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ABSTRACT: Presently the simulation of larger-scale horizontal turbulent motions in shallow-water flows
such as in harbours, lakes or rivers is feasible and it reduces the dependence on turbulence-closures applied in
(unsteady) RANS. We call this Horizontal Large Eddy Simulation (HLES) i.e. simulating quasi 2D-turbulence
with a dominant vertical vorticity component interacting with bed friction i.e. 3D turbulence.

This paper presents a subgrid-scale (SGS) model for the unresolved part of quasi 2D-turbulence in shallow
water that is based on a /eaky energy cascade i.e. with energy loss by bed friction. Rather than spatial filtering,
a simple temporal recursive high-pass filter is applied on the resolved velocity field. This filter removes the
slow or steady large-scale contributions to the strain rates that enter our SGS model. The SGS model has been
successfully applied to simulating a shallow-water mixing layer, the eddies near groynes as well as the 3D

stratified tidal flow near a harbour extension.

1 INTRODUCTION

Based on the hydrostatic-pressure assumption,
our shallow-water solver Delft3D-Flow has been
extensively used for simulating the depth-averaged
as well as 3D flows in civil-engineering applications.
This involves complicated (natural) lateral geome-
try, arbitrary bed levels, a multitude of open-
boundary conditions including tides, atmospheric
forcing, flooding and drying, density stratification
etc.

For better assessment of navigation, structural
stability, sediment transport, dredging operations, oil
spills, algae blooms etc., there appears a growing
interest in simulating more details of the flow. Ex-
amples are the temporal and spatial probability-
density functions for horizontal velocity, bed-shear
stress, mixtures of dissolved or suspended constitu-
ents, patchiness of oil spills or algae etc.. This in-
formation originates mostly from scales significantly
larger than of 3D turbulence or the water depth but
less than the scales introduced by tides. In this in-
termediate range of scales occurs 2D turbulence. In
real flows, 2D turbulence is distorted by 3D effects
and therefore it is designated as quasi-2D turbulence,
consisting of eddies with a dominant vertical vortic-
ity component.

The classical approach would be to follow the
concepts of unsteady Reynolds-Averaged Navier-
Stokes (URANS) computations and accordingly de-

sign a closure for quasi-2D turbulence. For the fol-
lowing reasons and experience, however, we object
to this approach. The design of an adequate closure
for quasi-2D turbulence is a complicated task due to
the multiplicity of internal and external sources that
induce or supply energy to quasi-2D turbulence
(meteorology, topography, barotropic and baroclinic
instabilities etc.). Inevitably, unknown coefficients
appear that require calibration for which detailed ob-
servations are scarce. Finally, our experience with
some attempts using an two-equation model for
quasi-2D turbulence (Bijvelds et al., 1999) learns
that a small grid size, of the order of the water depth,
is still required to solve the unsteady RANS equa-
tions accurately.

In view of the latter computational requirement,
we prefer simulating, rather than modeling, the
evolution of quasi-2D turbulence in accordance with
the physical laws of shallow-water flows. We aim at
grid sizes of the order of the water depth so that 3D
turbulence remains computationally unresolved and
it is still modeled by the well-known closures. For
obvious reasons we call this approach Horizontal
Large Eddy Simulation (HLES). In this new ap-
proach, the grid size acts as a low-pass filter prop-
erty rather than as accuracy criterion in RANS.

A particular type of turbulence closure is required
for representing the action of the unresolved part of
quasi-2D turbulence. The latter turbulence closure is
called subgrid-scale (SGS) model as it depends on



low-pass filtering of the physical flow by the grid
size. Of course, compared to RANS, an SGS model is
also a closure and the same arguments against its de-
sign and calibration could be applied as well. How-
ever, this paper demonstrates that its derivation can
be performed without introducing new coefficients.
Further, our SGS model is a simple algebraic expres-
sion yielding a marginal computational overhead.
Finally, we show in this paper that the contribution
of the SGS model can be of the order of the one by
the 3D turbulence closure. In other words, by striv-
ing at simulating the horizontal turbulent currents
down to sufficiently small grid sizes we reduce the
dependency of the results on the additional SGS
model.

