board. The system helps to reduce drainage costs, by making use 

of energy price, tidal sea water level, and rainfall predictions. 



USA: Bonneville Power Authority 

A decision support system for hydropower dispatch on the Columbia 

river. The system helps to maximize revenue from power sales, 

while keeping the system compliant with regulations, through multi-

objective optimization techniques. 



Brazil: Decision support for Tres Marias dam (CEMIG) 

A decision support system for the Tres Marias dam. The system helps 

to reduce flooding in Pirapora using stochastic optimization 

techniques. 



History 

- 2005: Reservoir module for Delft-FEWS. 

- 2012: Dirk Schwanenberg releases first version of RTC-Tools source 
code to the public. RTC-Tools 1.x connected non-linear hydraulic and 
reservoir models to the IPOPT optimizer. 

- Promising results, many scientific publications 

- High interest from reservoir operators 

- But challenging to operationalize, and hard to extend 

- 2015: Work starts on new mathematically rigorous foundation, initially 
as an experiment of Jorn Baayen and Matthijs den Toom. 

- 2016: First pilot projects on new foundation. Peter Gijsbers develops 
water allocation tool for Rijkswaterstaat using new framework. Klaas-
Jan van Heeringen and Ivo Pothof launch projects to develop decision 
support systems for a number of water boards in The Netherlands. 

- 2016: RTC-Tools 2.0 released. 

 



RTC-Tools 2.0 

RTC-Tools 2.0 is a toolbox for control and optimization of 

environmental systems. 

 

• Interdisciplinary, object-oriented modeling using Modelica 

• Mathematical framework designed for stable operation in 

environments that require consistent results 

• Optimization under uncertainty 

• Multi-objective optimization 

• Integration with Delft-FEWS 

• Python scripting 



Model predictive control 

• Predict system state based on model 

• Compute control inputs that maximize performance over prediction horizon 

• Implement first computed control input 

• Repeat procedure at next time step 

Source: Wikipedia. CC BY-SA 3.0. 



Prediction model 

To be able to predict the state of the system inside the optimization, the 

following are required: 

 

1. A predictive model relating control inputs and boundary conditions to 

the evolution of the system state. 

2. Forecasts for the boundary conditions of the system over the 

prediction horizon: 

• Inflow forecasts 

• Load forecasts 

• … 

 

Note that the predictive model is always used, even when the controller is 

used to control a simulation: predictive model ≠ simulation model! 



Prediction model 



Prediction model 

A good prediction model satisfies several requirements: 

 

• Accurate: It captures the relevant physical processes with sufficient 

accuracy.  

• Simple: It focuses on the essential processes. Details are left out. 

Optimizing for details is a bad idea, considering the inaccuracies 

inherent in any inflow forecast. Less = more. 

• Quick: As it will need to be evaluated many times during 

optimization, a single run needs to be computationally inexpensive. 

 

On top of these conceptual requirements, there are several 

mathematical requirements to ensure stable and consistent 

optimization results. We will briefly discuss these later on. 



Reliability axioms 

A decision support system that is used day in, day out needs to be 
reliable. This need can be made precise with six axioms: 

 

• Accuracy: Any solution is physically correct.  

• Feasibility: A feasible solution always exists.  

• Quality: Any solution is a “good” solution.  

• Stability: The solutions are stable in the sense that small 
perturbations in the configuration result in small changes in the 
solution.  

• Determinism: Given the same initial solution guess and 
configuration, the solution is always identical.  

• Bounded solution time: A solution is found within a predetermined 
amount of time.  



Local and global optima 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Wikipedia. GFDL 1.2. 



From axioms to convexity 

Suppose we had an optimization problem that would only have 

globally optimal solutions. 

 

That would give us: 

 

• Quality: Every solution is a globally optimal solution. 

• Stability: Changing seed solutions or optimizer settings won’t 

change the quality of the end solution.  

 

So-called convex optimization problems only admit globally optimal 

solutions. Convex problems can be solved efficiently using 

deterministic methods. 



Convex sets 

 

 

 

 

 

 

 

 

 

 

 
Source: Wikipedia. CC BY-SA 3.0. 



Convex functions 

 

 

 

 

 

 

 

 

 

 

 
 

Source: Wikipedia. CC BY-SA 3.0. 

