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1 Introduction

1.1 Status of this document

This document has no official status yet, it is still in the review process. Distribution to others
should always go via Deltares. Please contact sales@deltaressystems.nl for more
information.

1.2 Introduction

D-Flow Flexible Mesh (or D-Flow FM, in short) is a 1D-2D-3D hydrodynamical simulation
package that runs on flexible meshes. The term flexible concerns the familiar curvilinear
meshes (like in WAQUA or Delft3D) combined with triangles, pentagons, hexagons and one-
dimensional channel networks, all in one single mesh. The present document comprises the
compilation of test documents related to the validation activities that have taken place through-
out the course of development of D-Flow FM. This present chapter provides on overview of
the scope and purpose of the present validation document.

1.3 Scope

The present validation document concerns the properties and validity of D-Flow FM; it focuses
on the computational part of D-Flow FM. As a consequence, the contents of this document
treat the aspects of the bare flow motion simulation capabilities of D-Flow FM. For example,
the pre- and postprocessing, and the coupling with other modules around D-Flow FM, such
as a wave module, a water quality module, a particle tracking module and an ecology module,
are beyond the scope of this document.

The particular focus of this document is on two-dimensional flow simulation. The coupling with
one-dimensional flow systems is taken care of within the Sobek development course, whereas
three-dimensional flow systems (through σ- or z-layer type grids) are considered only loosely
to be part of the scope of the project Next Generation Hydro Software. The particular focus is
on the representation of Waqua functionalities within the modelling framework.

1.4 Purpose

The primary purpose of D-Flow FM is to solve the two-dimensional shallow water equations.
These shallow water equations describe incompressible flow motion, based on the assump-
tion that the vertical length scale is much smaller than the plane length scales. The equations
are solved on a mesh that can contain triangles, quadrilaterals, pentagons and hexagons.
The secondary purpose of D-Flow FM is to facilitate the coupling of one-, two- and three-
dimensional grids.

The primary purpose of this validation document is to convey a representative image of the
capabilities and quality of D-Flow FM when it comes to two-dimensional flow simulation. To
that end, the various essential parts of the flow kernel are considered, such as advection,
diffusion, coriolis, boundary conditions, etc. For this image, several types of validation models
have been built.
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1.5 Validation approach

The validation models can be of strict analytical nature (comparison with analytical results),
of experiment nature (comparison with laboratory results), of schematic nature (hypothetical
models with only focus on a considerably limited number of functionalities) or of real-world
nature (practical engineering models). The validation approach is inspired by the Dee et al.
(1994) guidelines for documenting the validity of computation modelling software. The key
elements of this approach and the motivation for specific validation models are described in
chapter 2.

1.6 Outline

The validation of the multiple aspects of the D-Flow FM package is treated component wise,
in line with the several components of the shallow flow equations themselves. Thus, core
components like advection and diffusion are treated in dedicated chapters: chapter 3 and
chapter 5. Flooding and drying, a topic closely related to advection, is dedicated a separate
chapter as well: chapter 4.

External forcings to the flow field can be exerted in different ways. In this document, three
types of external forcings are considered: acceleration due to the rotation of the Earth (coriolis,
treated in chapter 6), deceleration due to bed friction (treated in chapter 7) and acceleration
due wind stresses (treated in chapter 8).

For the computation of typical Dutch river flows, the D-Flow FM package must be able to deal
with weirs and barriers. The test reports for these functionalities are provided in chapter 9 and
chapter 10, respectively.

Separate chapters are dedicated to specific technical but key elements of the software pack-
age. Within this context, multiple types of boundary conditions are considered (treated in
chapter 11), as well as input and output functionality (in chapter 12). Some miscellaneous
functionalities are treated in chapter 13.

After having discussed basic functionalities by means of basic test models, attention is paid
to test models with a stronger link to the engineering practice. Within this context, several
real-world models are highlighted in chapter 14, ranging from a medium-scale Frisian inlet
case to a large-scale Californian coast case.

Practically all the test cases reported in this document are provided a relatively small docu-
ment with a discussion of the quality assessment of the case under consideration. Some of
these cases, however, are selected to be subjected to a more extensive quality assessment at
a more profound academic level. Two cases — a dambreak case and a coastal wave run-up
case — are considered for this purpose in chapter 15.
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1.7 Disclaimer

This document contains information about the quality of a complex modelling tool. Its purpose
is to assist the user in assessing the reliability and accuracy of computational results, and to
provide guidelines with respect to the applicability and proper use of the modelling tool. This
document does not, however, provide mathematical proof of the correctness of results for a
specific application. The reader is referred to the License Agreement for pertinent legal terms
and conditions associated with the use of the software.

The contents of this validation document attest to the fact that computational modelling of
complex physical systems requires great care and inherently involves a number of uncertain
factors. In order to obtain useful and accurate results for a particular application, the use
of high-quality modelling tools is necessary but not sufficient. Ultimately, the quality of the
computational results that can be achieved will depend upon the adequacy of available data
as well as a suitable choice of model and modelling parameters.
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2 Model validity

This chapter reflects on the rationale for the validation of the software package D-Flow FM.
Having a clear scope and purpose, set in the previous chapter, the testing philosophy is
explained in more detail. For a full description of all the technical backgrounds, as well as all
underlying assumptions and approximations, the reader is referred to the technical reference
manual.

The IAHR/AIRH guidelines (Dee et al., 1994) are followed along the validation course, partic-
ularly regarding the several types of validation cases that have been developed. Some of the
core aspects of the guidelines are highlighted in this chapter, including the types of validation
cases and the claims and substations that corroborate the intented working of D-Flow FM.

2.1 Testing philosophy

The methodology for testing D-Flow FM has two main components: regression tests and
validation tests. The regression tests aim at consistency in the D-Flow FM results in due
course of the software developments. These tests particularly comprise functional elements
of the software, for instance the proper working of the write routines and read routines for flow
field data.

The validation tests aim at examining the D-Flow FM results at a conceptually higher level.
These tests are intended to be provide an image of the actual quality of the results. To this end,
multiple sources of data for comparison could be utilized, such as analytical solutions or data
from experiments. In order to elucidate the functionalities of D-Flow FM and to offer a concise
overview of the results of the validation efforts, a framework of claims and substantiations is
adopted. The formulation of these claims and substantiations needs some clarification.