The interpretation of HLES differs from the un-
steady RANS. The latter is deterministic in its results
that represent statistical means and variances. The
results of HLES represent a particular realisation of
quasi-2D turbulence, containing coherent structures.
However, on-line processing of the flow variables of
HLES also yields statistical properties but with more
information e.g. about probability densities of the
outcome of non-linear processes (erosion, bed fric-
tion etc.).

These are the arguments and motivations for
striving at HLES and the principal step is the design
of an adequate SGS model. The next section reviews
the design criteria for such a model.

2 DESIGN CRITERIA FOR AN SGS MODEL IN
SHALLOW FLOWS WITH COMPLICATED
GEOMETRY

For reasons explained in this section, modern SGS
models, founded on the concepts of the dynamic
model (Germano et al., 1991), are not suitable for
practical application of HLES. The available SGS
models are dedicated to 3D-LES with simple
geometries and mostly equidistant and (nearly) iso-
tropic grids. In this section we present four design
criteria for a suitable SGS model for shallow flows.

Due to physical properties of ideal 2D turbulence,
most of the energy in the flow perturbations cas-
cades to larger length and time scales (Lesieur,
1997) that are resolved adequately by the simulation,
see fig. 1. Most of this so-called inverse energy cas-
cade is due to the merging of 2D vortices with equal
sign of their vertical vorticity vector (termed up-
scaling in fig. 1) as well as through the principle of
enstrophy (square of vorticity) conservation
(Fjertaft, 1953).

A minor part of the energy in the supplied flow
perturbations, however, is cascaded to smaller spa-
tial and temporal scales. The latter process is mainly
due to the interaction of vortices with opposite signs

thereby creating small regions with intensified strain
rates (McWilliams, 1990), called downscaling in fig.
1. This transfer of energy to smaller scales resembles
the well-known energy cascade in 3D turbulence,
although the upscaling flux or backscatter in 3D may
be significant as well, see (Piomelli et al., 1991).
Ideally, the rate-of-energy cascaded towards the
computationally unresolved scales should be ab-
sorbed adequately by an SGS model. The latter is the
first as well as the principal design criterion for any
SGS model. In fig. 1 the downscaling flux of quasi-
2D turbulence is defined as &€ and it acts as a
source of 3D turbulence.

Three other conditions, however, invoke devia-
tions from the previous idealized picture and these
conditions outline an SGS model that differs from
the available ones for 3D-LES.

The first deviating condition is due to a physical
process typical of shallow-water flows, namely the
work done by 2D turbulence against bed friction.
Bed friction drains energy from the computationally
resolved 2D turbulence motions. In general the
shallower the water and the larger the kinetic energy
of 2D turbulence, the more their energy is consumed
by friction i.e. converted into 3D turbulence and the
lesser their energy cascades, see e.g. (Uijttewaal &
Booij, 2000). The direct conversion of 2D turbu-
lence, at scales of 2D turbulence, to 3D turbulence
may be called a short-cut cascade (fig. 1), a term
borrowed from the destruction of atmospheric tur-
bulence while penetrating plant vegetation. In other
words, in case of shallow-water bed friction, the SGS
model should drain less energy from 2D turbulence
as it is already drained through the short-cut cascade.

T \/ Energy Source

E(k)
Downscaling

Upscaling

O(H™M
Loss by Bed Friction
(8hort-Cut Cascade)
Figure 1. Spectral energy density E(k) vs. horizontal wave
number magnitude k. Arrows indicate energy fluxes including
the short-cut cascade of quasi-2D turbulence directly into 3D

turbulence. The downscaling flux requires an SGS model if
horizontal grid sizes exceed the water depth H.

The second deviating condition is the energy dis-
sipation by the numerical solution method. For rea-
sons of robustness and general applicability without
time step limitations, our shallow-water solver is



dissipative, although marginally (Uittenbogaard &
Van Vossen, 2001). In many academic DNS and
LES codes, energy conservation is guaranteed.
Dedicated to HLES, the accompanying paper (Van
Os & Uittenbogaard, 2003) proposes a variance-
conserving advection scheme that avoids numerical
dissipation. In any case, the SGS model should be
sensitive to the dissipation imposed by the numerical
method.

