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1 Shallow Water Equations

The one dimensional shallow water equations in conservative form are given by [?]:
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with volume flow Q, water level above the plane of reference H, bed level Hb, total water depth
D = H −Hb, channel cross section A = A(H), channel width at the surface W = W (H), lateral
inflow per unit length q, wind-stress (parallel to the channel) τ , dimensionless bottom friction
coefficient cf , water density ρw, and gravitational acceleration g [?]. The friction coefficient
should be calibrated to the model, but can be approximated cf ≈ g/C2 where C is the Chézy
coefficient.

2 Modelica Formulation

2.1 Staggered Grid

We define a Modelica model class containing an upstream port with a flow rate variable Qu and
a water level Hu, as well as a downstream port with flow rate variable Qd and water level Hd.
See Figure 1.

Inside the element, we discretize the shallow water equations on a staggered grid following
[?]. Let n be the number of water level nodes, so that we have n − 1 segments connecting the
nodes. We associate a water level Hi, i ∈ {1, . . . , n}, to every level node. In the middle of
every segment and on the element boundaries, we define flow rates Qj , j ∈ {1, . . . , n + 1}. On

Figure 1: Model structure.
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Figure 2: Staggered grid with upstream and downstream boundaries.

the element boundaries, we set Q1 = Qu, Qn+1 = −Qd
1, H1 = Hu and Hn = Hd. Figure 2

summarizes our grid configuration.

2.2 Discretized Equations

The discretized form of the shallow water equations 3 on the staggered grid of Figure 2 reads:
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and

∆xqi =

∆x/2 if i ∈ {1, n}

∆x otherwise

Terms are enabled and disabled using fixed boolean settings δI , δA, δP , δU ∈ {0, 1}.
It is to be noted that the bed level Hb does not appear explicitly in the momentum equation.

As a result no artificial flow is induced by the bed level slope. So, if at rest initially, the system
will remain at rest.

No time discretization is carried out at this point. Time discretization is performed by the
Modelica compiler and/or any subsequent tooling according to the method that is most expedient
for the application at hand. A typical choice for the time discretization would be the implicit
Euler method. For a reduction of the computational burden on the rootfinding algorithm, one
may choose a semi-implicit method following [?]. In any case, when choosing the time step size
∆t, whether globally or adaptively, care must be taken to satisfy the CFL condition [?]:

u∆t

∆x
≤ Cmax

1In Modelica, flow variables employ a sign convention: Flow variables have a positive value when flow enters
the element, and a negative value when flow leaves the element.
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Figure 3: Class diagram of shallow water models.

with flow velocity u and Cmax typically greater or equal than one.
The equations 2 on the grid of Figure 2 are implemented in the partial Modelica class

PartialShallowWater. The relation between the cross area A and the water depth D is left
unspecified. This relation is specified derived classes, as explained next.

2.3 Cross Sections

To complete the discretized equations 2, we need a relation between the cross area A and the
water depthD. To this end, we supply two subclasses of the partial model PartialShallowWater:
Linear, and LookupTable. The Linear model relates the cross section A to the total water depth
D through a fixed width parameter W using the equation

A = WD.

The LookupTable model allows the modeler to insert a generic lookup table mapping the total
water depth D to the cross section A.

The relations between the model classes are summarized in Figure 3.

2.4 Advection Across Element Boundaries

Suppose we connect two shallow water models together. We denote the variables of the upstream
element using a superscript 1, and the variables of the downstream element using a superscript
2.

The connection equations are

H1
d = H2

u

Q1
d +Q2

u = 0

The mass balance equations left and right of the boundary separating the elements are
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Multiplying the first equation with ∆x1/2 and the second with ∆x2/2, and adding the resulting
equations leads to
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where

V =
∆x1A1

n + ∆x2A2
1

2

is a shorthand for the volume enclosed between the locations of Q1
n and Q2

2. This shows that
element connections are consistent with the continuity equation.

The mass balance equations can also be reorganized to give

1

2

∂U

∂t
+Q2

u =
Q1

n +Q2
2

2

where

U =
A1

n∆x1 −A2
1∆x2

2

This shows that Q2
u is, in general, not equal to the average of Q1

n and Q2
2. This would only hold

in case the volumes on both sides of the boundary are equal, or if the system is in steady-state.
With regards to the advection, we have seen that

−Q1
d = Q1

n+1 6= Q2
2

and
Q2

u = Q2
1 6= Q1

n

In other words, element connections are not consistent with regards to the advection. However,
in the limit as ∆x→ 0, −Q1

d = Q2
u approaches Q2

2 and Q1
n as long as Q is smooth. Consequently,

for smooth solutions Q, the element connections are consistent with regards to the advection in
the limit ∆x→ 0.

An open research question is how to ensure consistency of the element connections with
regards to the advection in Modelica for non-infinitesimal ∆x.

2.5 Note on Initialization

The suggested way to initialize the model is by adding initialization equations for a steady state,
i.e., by setting Q̇i = 0 for all i ∈ {2, . . . , n} at t0. It may be necessary to provide the solver with
an initial guess for water levels (or depths) to prevent it finding an initial state with negative
water depths.

3 Test Cases

Ideas:

1. 1 element vs 2 elements: consistency Consistent if not using advection If advection is not
taken into account,

2. Test convergence as ∆x→ 0

3. Behaviour with and without inertia, advection, pressure, and upwinding

4. Optimization test case
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5. Bottom slope comparison: Piecewise constant bottoms vs sloped bottoms Assume steady-
state, neglect advection. Given a bottom slope ∂Hb/∂x < 0 and a channel with uniform
width W0, a solution with uniform water depth D0 would satisfy

Q2
0 = −gD

3
0W

2
0

cf

∂Hb

∂x
(3)

Let W0 = 100m, D0 = 10 m, ∂Hb/∂x = −10−3/g, and cf = 10−2, so that Q0 = 103m3/s
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