Application	Policy issues	Processes	Control Problem
	Who supplies forecast data?		(forecast horizon, forecast uncertainty,
	Who is the decision maker?		objectives and constraints)
	What decision to take?		
Short-term hydropower reservoir	Meteorological data from met	Hydropower reservoirs	Hourly forecast over up to 30 days, plenty of
management (e.g. Bonneville	office, in-house streamflow and	(pool routing + turbine	forecast uncertainty, multi-objective (power
Power Administration)	load forecasts, BPA schedules	component) and	safety, environmental obligations, maximize
	the hydro system and	intermediate routing	revenues, etc.), many constraints
	implements the decision	with constant fixed	
		delays	
FEWS Rivieren (Rhine, Meuse)	RWS: supplies validated		Relevant lead time 3-4 days for evacuation
	deterministic forecast (based		measures
	on probabilistic forecasts +		Test case: Meuse, evacuation, trade-off:
	post processing Verkade)		false alarm / costs, credibility, flood plain
	Users: Water boards (boundary		evacuation: campers & cows -> work out
	condition of regional water		with direct users?
	system), veiligheidsregio		
IWP	RWS	OD and hydraulic models	2 days, 10min (tidal signal) – hourly steps,
	Water quantity	+ wind (external from	forecast from FEWS Rivieren, Waterbeheer,
	12-13 water systems (existing:	SOBEK, internal	dedicated models, etc.
	Twentekanalen, Ijsselmeer,	consideration useful to	Uncertainty in water balance (inflows /
	etc.)	get rid of the SOBEK model ?)	outflows, lock operations), ljsselmeer → meteo (wind)
		Water quality aspects	Objectives: navigation (level setpoints), salt
		(salt intrusion, blue	concentration, fish migration, energy costs
		algae) by surrogate	Control: post processing for discrete
		modelling? (direct or	decisions etc. (no/less changes at night),
		indirect consideration?)	combinations of continuous and discrete
			pump operations, pump capacity depends
			on head, logical constraints → changes only

NZV operation of a regional Dutch water system under daily conditions and flood events	Hydrological forecast, decision making and implementation by NZV Daily management (linked to telemetry) and during flood events	Canal system Bottlenecks: wind as additional process	if head < 10cm, Pre-defined, seasonal flow direction Min / max water levels by soft constraints, operating costs + costs for on/off, rate-of- change on settings, Pilot Kreekrak (N&S) on variable energy prices, also ljmijden → operator provides future energy need and flexibility Water energy nexus → Ivo Pothof Deterministic forecast (awareness about forecast uncertainty), future use of GLAMEPS Flood mitigation (level thresholds, priority), energy costs (STOWA project on variables energy costs?) Bottlenecks: existing setup suggests too low levels -> hard constraint for lower level threshold Operator friendly operation (avoid actions at night, etc.) Optional balance between compartment Post processing for continuous decisions (one action every 2 or 3 hours, discrete steps for discharge, pump needs to be running for a minimum period)
Delfland → Work out with Bart after kick-off		See above	Max flow of structure in hydraulic model, weir coefficients
Fews Waterbeheer (Peter Gijsbers)	RWS: daily run of LHM based on NHI (14 days, daily steps) ->	Water balance + water temperature + salt	Multi-objective!!! Objective: water distribution by priorities

national freshwater distribution	decision-support / advise for LCW	intrusion	Quasi steady state (daily step) -> probably hourly step in the future ?
			,

Cases:

Polder on/off + timing for flood mitigation on regional level, costs for use and drainage (by pumps)

Floodplain evacuation (camping?)