 

 

𝑓 𝑡𝑥1 + 1 − 𝑡 𝑥2 ≤ 𝑡𝑓 𝑥1 + 1 − 𝑡 𝑓(𝑥2) 
 



Convex optimization 

min 𝑓(𝑥)   subject to 

𝑔 𝑥 ≤ 0 

ℎ 𝑥 = 0 

 

Problem is called convex when: 

• 𝑓 is a convex function 

• 𝑔 is a convex function 

• ℎ is an affine function: 

• ℎ 𝑥 = 0 ⇔ ℎ 𝑥 ≤ 0 and −ℎ 𝑥 ≤ 0 . 

• ℎ must be both convex and concave, i.e., affine: ℎ 𝑥 = 𝑎𝑥 + 𝑏. 

• This is quite restrictive 

 

Convex problems only admit global optima. 



Convex optimization in practice 

By following certain simple rules when composing an optimization 

problem, convexity can be guaranteed. 

 

RTC-Tools helps the modeler follow these rules by emitting warnings 

whenever a rule is violated. 



Interdisciplinary modeling: Modelica 

Modelica is a language for object-oriented, declarative,  

equation-based modeling of dynamical systems. 

 

• Open standard 

• Independent of application domain 

• In industrial use at BMW, Airbus, Toyota, Alstom, Siemens, … 

 

Models can be written using a text editor (with a Python-like syntax), 

or using a GUI. 

 

2 december 2015 



Hello World: Exponential ODE 



Types 

• Real 

• Integer 

• Boolean 

• String 

• … 

 

 

 

 

 

 

Classes create new types: More on this later. 



Type prefixes 

Variability: 

• (continuous in time) 

• parameter (constant in time) 

 

Relation to environment: 

• input (value provided by environment) 

• output (value provided to environment) 



Units 

 

Good practice to use a real type annotated with a physical unit.  

 

Real types with SI units live in the package “Modelica.SIunits”. 



Equations 

 

The equality sign, “=“, declares an equality between the expressions 

on the left and right hand sides. 

 

It is not an assignment! Different from Python. 

 

The operator der gives the time-derivative of a real variable. 



Model objects 

Modelica is object-oriented. Like Python, Java, and C++. A Modelica 

model object is declared using the keyword model. 

 

A model generally consists of two sections: 

• Variable declarations 

• Equations 



Inheritance 

Make more complex models from simpler, more general ones: 



Nesting models 



Packages 

 

 

 

A Package is a special kind of object, which contains other objects 

such as models and possibly other packages. 



Connectors 

 

 

 

 

 

 

 

 

 

 

 

 

 
𝐻𝑖 = 𝐻𝑗 

∑𝑄𝑖 = 0 



Good modeling practice 

 

Make your components balanced: 

 

 

 

 

If the components are balanced, then so is the model. 

 

Balanced models can be simulated and therefore 

optimized. 

Number of equations = number of non-input, non-constant variables 



Water allocation in Citarum basin, Indonesia 



Modelica models and convexity 

RTC-Tools discretizes ODE of the form 

 

𝑥 = 𝑓 𝑥, 𝑢, 𝑡  

 

using the 𝜃-method: 

 
𝑥 𝑡𝑖+1 − 𝑥 𝑡𝑖 = Δ𝑡 𝜃𝑓 𝑥𝑖+1, 𝑢𝑖+1, 𝑡𝑖+1 + 1 − 𝜃 𝑓 𝑥𝑖 , 𝑢𝑖 , 𝑡𝑖  

 

The discretized equations are included as constraints in the 

optimization problem (collocation). Consequently, for convexity to 

hold, the model equations must be linear. 



Nonlinearity #1: Storage geometry 

Storage volume is an increasing, but 

generally nonlinear, function of water 

level. 

 

So this function cannot be included in 

the model. 

- However, accounting of volumes is linear: 

 

𝑉  = 𝑄𝑖𝑛 − 𝑄𝑜𝑢𝑡  
 

- Solution: Preprocess water level goals to volume goals. 



Nonlinearity #2: Hydraulics 

- Highly nonlinear friction term in diffusive 

wave equation: 
𝜕𝐻

𝜕𝑥
+
𝐶

𝑅
𝑄2 = 0 

- When using many diffusive wave 

branches, large numbers of local minima 

are created. What to do? 

- Linearization results in large errors; 

piecewise linearization results in large 

numbers of integer variables. 

- We recommend to stay with integrator-

delay (storage-and-delay) models. 

- Ongoing research. 

 



Nonlinearity #3: Hydropower generation 

Instantaneous power from a 

hydroelectric turbine: 𝑃 = 𝜂𝜌𝑔𝑄𝐻. 