Within the context of this validation document, a claim should be perceived as a falsifiable
statement intended to shape the expectations of D-Flow FM users. The adjective falsifiable
does not indicate that the statement is false, but rather, it means that if the statement were
false, then its falsehood could be demonstrated. If a statement is falsifiable, then it could be
depicted as testable.

In line with the rationale behind the word claim, the word substantiation could merely be
interpreted as a corroboration of a claim. Such a substantiation tends to be a confirmation of
a claim posed, but cannot be interpreted as a proof of a claim. As a result, a substantiation in
this report is merely intended to convey useful information on the testability of a claim posed.

2.2 Methodology

The IAHR/AIRH document (Dee et al., 1994) has formulated guidelines for documenting the
validity of computation modelling software. Core elements of these guidelines comprise an
overview of the assumptions and approximations that were made during the design and im-
plementation of the model and contains a set of claims on the performance of the model as
well as substantiations as a corroboration of the proper functioning of the model. For the
validation of computational modelling software, multiple types of testcases are considered:
analytical testcases, laboratory testcases, schematic testcases and real-world applications.
These four types are briefly discussed.
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Analytical testcases

Most ideally, an analytical solution is present for a certain flow case. The presence of an ana-
lytical solution obviates the comparison of D-Flow FM results with results from other software
packages. Thus, the quality of the D-Flow FM results can be examined most objectively.

Laboratory testcases

Experimental data can be used to compare computational outcomes with. Affined to the
analytical testcases, laboratory testcases thus exclude the stringent need for comparison with
other software packages. Nonetheless, the comparison with other software packages does
convey relevant additional insights, since experimental circumstances are always captured
somehow in computational assumptions.

Schematic testcases

It is possible that for a relatively simple testcase no analytical solution is known. Nevertheless,
such a testcase can actually succesfully be used for a qualitative analysis. Such a comparison
can yield considerations from a rather academic point of view (for instance, consistency and
expected behavior).

Real-world applications

D-Flow FM is intended to be used for applications in hydraulic engineering, coastal engineer-
ing and physical oceanography. From that perspective, the former three types of testcases are
necessary but not sufficient. Real-world applications are added to the framework of testcases
to examine the D-Flow FM performance. Real-world applications are more extensively dealt
with within the framework of acceptance tests, not addressed in this document.

2.3 Claims and substantiations

In this section, the claims are formulated associated with the functionalities of D-Flow FM.
The claims are ordered along the pathways of the core elements of D-Flow FM, such as
advection, diffusion, friction, etc. The claims are accompanied by a substantiation in which
a link is laid to specific testcases that corroborate the claim. A substantiation can comprise
an analytical testcase, a laboratory testcase, a schematic testcase or a real-world application
(see section 2.2).

2.3.1 General

General claims are formulated particularly for testcases with a strong focus on the choice of
the grid type, refinement studies and the overall functioning of D-Flow FM. Moreover, claims
are formulated for output files and parallel running.

Claim 2.3.1.1: D-Flow FM can accurately simulate steady and unsteady hydrostatic
flow on grids consisting of triangles, quadrilaterals, pentagons and
hexagons.

Substantiation: Cases 7.2, 7.3, 3.2, 3.3, 3.1, 3.4, 4.3, 3.5, 4.4, 4.1, 4.2, 7.4.

Remarks: As such, the claims appears quite general. The focus of this claim,
however, is mainly on the various types of grids that are supported,
as well as the convergence behavior of error norms in refinement
studies.
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Claim 2.3.1.2: D-Flow FM is suitable for the prediction of the tidal dynamics in es-
tuaries or coastal seas.

Substantiation: Cases 14.1, 14.2, 14.3, 14.4, 14.5, 14.6.

Claim 2.3.1.3: D-Flow FM is able to produce his-files, map-files and restart files with
output timeseries and field output data.

Substantiation: Cases 12.1, 12.2, 12.3, 12.4, 12.5.

Claim 2.3.1.4: D-Flow FM can be run on parallel machines.

Substantiation: Cases.

2.3.2 Advection

Advection plays a role in each flow situation with non-zero velocity gradients. In that sense,
many flow situation could serve as a test case in this respect. By the claims formulated
below, the particular focus, however, is on dambreak-type problems and flooding/drying-type
problems, since these cases contain significant advection aspects.

Claim 2.3.2.1: D-Flow FM can be used for an accurate prediction of flows resulting
from dam breaks.

Substantiation: Cases 3.4, 4.3, 3.5, 4.4.

Claim 2.3.2.2: D-Flow FM can accurately simulate the propagation of long waves.

Substantiation: Cases.

Claim 2.3.2.3: D-Flow FM can accurately simulate the propagation of short waves.

Substantiation: Cases 4.1, 4.2.

Claim 2.3.2.4: D-Flow FM can accurately simulate drying and flooding of tidal areas.

Substantiation: Cases 4.3, 4.4, 4.1, 4.2.

2.3.3 Diffusion

As soon as a non-zero eddy viscosity is used in a flow simulation, velocity gradient will give rise
to diffusion of momentum. The claims listed below focus on analytical testcases that provide
an image of the effects of diffusion triggered by a velocity gradient induced by sidewalls.

Claim 2.3.3.1: D-Flow FM accurately uses the horizontal eddy viscosity concept for
no-slip walls.
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Substantiation: Cases 5.2.

Claim 2.3.3.2: D-Flow FM accurately uses the horizontal eddy viscosity concept for
partial-slip walls.

Substantiation: Cases 5.1.

2.3.4 Friction

Bed friction is omnipresent in engineering applications. The friction can be prescribed by
means of a couple of formulations, both in a non-linear framework (standard) and a linear
framework (not standard).

Claim 2.3.4.1: D-Flow FM can take into account the impact of the space varying
shear stress at the bottom. The input coefficients for bed friction can
vary in space.

Substantiation: Cases.

Claim 2.3.4.2: D-Flow FM can take into account several friction formulations (Chezy,
Manning, White-Colebrook or roughness height z0).

Substantiation: Cases 7.1.

Claim 2.3.4.3: D-Flow FM is able to apply linearized friction in two-dimensional flow
simulations.

Substantiation: Cases ??.

2.3.5 External forcing

The claims listed below focus on external forcing that is exerted to the flow field. In this
respect, the particular focus in on wind, but also on the Coriolis’ force (due to the rotation of
the earth).