Finally, there is a third and practical deviating de-
sign constraint. It concerns the feasibility of the SGS
model to complicated flow geometries, typical for
civil-engineering flows. This requirement needs
some introduction and problem analysis.

An essential deficit of the classical Smagorinsky
SGS model is that it drains too much energy from the
eddy motions when these are superimposed on shear
flows such as wall-boundary layers, see e.g. (Ger-
mano et al., 1991). In Smagorinsky’s closure the to-
tal strain rates of both the mean flow as well as tur-
bulence determine the SGS eddy-viscosity: even in a
non-turbulent shear flow Smagorinsky’s SGS model
would falsely respond by energy removal.

Instead, a proper SGS model should respond to
turbulence strain rates only. To our opinion, there-
fore modern but academic SGS models such as the
class of so-called dynamic models apply two spatial
filters mostly through 2D Fourier transforms of the
velocity field defined on equidistant grids. Essen-
tially, the spatial filters act as high-pass filters that
subtract the mean-flow contributions from the strain
rates that enter the SGS model.

We desire to include the latter property also in
our SGS model while keeping it feasible for compli-
cated geometries, typical for civil-engineering flows.
Our shallow-water solver is based on orthogonal
curvilinear staggered grids allowing for variable grid
sizes and including so-called thin dams or weirs by
blocking just a single grid line. Consequently, the
application of spatial filters is at least cumbersome
and instead we prefer high-pass temporal filtering
with the same objective of separating the quasi-2D
turbulence from the gradual changes in tidal or
wind-induced flow.

The four design criteria are summarized as fol-
lows:

1. adequate drainage of energy cascaded to the
smallest resolved scales;

2. accounting for the energy lost through the
short-cut cascade;

3. spatial low-pass filter properties adjusted to
the properties of the numerical method;

4. feasible filter operation that removes mean
flow contributions to the SGS model.

The next section presents the main derivation of
the SGS model in accordance with these criteria.

3 SHALLOW-WATER SGS MODEL

The Reynolds-stress tens0r§(3D )due to 3D turbu-

(3D)

lence is closed by the eddy viscosity v°* and reads:

3.1)

with unit-tensor £ . The strain-rate tensor § 1s based

on the horizontal velocity vector u:

S =4{vu+(vu)'} (3.2)

In (3.1), §(< ks) is based on the horizontal velocity

vector U. Vector U is the computationally resolved
velocity. It is low-pass filtered at horizontal wave
number magnitude ks imposed by the grid size as
well as the discretisation. This spatial filtering is
noted by the <k, argument.

In (3.1), v® is the eddy-viscosity due to 3D turbu-
lence, assuming such a large Reynolds number that
3D turbulence occurs. The eddy-viscosity Vi) i de-
scribed by an adequate model for 3D turbulence e.g.
the k-¢ model in case of 3D computations, or in the
depth-averaged mode the Elder formulation:

V6D _

(3.3)

with bed-shear velocity u«, water depth H and Von
Karman constant x ~ 0.4.

TxuH

Similarly, we close the Reynolds-stress tensor

R5GS) of quasi-2D turbulence by an eddy viscosity

v®9_ This closure reads

R(5GS) _

R % (3.4)

itr{R(SGS)} —2,/(5G8) g*

In (3.4) appears é* based on the high-pass temporal

filtered U that is written as u’. Consequently, g* is

spatially low-pass filter at ks, as U, but also tempo-
rarily high-pass filtered; section 4 defines the filter
parameters.

Our closure (3.4) represents the spectral transport (or
transfer) of kinetic energy of quasi-2D turbulence to
the unresolved scales. This is the downscaling flux
in fig. 1. The transferred energy originates from the
computationally resolved quasi-2D turbulence. The
temporal high-pass filter excludes the direct transfer
of mean-flow energy to the SGS quasi-2D turbu-
lence. The transfer of mean-flow energy to the re-



solved part of quasi-2D turbulence is simulated di-
rectly by the shallow-water solver.