 

 

 

 

 

 

 

- Q and H are optimization variables. 

- P nonlinear, even nonconvex, function of Q and H. 

- Solution: Change of variables results in nonlinear but convex 
formulations for load balance and generation maximization goals. 



Coffee break 



Outline for second slot 

• Multi-objective optimization  

• Pareto front 

• Weighting method 

• Goal programming 

• Forecast uncertainty  

• Sources of uncertainty 

• Forecast ensembles 

• Multi-stage stochastic optimization 

• Opportunities ahead 

• Software installation 

• Lunch 



Multi-objective optimization 

Suppose we have the following goals: 

 

• Keep water levels within bounds as much as possible 

• Maintain minimum spill flows for fish migration, if possible 

• Apply best effort to track the generation request 

 

Let 𝑓𝑖: 𝑖 ∈ 𝐼  denote the set of functions encoding these goals. We have: 

 

min 𝑓𝑖  ∀𝑖 ∈ 𝐼 subject to 

𝑔 𝑥 ≤ 0 

ℎ 𝑥 = 0 

 

How to solve this? 



Pareto optimality 

A solution 𝑥∗ of the problem 
 

min 𝑓𝑖  ∀𝑖 ∈ 𝐼 subject to 

𝑔 𝑥 ≤ 0 

ℎ 𝑥 = 0 
 
Is Pareto-optimal if there is no 𝑥∗∗ such that for a 𝑗 
 

𝑓𝑗 𝑥∗∗ < 𝑓𝑗(𝑥
∗∗) 

 

and for all 𝑖 ≠ 𝑗 
𝑓𝑖(𝑥

∗∗) ≤ 𝑓𝑖(𝑥
∗∗) 

 
In words: Pareto optimality implies that no goal can be improved without 

making another one worse. 

 



Pareto front 

The Pareto front is the set of all Pareto-optimal solutions. 



Weighting method 

The weighting method transforms the multi-objective problem to the 

scalar problem 

 

min∑𝑖𝜆𝑖𝑓𝑖  subject to 

𝑔 𝑥 ≤ 0 

ℎ 𝑥 = 0 

 

• Problem: How to pick the weighting factors 𝜆𝑖. 

• And if the weighting factors are arbitrary to a                                 

degree, then so is the solution! 

 

Solution on Pareto front shown with a circle. 

 



Lexicographic goal programming 

In lexicographic goal programming, we transform the multi-objective 

problem to a sequence of scalar optimization problems. 

 

First, we order our goals. For example: 

 

1. Keep water levels within bounds as much as possible 

2. Maintain minimum spill flows for fish migration, if possible 

3. Apply best effort to track the generation request 



Lexicographic goal programming 

The idea of the algorithm is: 

 

1. Minimize 𝑓1 to yield a minimum objective value of 𝜀1.  

2. Minimize 𝑓2 to yield 𝜀2 subject to the additional constraints 

• 𝑓1(𝑥) = 𝜀1 

3. Minimize 𝑓3 subject to the additional constraints  

• 𝑓1(𝑥) = 𝜀1  

• 𝑓2(𝑥) = 𝜀2 

4. … 

 

Solution on Pareto front shown with an arrow. 

 



Probabilistic forecasting 

 

 

 

 

 

 

 

 

 

 

 

 

 
Courtesy of Jan Verkade 



Probabilistic forecasting 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where are the uncertainties? 



Estimating predictive uncertainty: techniques 
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Ensemble techniques 

1. Use multiple, equally plausible inputs 

• Weather forecasts 

• Initial conditions 

• Parameters 

• … 

 

2. Route all through a model: 

• Using one single model 

• Using multiple models (“multi-model”) 

 

 Model outputs will vary  “ensemble” 

 Individual model results are called “members” 

 



Ensemble techniques 



Multi-stage Stochastic Oprimization 



Multi-stage Stochastic Oprimization 



Joint optimization of hydro and transmission systems 

• Joint optimization of hydro generation and electrical power flow 

(OPF). 

• Goal: Hydropower dispatch schedules that are robust against 

meteorological uncertainty and transmission grid contingencies 

(failing power lines). I.e., SCOPF + water accounting. 

Source: bchydro.com 



Software installation 

Download location Password 

RTC-Tools 2.0 download.deltares.nl DSDInt2016WS 

OpenModelica www.openmodelica.org 

Example pack https://we.tl/2FHBTs1pzP 

pw4GASTatDeltares 



Lunch break 