Claim 2.3.5.1: D-Flow FM can take into account the impact of the Coriolis force
associated with the rotation of the earth.

Substantiation: Cases 6.2, 6.3, 6.1.

Claim 2.3.5.2: D-Flow FM can be used for an accurate prediction of wind driven
flow.

Substantiation: Cases 8.3, ??.

Claim 2.3.5.3: D-Flow FM can be used for the prediction of storm surges due to
cyclone winds.
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Substantiation: Cases 14.6.

Claim 2.3.5.4: D-Flow FM can accurately simulate the effects of space and time
varying wind stresses at the free water surface.

Substantiation: Cases 14.6.

2.3.6 Hydraulic structures

Various hydraulic structures can be dealt with by D-Flow FM. The claims below focus on the
several types of weirs and barriers and related hydraulic aspects.

Claim 2.3.6.1: D-Flow FM can be used to investigate the hydrodynamic impact of
hydraulic structures, such as gates, weirs and barrier.

Substantiation: Cases 9.1, 9.2, 9.4, 9.5.

Claim 2.3.6.2: D-Flow FM can accurately simulate subcritical and supercritical flows
and the transition region when the flow changes from subcritical to
supercritical or vice versa.

Substantiation: Cases 9.1, 9.2, 9.4, 9.5.

2.3.7 Constituents

D-Flow FM can deal with passive constituents (tracers) and active constituents (salinity).

Claim 2.3.7.1: D-Flow FM can accurately simulate the transport of dissolved mate-
rial.

Substantiation: Cases 3.6.

Claim 2.3.7.2: D-Flow FM can be used for an accurate prediction of the density
driven flow.

Substantiation: Cases 11.4.

2.3.8 Miscellaneous

Yet unmentioned functionality is partly considered in this section. The scope of this miscella-
neous group is restricted to boundary conditions functionality, sources/sinks and dry points.

Claim 2.3.8.1: D-Flow FM can deal with boundary conditions that are prescribed
as timeseries, as harmonic components and as astronomic compo-
nents.

Substantiation: Cases 11.1, 11.2, 11.3, 11.6, 11.7, 11.8.
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Claim 2.3.8.2: D-Flow FM can deal with boundary conditions for the water level, the
velocity and the discharge.

Substantiation: Cases 11.1, 11.2, 11.3.

Claim 2.3.8.3: D-Flow FM can deal with boundary conditions for derived quantities
by means of a Qh-table, a Neumann-type condition for the water
level and a Riemann invariant.

Substantiation: Cases 11.6, 11.7, 11.8, 11.9, 11.5.

Claim 2.3.8.4: D-Flow FM can take into account time varying sources and sinks for
e.g. river flows and discharges from outfalls.

Substantiation: Cases.

Claim 2.3.8.5: D-Flow FM can take into account the explicit specification of dry
points.

Substantiation: Cases 13.1, 13.2.
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3 Advection

3.1 Bélanger surface profile

Purpose

The purpose of this validation case is to examine the performance of D-Flow FM for a schema-
tized channel flow simulation. For stationary flow through a river with a rectangular cross-
section, the Bélanger surface profile equation can be utilized to compare the numerical solu-
tion with.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.1.1: D-Flow FM can accurately simulate steady and unsteady hydrostatic flow
on grids consisting of triangles, quadrilaterals, pentagons and hexagons

Approach

A straight channel with a rectangular cross-section is defined. Given an inflow discharge Q,
a channel width B, a bottom slope ib and a Chézy friction factor C , the distance between the
free surface profile and the bed profile can be described by the Bélanger equation for d as the
water depth:

dd

dx
= ib

d3 − d3
e

d3 − d3
g

(3.1)

with de the equilibrium depth and dg the limit depth (associated with Fr = 1) following:

de =

(
Q2

B2g

)1/3

and dg =

(
Q2

B2C2ib

)1/3

. (3.2)

Given a certain inflow discharge Qin and a certain outflow water level condition hout, the
surface profile can hence numerically be estimated in the most simple way as:

di − di−1

∆x
= ib

d3
i − d3

e

d3
i − d3

g

, (3.3)

having di = hout + ibL at the outflow boundary. This, in fact semi-analytical, solution can be
used for comparison.

Model description

For this test case, one single computational grid is generated. The computational domain has
the sizes L×B = 100 km× 20 m. The grid counts 200× 1 cells. The cell size is 500× 20
m2 everywhere. The bed slope ib is 10−4. The inflow discharge isQ = 600 m3/s. The Chézy
coefficient is C = 65 m1/2/s. The outflow water level is set equal to 0 m (w.r.t. reference), i.e.
the water depth is hence equal to 10 meters.

Recall that the water depth is computed as the difference between the upstream water level
(computed at the cell center ) and the bed level at the velocity point (computed at the cell
face), invoking a ∆x/2 spatial shift. In the computational model, the bed level at the outflow
boundary is equal to -10 m+NAP, whereas a water level equal to 0 m+NAP is imposed at
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the outflow boundary. Since the location for the water level outflow boundary condition is
also ∆x/2 outside the grid (mirrored location), the water level boundary conditions yields a
bed level equal to b|x=L+∆x = −ib · (L + ∆x) = −10−4 · 100500 = −10.05 m (given
a zero bed level at the entrance of the channel). Hence, the outflow water depth equals
dout = hout − bout = 0− (−10.05) = 10.05 m, at x = L+ ∆x.

Results

The result from D-Flow FM for the water depth is shown in Figure 3.1 in combination with
its semi-analytical equivalent. The semi-analytical solution is based on the equation for the
Bélanger surface profile.

Figure 3.1: Comparison of the numerical solution and the semi-analytical solution for the
water depth.

The root-mean-square difference between the numerical outcome from D-Flow FM and the
semi-analytical solution is shown in Figure 3.1 as well. This rms-difference is of the order of
10−3 m.

Conclusion

For the Bélanger test case under consideration, the numerical solution approaches the semi-
analytical solution up to an overall root-mean-square difference of the order of 10−3 m.