A closure for v is constructed by considering

the depth-averaged balance of kinetic energy of SGS
quasi-2D turbulence including the energy loss by bed
friction (short-cut cascade). In absence of external
forcing and for homogeneous and stationary SGS
quasi-2D turbulence this balance yields:

<£(SGS):£*>_H_1<L_[(SGS) 'Ebed>=0 (3.5)

where the brackets indicate ensemble averaging. The
first term of (3.5) represents the spectral transport of

energy towards SGS kinetic energy of uS9S) | the
depth-averaged velocity, high-pass filter at horizon-
tal wave number magnitude k. Using (3.5), the pro-
duction of SGS quasi-2D turbulence is defined by

< E(SGS): £*> _ /(5GS) O(k,) (3.6)

where twice the sum of the resolved quasi-2D tur-
bulence strain-rates below wave number kg is ex-
pressed by

O(k,) = Oy — [ K2E(K) dk 3.7)
k

S

with Qq the constant total sum, E(k) the spectral-
energy density of the kinetic energy of 2D turbulent
motions at horizontal wave number magnitude k, see
also (3.13). In (3.7), the integral covers the band-
width of SGS quasi-2D turbulence and in this band-
width it is assumed to be horizontally isotropic.

As usual in civil-engineering, the bed friction
vector is quadratic in u and it is defined as

Thea = Cr|ufu (3.8)
with appropriate friction coefficient c¢ and by defi-

U

? holds with u- appearing in (3.3).

nition |z bed| =

Splitting (3.8) into resolved and unresolved velocity
vectors yields for the energy sink in (3.5):

B (599 1, ) =2B [ E(K) dk (3.9)
ks

where B~3c, |[U/H™" holds for 2D isotropic turbu-

lence. If the vertical profile of the horizontal velocity
is logarithmic and the simulation is 3D then it can be
shown that (3.9) represents the energy converted
into 3D turbulence. Substitution of (3.7) into (3.6)
and that result, together with (3.9), substituted into
(3.5) yields, after differentiation with respect to the
truncation wave number k:

(SGS)
Qﬂ + (569 d—Q+2BE(kS) =0
dk dk

N N

(3.10)

where dQ/dk, = k2E(k,) holds, in virtue of (3.7).

A major effort of solving (3.10) for the SGS
eddy- viscosity v is expressing v®°® into the
spectral energy density E. The first step is the as-
sumption that the eddy-viscosity is proportional to
the eddy-diffusivity T®® through

v(86S) = &, (5G9 (.11)

with ot the turbulence Prandtl-Schmidt number and
typically o1=~0.5-1.0 holds.

The following expression for I is derived in the
Appendix:

©E(k
reo)(5)=1 e 7 &) i (3.12)

=3 ‘u(SGS)‘kS k

with L, = 0.844 and where the rms of the SGS quasi-
2D turbulence velocity has been defined by:

‘u(scm‘z _1 <z(SGS) -z(SGS)> - JE(K)dk  (3.13)
ks
Assuming a power-law

for the spectral energy density with power o>1 and
substitution of (3.14) in (3.13) as well as in (3.12)

finally yields the derivative of v as it appears in
(3.10):

dv % 2 oy E(ky)

d_kv =—1(orL,) (1_0‘ )k (5GS) (3.15)

The substitution of (3.15) into (3 .10) yields an alge-

braic expression, quadratic in v, and its solution
reads:

1 2 * *
y(5) :k—z(\/(yar) (87:87)+ 5 —B) (3.16)

where y =17, v1-a and L, ~ 0.844 hold.

In section 5, (3.16) is compared to the depth-
averaged eddy-viscosity (3.3) due to 3D turbulence.
Further, section 5 investigates the damping role of
the bed friction i.e. of the short-cut cascade on the
SGS eddy-viscosity.

The final result (3.16), however, requires the speci-
fication of the truncating wave number k as well as
the definition of the high-pass filter yielding u and



S " . These filter operations are considered in the next

section.

4 SPATIAL AND TEMPORAL FILTERING

Figure 2 presents the transfer function of the ad-
vection scheme currently employed in our shallow-
water solver. Typically, at about 6 grid sizes Ax the
wave amplitude is reduced significantly. Therefore,
the truncation wave number is defined as

1 AxAy

ksz (n S )2

and from numerical experiments we estimate f,, ~0.3
such that ke~(Ax)" holds on a square grid. This esti-
mate and (4.1) obey the third requirement for the
SGS model, see Section 2. We refer to (Van Os &
Uittenbogaard, 2003) for an advection scheme de-
signed for energy conservation for which f, =1
holds.
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Figure 2. Reduction of velocity amplitude A, to A, at wave
length w by the mixed 2™ order upwind/central advection
scheme (Stelling, 1984) of our shallow-water solver Delft3D-
flow for W/Ax grid points.