Version

This test has been carried out with version dflow-fm-x64-1.1.116.36629.
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3.2 Refinement study for Bélanger channel flow using Cartesian grids

Purpose

The purpose of this validation case is to examine the performance of D-Flow FM for a schema-
tized channel flow simulation. For stationary flow through a river with a rectangular cross-
section, the Bélanger surface profile equation can be utilized to compare the numerical so-
lution with. This validation case focuses on the effects of the refinement of a Cartesian grid.
The topography comprises a linearly varying bathymetry with a constant slope.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.1.1: D-Flow FM can accurately simulate steady and unsteady hydrostatic flow
on grids consisting of triangles, quadrilaterals, pentagons and hexagons

Approach

A straight channel with a rectangular cross-section is defined. Given an inflow discharge Q,
a channel width B, a bottom slope ib and a Chézy friction factor C , the distance between the
free surface profile and the bed profile can be described by the Bélanger equation for d as the
water depth:

dd

dx
= ib

d3 − d3
e

d3 − d3
g

(3.4)

with de the equilibrium depth and dg the limit depth (associated with Fr = 1) following:

de =

(
Q2

B2g

)1/3

and dg =

(
Q2

B2C2ib

)1/3

. (3.5)

Given a certain inflow dischargeQ and a certain outflow water level condition hout, the surface
profile can hence numerically be estimated in the most simple way as:

di − di−1

∆x
= ib

d3
i − d3

e

d3
i − d3

g

, (3.6)

having di = hout + ibL at the outflow boundary. This, in fact semi-analytical, solution can be
used for comparison. If the grid is refined several times, the order of accuracy of the numerical
integration routines can be assessed. For this purpose, only Cartesian grids are considered
(triangular grids are considered in case e02-f01-c013).

Since grid refinement is one of the main aspects of this particular testcase, the boundary con-
ditions are specified grid independent by means of a constant Dirichlet discharge boundary
condition upstream and a constant Neumann water level boundary condition downstream. As
Equation (3.4) shows, a fixed water level implies a fixed water level gradient (and vice versa
as will be shown below).

Model description

For this test case, five computational grids are generated. The outflow parts of these grids are
shown in Figure 3.2. The five grids are of Cartesian type. The longitudal size L of the domain
is 10 km, whereas the lateral size B of the domain is 500 m.
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Figure 3.2: From left to right: five Cartesian grids in order of refinement grade. Each
refinement comprises twice as much cells in each direction. Only the outflow
part of the grid is shown.

A discharge Q equal to 2500 m3/s is prescribed. The bottom slope ib is prescribed1 to be
10−4. The bottom level at the inflow boundary is 0 m (w.r.t. reference) and at the outflow
boundary -1 m (w.r.t. reference). The Chézy friction coefficient C is set to 65 m1/2/s. At the
output, a water level hout equal to 1.5 m+NAP is aimed for. This water level implies a water
depth (at the outflow boundary) equal to 2.5 m+NAP and hence a water level gradient equal
to:

dh

dx
=

dd

dx
+ib = ib

d3 − d3
e

d3 − d3
g

+ib = −10−4 2.53 − 3.8967673

2.53 − 1.3659153
−10−4 = −4.330121·10−4

(3.7)

This water level gradient is imposed as the outflow boundary condition. To check whether this
gradient implies a unique water level, Equation (3.4) is rewritten as:

d3 =

(
d3
e −

1

ib

dd

dx
· d3

g

)
·
(

1− 1

ib

dd

dx

)−1

= 15.6250 m3, (3.8)

which implies d = 2.5 m as a unique solution and hence a water level hout = 1.5 m+NAP.

The computational time step is set automatically being restricted by a CFL limit value equal
to 0.5. Upstream, the keyword jbasqbnddownwindhs is set to 1 (relevant for the in-
flow boundary), whereas izbndpos = 0 (relevant for the outflow boundary). For the bed
friction, the option Conveyance2D = 3 is set (i.e. an analytic expression is used for the
hydraulic radius).

Results

First, recall the quantity hu, which represents the upstream water level (cell center) at the
location of a velocity point (cell face). This quantity is used as the water depth within the
computation of the bed friction at a velocity point. As a result, the water depth equals the
water level at the upstream cell center minus the bed level at the cell face.

Hence, if a water depth is to be computed as part of the postprocessing, this water depth
should be computed in analogy, namely as the difference between the bed level at a velocity
point and the upstream water level. This value for hu should then be assessed against the
backdrop of the semi-analytically computed water depth.

1The equations treat ib by a positive value, whereas, however, this value is negative from a geometric point of
view.
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Figure 3.3: Computational cell with surface level h, face velocities uA, uB , uC and uD
and bed levels b1, b2, b3 and b4.

The way of postprocessing the water depth can further be clarified by considering an arbitrary
computational cell, as shown in Figure 3.3. Recall that the principal variables are the water
level (located at the cell center) and the face-normal velocities (located at the center of the
faces). The level of the bed is given in the cell corners. The value of hu at the location of, for
instance, velocity uC is then computed as h−(b2 +b3)/2 (in case of bedlevtyp = 3; the
options 4 and 5 take min(b2, b3) and max(b2, b3), respectively, to be subtracted from the
water level). However, choosing for Conveyance2D = 3 implies an approach according to
bedlevtyp = 4.

Since the analytical solution is known for this flow situation, the deviations of the computed
results from the analytical results can be measured exactly. As a measure, the L2-norm of the
residual Res (i.e. the difference between the analytical and the numerical solution) is taken,
defined as

ResL2 =

√√√√ 1

N

N∑
i=1

Res2
i (3.9)

with N the number of evaluated grid locations. Differences with the analytical solution for the
five different grids are shown in Figure 3.4 through this measure.

Figure 3.4 reveals the convergence behavior of the water depth (left panel) and the water level
(right picture). For the water depth, the values of the quantity hu is used (i.e. both at flowlinks
parallel to the flow direction and flowlinks perpendicular to the flow direction). For the water
level, the actual cell centered water level itself is considered, obviously.

Figure 3.4 reveals first order convergence for both the water depth and the water level. How-
ever, the absolute errors for the water level are larger than for the water depth. For the context
of this difference, a closer look is taken at the values at an arbitrary location in the flow do-
main, provided by Figure 3.5. This figure shows the water depth at the flowlink (yellow circle),
the bed level at the netnodes (red circle) and the water level at the flownodes (blue circle). As
explained above, the water depth at the flowlink is the difference between the upstream water
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Figure 3.4: Rate of convergence, measured by means of the L2-norm using the analyt-
ical solution and the computational output. Left panel: convergence of the
computed water depth; right panel: convergence of the computed velocity.

level and the lowest bed level adjacent to the flowlink, i.e.:

water depth = water level− bed level

= 1.818− -0.900

= 2.718 m

which is a direct result of opting for Conveyance2D = 3: in this approach, a spatial shift
equal to ∆x/2 dictates the rate of convergence.

Figure 3.5: Selected part of one of the computational grids, revealing outcomes at spe-
cific locations. The water depth at a flowlink is highlighted by a yellow circle,
the water level at a flownode by a blue circle and the bed level at a netnode
by a red circle.

Conclusion

For the two-dimensional, unidirectional channel flow simulations, the following conclusions
can be drawn:

1 on all the five grids (of different grade of refinement), the computational outcomes approx-
imate the analytical outcomes at an accuracy that convergence at a rate of order 1,

2 the absolute residuals for the water level (at flownodes) are generally larger than for the
water depth (at flowlinks).
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Version

This test has been carried out with version dflow-fm-x64-1.1.116.36629.
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3.3 Refinement study for Bélanger channel flow using triangular grids

Purpose

The purpose of this validation case is to examine the performance of D-Flow FM for a schema-
tized channel flow simulation. For stationary flow through a river with a rectangular cross-
section, the Bélanger surface profile equation can be utilized to compare the numerical so-
lution with. This validation case focuses on the effects of the refinement of a triangular grid.
The topography comprises a linearly varying bathymetry with a constant slope.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.1.1: D-Flow FM can accurately simulate steady and unsteady hydrostatic flow
on grids consisting of triangles, quadrilaterals, pentagons and hexagons

Approach

A straight channel with a rectangular cross-section is defined. Given an inflow discharge Q,
a channel width B, a bottom slope ib and a Chézy friction factor C , the distance between the
free surface profile and the bed profile can be described by the Bélanger equation for d as the
water depth:

dd

dx
= ib

d3 − d3
e

d3 − d3
g

(3.10)

with de the equilibrium depth and dg the limit depth (associated with Fr = 1) following:

de =

(
Q2

B2g

)1/3

and dg =

(
Q2

B2C2ib

)1/3

. (3.11)

Given a certain inflow dischargeQ and a certain outflow water level condition hout, the surface
profile can hence numerically be estimated in the most simple way as:

di − di−1

∆x
= ib

d3
i − d3

e

d3
i − d3

g

, (3.12)

having di = hout + ibL at the outflow boundary. This, in fact semi-analytical, solution can be
used for comparison. If the grid is refined several times, the order of accuracy of the numerical
integration routines can be assessed. For this purpose, only triangular grids are considered
(Cartesian grids are considered in case e02-f01-c012).

Since grid refinement is one of the main aspects of this particular testcase, the boundary con-
ditions are specified grid independent by means of a constant Dirichlet discharge boundary
condition upstream and a constant Neumann water level boundary condition downstream. As
Equation (3.10) shows, a fixed water level implies a fixed water level gradient (and vice versa
as will be shown below).

Model description

For this test case, three computational grids are generated. The outflow parts of these grids
are shown in Figure 3.6. The five grids are of Cartesian type. The longitudal size L of the
domain is 10 km, whereas the lateral size B of the domain is 500 m.
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Figure 3.6: From left to right: three triangular grids in order of refinement grade. Each
refinement comprises twice as much cells in each direction. Only the outflow
part of the grid is shown.

A discharge Q equal to 2500 m3/s is prescribed. The bottom slope ib is prescribed2 to be
10−4. The bottom level at the inflow boundary is 0 m (w.r.t. reference) and at the outflow
boundary -1 m (w.r.t. reference). The Chézy friction coefficient C is set to 65 m1/2/s. At the
output, a water level hout equal to 1.5 m+NAP is aimed for. This water level implies a water
depth (at the outflow boundary) equal to 2.5 m+NAP and hence a water level gradient equal
to:

dh

dx
=

dd

dx
+ib = ib

d3 − d3
e

d3 − d3
g

+ib = −10−4 2.53 − 3.8967673

2.53 − 1.3659153
−10−4 = −4.330121·10−4

(3.13)

This water level gradient is imposed as the outflow boundary condition. To check whether this
gradient implies a unique water level, Equation (3.10) is rewritten as:

d3 =

(
d3
e −

1

ib

dd

dx
· d3

g

)
·
(

1− 1

ib

dd

dx

)−1

= 15.6250 m3, (3.14)

which implies d = 2.5 m as a unique solution and hence a water level hout = 1.5 m+NAP.

The computational time step is set automatically being restricted by a CFL limit value equal
to 0.5. Upstream, the keyword jbasqbnddownwindhs is set to 1 (relevant for the in-
flow boundary), whereas izbndpos = 0 (relevant for the outflow boundary). For the bed
friction, the option Conveyance2D = 3 is set (i.e. an analytic expression is used for the
hydraulic radius).

Results

First, recall the quantity hu, which represents the upstream water level (cell center) at the
location of a velocity point (cell face). This quantity is used as the water depth within the
computation of the bed friction at a velocity point. As a result, the water depth equals the
water level at the upstream cell center minus the bed level at the cell face.

Hence, if a water depth is to be computed as part of the postprocessing, this water depth
should be computed in analogy, namely as the difference between the bed level at a velocity
point and the upstream water level. This value for hu should then be assessed against the
backdrop of the semi-analytically computed water depth.

2The equations treat ib by a positive value, whereas, however, this value is negative from a geometric point of
view.
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Figure 3.7: Computational cell with surface level h, face velocities uA, uB , uC and uD
and bed levels b1, b2, b3 and b4.

The way of postprocessing the water depth can further be clarified by considering an arbitrary
computational cell, as shown in Figure 3.7. Recall that the principle variables are the water
level (located at the cell center) and the face-normal velocities (located at the center of the
faces). The level of the bed is given in the cell corners. The value of hu at the location of, for
instance, velocity uC is then computed as h−(b2 +b3)/2 (in case of bedlevtyp = 3; the
options 4 and 5 take min(b2, b3) and max(b2, b3), respectively, to be subtracted from the
water level). However, choosing for Conveyance2D = 3 implies an approach according to
bedlevtyp = 4.

Since the analytical solution is known for this flow situation, the deviations of the computed
results from the analytical results can be measured exactly. As a measure, the L2-norm of the
residual Res (i.e. the difference between the analytical and the numerical solution) is taken,
defined as

ResL2 =

√√√√ 1

N

N∑
i=1

Res2
i (3.15)

with N the number of evaluated grid locations. Differences with the analytical solution for the
three different grids are shown in Figure 3.8 through this measure.