The fourth and final criterion of Section 2 is
founded on the success of the so-called dynamic
model and experiences reported in (Germano et al.,
1991) who apply spatial filtering of the Fourier-
transformed velocity field. Various authors (Doma-
radzki & Loh, 1999) and (Meneveau et al., 1996)
propose spatial filters applicable in the physical do-
main. Nevertheless, all these appear at least cum-
bersome for our numerical grids and definitions of
thin dams, weirs etc.. The essential aspect of such
spatial filters appears to be the removal of the con-
tribution of the mean strain rate to the SGS model.

The most simple and feasible alternative is tem-
poral filtering of the velocity signals. We agree with
(Meneveau et al.,, 1996) that then such filtering
should be applied in a Lagrangian manner i.e. while
following the same fluid parcel in space. Such a La-

grangian filter operator can be constructed straight-
forwardly using the general on-line transport routine
in our shallow-water solver. The computational price
to pay is an additional transport equation. Presently,
we obtained good results (Kernkamp & Uittenbo-
gaard, 2001) by using the following simple Eulerian
recursive filter. For any scalar variable at time steps
(n, n+1) it reads

W* =V _W;H (4.2)
where the last term is the low-pass filtered property
obtained through the recursive filter

Vi =(1-a)y ., +ai7, 43)

with =0 and a=exp(-At/7). The time scale t

defined in this operator is specified by the user and
should exceed the typical Eulerian time of the pas-
sage of eddies. On the other hand, t should be sig-
nificantly smaller than the time scales of external
energy sources for the mean flow.

The previous definition of the temporal and spa-
tial filters completes the design constraints of Sec-
tion 2. The following section presents some analysis
of the SGS model (3.16).

5 ANALYSIS OF THE SGS MODEL

A fortunate result of (3.16) is that it does not
yield new calibration coefficients except the slope o
of the energy spectrum (3.14). Typical slopes of 2D
turbulence yield a=5/3 or 3 (Kraichnan, 1971) but
the sensitivity of y to a is then negligible.

In the following, the ratio between the SGS eddy-
viscosity (3.16) and the depth-averaged viscosity
(3.3) is estimated for the case of deep water (B=0).
For square grids, this ratio reads

VWS Lyosti—a” (a) ||

. Ll (4.1)
viD) %K(ﬂflp)z

HL u.

ﬁ*:i* ~|u'|/ L. Consider

where we assumed

‘u*‘/ u« =1, or=0.7 and all other coefficients given

previously then the SGS eddy-viscosity equals the
depth-averaged one for Ax ~ 0.5\ HL . If L=O(10)H
then the grid size is about twice the water depth.

Note that the ratio (4.3) increases proportionally to
the horizontal grid area.



Finally, the reduction of the SGS eddy-viscosity
by the bed-friction parameter B in (3.16) is investi-
gated. First note that, for fixed strain rates, if B in-
creases then v decreases. The bed-friction pa-
rameter B increases when the quasi-2D turbulence is
superimposed on a larger mean flow or a shallower
flow. Both effects reduce V(SGS), as expected, and are
due to the increased role of the short-cut energy cas-
cade (fig. 1). Define

V3B (B>0)= f(2)- v (B =0) 4.2)
with z=B/y 67115:5 and the function
f(z)=~1+2* -2 4.3)
10 ==
08 \
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\ \
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Figure 3. Example of reduction f (4.3) of V86 through bed
friction, depending on horizontal length scale (L) and water
depth (H) or by grid size (dashed line, see Appendix).

Figure 3 presents and example for c~0.027,
,/5:5 =‘u*‘/L with ‘u*‘/U=0.05 and all other

coefficients as applied before. This figure clearly
shows the strong reduction in v® when the typical
eddy size L is at least one order of magnitude larger
than the water depth H.