Figure 3.8 reveals the convergence behavior of the water depth (left panel) and the water level
(right picture). For the water depth, the values of the quantity hu is used (i.e. both at flowlinks
parallel to the flow direction and flowlinks perpendicular to the flow direction). For the water
level, the actual cell centered water level itself is considered, obviously.

Figure 3.8 reveals first order convergence for both the water depth and the water level. How-
ever, the absolute errors for the water level are larger than for the water depth. For the context
of this difference, a closer look is taken at the values at an arbitrary location in the flow do-
main, provided by Figure 3.9. This figure shows the water depth at the flowlink (yellow circle),
the bed level at the netnodes (red circle) and the water level at the flownodes (blue circle). As
explained above, the water depth at the flowlink is the difference between the upstream water
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Figure 3.8: Rate of convergence, measured by means of the L2-norm using the analyt-
ical solution and the computational output. Left panel: convergence of the
computed water depth; right panel: convergence of the computed velocity.

level and the lowest bed level adjacent to the flowlink, i.e.:

water depth = water level− bed level

= 1.865− -0.888

= 2.753 m

which is a direct result of opting for Conveyance2D = 3: in this approach, a spatial shift
equal to ∆x/2 dictates the rate of convergence.

Figure 3.9: Selected part of one of the computational grids, revealing outcomes at spe-
cific locations. The water depth at a flowlink is highlighted by a yellow circle,
the water level at a flownode by a blue circle and the bed level at a netnode
by a red circle.

Conclusion

For the two-dimensional, stationary, homogeneous and uniform channel flow simulations, the
following conclusions can be drawn:

1 on all the three grids (of different grade of refinement), the computational outcomes ap-
proximate the analytical outcomes very closely, both regarding the water levels and the
velocities,

2 the differences between the computational and analytical outcomes converge at rate 0
with decreasing cell size.

Deltares 21 of 246



D-Flow Flexible Mesh, Validation Document

Version

This test has been carried out with version dflow-fm-x64-1.1.116.36629.
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3.4 One-dimensional dambreak over a wet bed

Purpose

The purpose of this validation study is to test the D-Flow FM modelling accuracy for flooding
over both a wet bed, resulting from a dam break. The D-Flow FM model results are compared
with the analytical solution. In this validation study, multiple grids are considered.

Linked claims

Claims that are related to the current test case are:

� 2.3.1.1
� 2.3.1.1: D-Flow FM can accurately simulate steady and unsteady hydrostatic flow on grids

consisting of triangles, quadrilaterals, pentagons and hexagons
� claim 2.3.2.1: D-Flow FM can be used for an accurate prediction of flows resulting from

dam breaks

Approach

For one-dimensional dambreak flow over a wet bed, analytical expressions are available to
compare the numerical solution with. The initial state is a stepwise water level with h(x) = hl
for 0 ≤ x ≤ x0 and h(x) = hr for x0 < x < L, with the discontuinity at x = x0 and a
computational domain from x = 0 to x = L.

The analytical solution, for a wet bed case, can be prescribed for four regions, marked by
three relevant locations, namely at x = xA, x = xB and xC , with:

xA = x0 − t
√
ghl

xB = x0 + 2t
√
ghl − 3tcm

xC = x0 + t
2c2
m

(√
ghl − cm

)
c2
m − ghr

The analytical solution for the water level along the three parts reads:

h(x, t) =



hl, if x < xA(t),

4

9g

(√
ghl −

x− x0

2t

)2

, if xA(t) ≤ x ≤ xB(t),

c2
m

g
, if xB(t) ≤ x ≤ xC(t),

hr, if x > xC(t).

(3.16)

The analytical solution for the velocity along the three parts reads:

u(x, t) =



0 m/s, if x < xA(t),
2

3

(
x− x0

t
+
√
ghl

)
, if xA(t) ≤ x ≤ xB(t),

2
(√

ghl − cm
)
, if xB(t) ≤ x ≤ xC(t),

0 m/s, if x > xC(t).

(3.17)

Compared to the dry bed case, an additional variable is part of the solution, namely cm =√
ghm. This variable cm can numerically be derived, through Newton iteration, from the
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expression:

−8ghrc
2
m

(√
ghl − cm

)2

+
(
c2
m − ghr

)2 (
c2
m + ghr

)
= 0. (3.18)

Model description

For this testcase, several grids are generated (see Figure 3.10). The computational settings
and parameters are:

� domain length L = 60 km,
� time step ∆t = 1.0 seconds,
� hl = 2 m and hr = 0.1 m,
� no horizontal viscosity and no bottom friction.

The computational grids developed for this case are shown in Figure 3.10. Grids 1, 2 and 3
contain square cells with increasing refinement, grid 4 contains triangular cells, grid 5 is an
equidistant with elongated cells, grid 6 is a variant of grid 5 with a smoothly varying cell size,
grid 7 has refinements in two directions.

Figure 3.10: Seven grids for the one-dimensional dambreak case. From bottom to top
(numbered from 1 to 7): grids 1, 2 and 3 contain square cells with increas-
ing refinement, grid 4 contains triangular cells, grid 5 is an equidistant with
elongated cells, grid 6 is a variant of grid 5 with a smoothly varying cell size,
grid 7 has refinements in two directions.

Results

The results of the one-dimensional dambreak are considered after 3600 seconds, when the
waves have considerably propagated without having been reflected by the boundaries. Three
issues are highlighted:

1 the effects of refinement in two directions are discussed (grids 1, 2 and 3),
2 the effects of refinement in one direction are considerend (grids 5 and 6),
3 the effects of the irregularity of the grid are discussed (grids 4 and 7).

Considering issue 1, it turned out that the three squared cell grids show decreasing deviations
from the exact solution with decreasing cell size, as is to be expected. Since the mutual
differences are relatively small, only the result for the finest grid are shown: see Figure 3.11.

Considering issue 2, it turned out that elongation of the cells considerably detoriates the result.
The computation on the grid with the equidistantly distributed cells (see Figure 3.12) slightly
underestimates the velocities, but reproduces the shock location relatively well, as is also the
case for the grid with smoothly varying cell size (see Figure 3.13).
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Figure 3.11: Results for the most refined Cartesian grid (grid 3). Left panel: the water
level (m); right panel: the velocity (m/s).