6 RECIPES FOR A PROPER HLES

This section summarizes our experiences based
on references given in section 7.

The SGS model (3.16) is a simple algebraic ex-
pression that, together with the temporal-filter op-
erator (4.3), requires a marginal overhead in com-
putational effort. Nevertheless, the computational
effort is large. Firstly due to the requirement of re-
solving at least the most energetic vortex-vortex in-
teractions on the grid. This requires a sufficiently
fine horizontal grid, typically of the order of the
water depth. Secondly, following the temporal evo-
lution of the vortex-vortex interactions is also essen-
tial and therefore the time step should be small. This

requirement is sometimes called space-time consis-
tency that demands for the advection Courant num-
ber, with A/ the grid size in flow direction:

lar _
=——<]1 6.1
v (6.1)

In absence of any internal or external friction, the
flow solver should at least approximate well but
preferably strictly obey the principle of energy con-
servation and preferably also the conservation of en-
strophy (square of vorticity). Both conditions are
fulfilled by the complicated scheme of Arakawa &
Lamb (1981). For our shallow-water solver, how-
ever, we must impose the condition

Cyr ={(8%) +(a y)_z}éJg_HAt <22

on the barotropic Courant number for approximating
energy and enstrophy conservation, for details see
(Uittenbogaard & Van Vossen, 2001).

Flow instabilities such as due to curved mean-
flow profiles e.g. free-shear layers are the most
prominent internal sources of generating quasi-2D
turbulence. Also the vorticity generated locally by
the friction of lateral walls (groynes, headlands,
quay walls etc.) can be advected into the main flow
volume (Clercx et al., 1999). Therefore friction by
lateral walls is included in our shallow-water solver
with a user-defined roughness length.

Typical for shallow-flow problems is that the
physical flow domain is truncated by the grid. Open
boundary conditions then should introduce the prop-
erties of the upstream current including quasi-2D
turbulence. To that purpose Kernkamp & Uittenbo-
gaard (2001) superimpose so-called kinematic tur-
bulence to the standard inflow-boundary conditions.

The next section concludes this paper and it pres-
ents references to examples on which the previous
recipes are founded.

Cy

(6.2)

7 CONCLUSIONS

The SGS eddy-viscosity model (3.16) is designed
for shallow-flow applications and it fulfills our four
design criteria, see section 2. This model does not
yield new calibration coefficients. The model hardly
increases the computational effort, as it is a simple
algebraic expression combined with the simple tem-
poral filter (4.3). Our SGS model accounts for the
additional energy loss of quasi-2D turbulence by bed
friction (fig. 1 and 3). This model is combined with
available closures for 3D turbulence, e.g. the k-¢
model. For grid-sizes of about twice the water depth
the SGS eddy-viscosity has the same order of mag-
nitude as the depth-averaged eddy-viscosity (3.3)
due to 3D turbulence.

This SGS model has been implemented in our
shallow water solver Delft3D-Flow and it is applied



in depth-averaged as well as in 3D simulations for
e.g. stratified flows.

Kernkamp & Uittenbogaard (2001) report a good
comparison against the shallow-water mixing layer
experiments in (Uijttewaal & Booij, 2000). Similar
favorable results are reported in (Schijndel & Jagers,
2003) as well as the comparison of 3D simulations
with extensive field observations (Bijlsma et al.,
2003).
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APPENDIX

This appendix is devoted to deriving (3.12) that
closes the algebraic equation (3.10) for the SGS
eddy-viscosity v

From the transport equation

0
ﬁ—q;+V~(t_t¢)=

of any conserved scalar ¢ follows

(A.1)

¢'(x,1) = ¢'[¥(0;2.1).0] - {uv W odr (a2
0 (Y,7)

for its turbulence perturbation ¢'. As a function of
time T appears in (A.2) path Y of a fluid parcel that
ends in the Eulerian position x at time t. The time-
space position (x,t) is added as label after the semi-
colon in the argument list of Y . The brackets <.>
imply ensemble averaging. From (A.2) follows the
formal closure for the scalar flux (u'¢’) while ne-
glecting higer-order derivatives of (¢):

t

(W o) ()= —{(I) (u' (.0 [ (23, t)]>dr} V((x.1))