Figure 3.12: Results for the grid containing equidistant, elongated rectangular cells (grid
5). Left panel: the water level (m); right panel: the velocity (m/s).

Figure 3.13: Results for the grid containing rectangular cells with smoothly varying size
(grid 6). Left panel: the water level (m); right panel: the velocity (m/s).

Considering issue 3, it can be seen that the grid with triangular cells (see Figure 3.14) per-
forms comparable with the squared cells grid. The grid with refinement in two directions (see
Figure 3.15) captures the shock locations less accurately (pronounced wiggles).

Conclusion

For a one-dimensional dambreak case over a wet bed, D-Flow FM performs fairly well regard-
ing the prediction of the water level and the velocity. The best result are obtained using square
cell grids; deviations from the exact solutions become more pronounced as soon as the grid
is more irregular.
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Figure 3.14: Results for the triangular grid (grid 4). Left panel: the water level (m); right
panel: the velocity (m/s).

Figure 3.15: Results for the grid with refinement in two directions (grid 7). Left panel: the
water level (m); right panel: the velocity (m/s).

Version

This test has been carried out with version dflow-fm-x64-1.1.116.36629.
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3.5 Two-dimensional dambreak over a wet bed

Purpose

This validation study investigates the flow resulting from a dam break including the interaction
of reflecting bores in a 2D model. The case investigated is based on the experiments by
Stelling & Duinmeijer from 2001. Tests are conducted on Cartesian as well as on triangular
grids.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.1.1: D-Flow FM can accurately simulate steady and unsteady hydrostatic flow
on grids consisting of triangles, quadrilaterals, pentagons and hexagons

� claim 2.3.2.1: D-Flow FM can be used for an accurate prediction of flows resulting from
dam breaks

Approach

For this validation study a model is applied that is described in Stelling & Duinmeijer (2001).
The geometry of the experimental setup is shown in Figure 3.16. The experiments are per-
formed in a closed domain.

Figure 3.16: Experimental setup of the Stelling & Duinmeijer experiment.

Two experiments are considered by Stelling & Duinmeijer:

� a dam break with an initially wet region; and
� a dam break with an initially dry region.

Through the geometry of the experimental setup, reflecting bores interact with each other,
resulting into quite a challanging validation case compared to canonical one-dimensional dam
break problems. In the present validation case, the wet bed case is considered.

The experimental set-up consists of two reservoirs, A and B, separated by a wall with a gate
of width 0.4 m that can be lifted. Reservoir B is initially filled with water of height 0.6 m. Two
experiments are performed. The first experiment contains a thin layer of water with a depth of
0.05 m downstream of the gate and in the second experiment, the reservoir A is initially dry.
The gate is then lifted with a speed of 0.16 m/s and the subsequent flooding in reservoir A is
studied.

Model description

For this testcase, a Cartesian grid and a triangular grid are adopted. The wall that divides the
two basins is represented through thin dams for the Cartesian case. For the triangular case,
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this wall is represented directly in the grid domain boundaries. The computational settings
and parameters are:

� domain length L = 31 m,
� domain width D = 8.3 m,
� the Cartesian grid has sizes ∆x = ∆y = 0.1 m and hence 310× 73 cells,
� the triangular grid consists of triangular cells with a typical edge length of 0.1 m.
� time step ∆t = 0.006 seconds,
� Manning bottom roughness = 0.012 m−1/3/s,
� the horizontal eddy viscosity νh = 5.0 · 10−4 m2/s.

Results

An artist’s impression of the result of the D-Flow FM computation on the Cartesian grid is
shown in Figure 3.17. In this figure, the bore has already been reflected from the boundary at
x = L = 31 m, turning in a backwards propagating front.

Figure 3.17: Computational result after 30 seconds, showing the water level and the ab-
solute velocities.

Timeseries for the water level are available at multiple locations along the centerline of the
flume. Six of these locations are highlighted in Figure 3.18. With reference to the gate location,
these six gauges are located at -1 m, +1 m, 6 m, 9 m, 13 m, 17 m and 21 m. The results
for the simulation on the Cartesian grid and triangular grid are shown in black and magenta,
respectively.

Figure 3.18 shows that in the D-Flow FM simulation, the reservoir empties quicker compared
to the experiment. At later stages, the D-Flow FM results are comparable to the Delft-FLS
results. Variants of the D-Flow FM computation can now be undertaken to study the influences
of the gridtype, the gridsize, the value of the bottom friction and the horizontal eddy-viscosity.

Mutual differences between the results obtained on the Cartesian grid and the triangular grid
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(a) Results at 1 m upstream of the gate. (b) Results at 1 m downstream of the gate.

(c) Results at 6 m downstream of the gate. (d) Results at 9 m downstream of the gate.

(e) Results at 13 m downstream of the gate. (f) Results at 17 m downstream of the gate.

Figure 3.18: Results for the two-dimensional dambreak on a wet bed. In lexicographic
ordering: water depth in meters at -1 m, +1 m, 6 m, 9 m, 13 m and 17 m
downstream of the gate.

are difficultly interpretable. On the Cartesian grid, the reservoir seems to empty faster that in
the triangular case. Moreover, the wave front due to the dam break appears to move some-
what faster in the Cartesian case compared to the triangular case. However, strict conclusions
that address the actual performance difference between the two simulations cannot be drawn
unequivocally.
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Conclusion

D-Flow FM provides fairly good results for the two-dimensional dambreak on a wet bed. The
D-Flow FM results are close to the Delft-FLS results, but should further be explored to inves-
tigate what the main causes are regarding the differences with the experiment.

Version

This test has been carried out with version dflow-fm-x64-1.1.116.36629.
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3.6 Advection of a passive tracer

Purpose

D-Flow FM utilizes transport routines that both serve the computation of salt transport and
passive tracers. In the present validation case, the advection of a passive tracer is considered.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.7.1: D-Flow FM can accurately simulate the transport of dissolved material

Approach

A quasi one-dimensional flow model is constructed with flow under steady state conditions.
For this flow model, three grids are developed: one coarse Cartesian grid, one refined Carte-
sian grid and a triangular grid. The goal is to achieve a flow state that is steady at a constant
water level and a constant velocity, in the absence of friction. Once this state is achieved, a
tracer is released at the inflow boundary during a finite period. The tracer substance thus trav-
els along the domain, leaving the domain at the outflow boundary. In the absence of friction,
diffusion and Earth rotation, the problem can either be solved analytically.