(A.3)
In view of the integrand in (A.3) the Lagrangian cor-
relation tensor is defined by

RO (zix.0) = (' (x. ) [¥(z:.x.1)]) (A4)
and the eddy-diffusivity tensor for (A.3) as:
t
L=[R(r;x,t)d (A.5)
0

The principal task now is expressing (A.5) for
horizontally homogeneous 2D turbulence into the
spectral energy density E(k), see (3.13). This is
achieved by expressing the velocity vector into Fou-
rier-Stieltjes integrals (Batchelor, 1953) as:

(Y. 7) = fexp(ik-Y)dZ, (k.)

w((¥).)= Jesp(it- (1) a2, (1.1

where k and / are horizontal wave number vectors.
Substitution of these integrals in (A.5) and neglect-



ing correlations between Y' and the Fourier coeffi-
cients Z, yields:

RV (zsx,0) = [{explik - Y))[ (a2, (k,2)dZs (L.1))

(A.6)

The temporal spectral-energy density tensor is de-
fined as

E(k,t—)dk = [ (dZ,(k,7)d 2 (L1))
i
and Kraichnan (1959) derives the splitting

E(k.t—7)=E(k.0) h(k.t ) (A7)

with E(k,0) the spectral-energy density tensor

and h(k,T) the transfer function decaying for in-
creasing time difference |T|. Kraichnan (1959, eq.
5.3 for v=0) derives:

1

h(k,T)=07"7,(20) ;0 =T (k-(u'u')-k)? (A.8)

with J; the Bessel function of the first kind. For
small T the transfer function decays as exp(—%@z).

What remains in (A.6) is the first integrand that can
be expressed into

(exp(ik-Y")) = exp(—Fk-(Y'Y) k) (A9)

using cumulant expansion while neglecting higher-
order moments. For short arrival time intervals (t-1)

<X 'Y '> = <g‘g‘>(t - r)2 holds so that after all substitu-
tions (A.5) reads:

t
[(r)= j{ jW(G)dr}E(k,O)d& (A.10)
= A £l
with the integrand
w(0)=0""J,(0)exp(-16) (A.11)

and 0 defined by (A.8). Numerical integration

yields:

I, = [W(0)do ~ 0844 (A.12)
0

All this substituted into (A.6) and (A.5) yields:

lim 0(r)= L., |

r — =% (A13)
t—>00 ks(k<ﬂvﬂv>k)§

The expression (A.13) holds for the eddy-diffusivity
tensor due to horizontally homogeneous 2D turbu-
lence. For isotropic 2D turbulence (A.13) simplifies
to:

lim F(t)=%;‘°of dk (A.14)

t—>00 |MV| k

In the main text (A.14) is used as (3.12) i.e. with v’
of the total turbulence velocity replaced by u®“
and by considering the resolved velocity field as
mean flow. This ends the derivation for (3.12).

From the previous derivation, the following in-
structive conclusions can be drawn. Substitution of
the power law (3.14) in (A.14) yields

tim T(0)= = £k |

t—w©

(A.15)

The expression (A.15) resembles the classical mix-
ing-length closure but here the mixing length is re-
placed by the grid size, see also (4.1).

In 3D simulations, the SGS-closure is combined
with a 3D turbulence model and then (3.16) could be
replaced by:

B=v0D) 2 (A.16)

with the depth averaged v defined by (3.3). As-

suming é*é* z‘u*‘/L, u*‘/u* =1, 01=0.7 and all

other coefficients given previously then for L=10H
the damping of the SGS eddy-viscosity is repre-
sented by the dashed line in fig. 3 showing a van-
ishing SGS eddy-viscosity for Ax<H, as expected.

Finally a brief remark on the modeled spectral-
energy fluxes (fig. 1). The work done by the SGS

stresses against the total flow, i.e. mean-flow as well
as the resolved part of quasi-2D turbulence, reads:

(RO9:5) =205 (5%57)+ (L.:57)]

where é = £ —i* is the strain rate of the slow and

(A.16)

most likely mean flow. Note that the last term of
(A.16) may be negative with a magnitude exceeding

the positive <§*§*> . In that case backscatter of SGS

quasi-2D turbulence to the larger-scale flow occurs.