Model description

The flow model has sizes L×B (length times width) equal to 300 m× 1 m. Three grids are
considered, from which a part is shown in Figure 3.19.

Figure 3.19: From top to bottom: parts of the developed grids, namely one coarse Carte-
sian grid, one refined Cartesian grid and a triangular grid.

The bed level is set to 0 with respect to the reference level. At the inflow boundary, a water
level equal to 1 m (w.r.t. reference) is prescribed, as well as at the outflow boundary. At the
inflow boundary, a fixed normal velocity equal to 0.1 m/s is imposed. Friction, diffusion and
Earth rotation are switched off. The expected (trivial) solution is, hence, a steady flow state at
a water level equal to 1 m w.r.t. reference and a constance flow velocity of 0.1 m/s.

The model is given a cold start, hence demanding a certain spin-up time. The model is given
a spin-up time equal to 600 minutes which is proven to be a sufficiently long period. After 600
minutes, a passive tracer is released at the inflow boundary during a period of 10 minutes.
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Results

The analytical solution for this advection problem is straightforward: just a block travelling
throughout the domain at a fixed velocity. The analytical solution is shown in black in Fig-
ure 3.20 for the situation after 2500 seconds after the release of the tracer at the inflow
boundary. In addition, Figure 3.20 shows the results

Figure 3.20: Numerical solution after 2500 seconds after release of the passive tracer at
the inflow boundary.

The results show fair agreement of the numerical solutions with the analytical one. Obviously,
numerical diffusion plays a clear role; a role that gains influence with decreasing cell size.

Conclusion

D-Flow FM appears to be able to compute the transport of a passive scalar. Since the calcu-
lation of salt transport utilizes the same code routines, a similar conclusion can be drawn for
the computation of salinity.

Version

This test has been carried out with version dflow-fm-x64-1.1.137.40169.
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4.1 One-dimensional planar free surface oscillations

Purpose

Flooding and drying are key phenomena from the hydraulic engineering practice. This test
investigates the performance of D-Flow FM for a case for which an exact solution is available.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.1.1: D-Flow FM can accurately simulate steady and unsteady hydrostatic flow
on grids consisting of triangles, quadrilaterals, pentagons and hexagons

� claim 2.3.2.3: D-Flow FM can accurately simulate the propagation of short waves
� claim 2.3.2.4: D-Flow FM can accurately simulate drying and flooding of tidal areas

Approach

For one-dimensional frictionless flow in a parabolic shaped basin, an exact solution is available
for the evolution of the water level and the velocity, in case the initial surface elevation is a
linearly increasing across the bathymetry. The analytical solution reads, with x the coordinate
across the bathymetry:

h(x, t) =
ηh0

r0

(
2x cosωt− ηr0 cos2 ωt

)
u(x, t) = −ηr0ω sinωt,

with frequency ω =
√

2gh0/r0 and period 2π/ω. This flow is simulated in D-Flow FM
and compared with the analytical solution. Basically, the only input parameters are h0 as a
vertical measure [m], r0 as a horizontal measure [m] and η a parameter [-]. The shape of the
bathymetry is prescribed as:

z(x) = −h0

(
1− x2

r2
0

)
.

Model description

The model is set up as a one-dimensional case. Three grids are built: (1) a one-dimensional
network (i.e. no cells, just linear pieces), (2) a one-dimensional grid (i.e. a row of cells) and (3)
a two-dimensional grid, including squares of several sizes, connected by means of triangles.
The three grids are shown in Figure 4.1.

Figure 4.1: The three computational grids for the flooding and drying testcase.

The input settings h0, r0 and η are 10 m, 120 m and 0.23 respectively. Friction and horizontal
viscosity are turned off. The runtime comprises 600 seconds. Given the above parameters,
the period 2π/ω yields 53.8284 seconds. For the parameter chkadvd, the value of 0 m is
set.
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Results

The water level after 260 seconds (i.e. 4.83 periods) is shown in Figure 4.2 against the back-
drop of the bathymetry as well as the analytical solution. The figure visualizes deviations be-
tween the computed solutions and the exact solution. The deviation is the most pronounced
for the one-dimensional network. The one-dimensional grid and the two-dimensional grid
show negligible differences mutually.

Figure 4.2: Computational results obtained on the one-dimensional network, the one-
dimensional grid and the two-dimensional grid, drawn against the backdrop
of the bathymetry.

Figure 4.2 is provided a context through Figure 4.3. In Figure 4.3, the water level and the
velocity are shown as varying in time. The location chosen for the comparison is 61.5 m right
of the deepest point in the basin.

Figure 4.3: Temporal evolution of the water level (left panel) and the velocity (right panel)
following from the computation on the one-dimensional grid and from the ex-
act solution.

Figure 4.3 shows that the amplitude of the computed signals decreases in time. Moreover,
a phase lag appears with increasing magnitude in the course of time. Besides these gen-
eral computational scheme related issues, the flooding and drying scheme appears to work
properly in the sense that dry areas can flood and dry at all.
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As a variation on the same theme, grids are generated in addition with either square cells
or triangular cells. In case of the use of triangular cells, it has been experienced that the
choice on either conveyance2D = 3 or conveyance2D = -1 make quite a difference.
In case of conveyance2D = 3, extreme velocities come into existence, whereas these
stay absent in case of conveyance2D = -1.

As an illustration, Figure 4.4 which displays the cell-center velocities in x-direction at 20 sec-
onds after the start of the simulation. In these 20 seconds, some drying has taken place.
The area over which this drying had taken place is marked by the arrow in Figure 4.4. Dur-
ing these 20 seconds, high velocities have appeared on the interface dry/wet in case of
conveyance2D = -1. However, extremely high velocities have appeared in the area that
fell dry during these 20 seconds, in case of conveyance2D = 3.

Figure 4.4: Cell-center x-velocities at 20 seconds after the start of the simulation.
For the top panel, conveyance2D = -1 is used, for the bottom panel
conveyance2D = 3 is used. Notice the difference in color bar values
(given in m/s).

The extremely high velocities have only appeared on triangular grids. Although the simula-
tion have been carried out without friction, the extremely high velocities did not vanish after
applying some amount of friction.

Conclusion

D-Flow FM is able to computationally deal with flooding and drying, although a certain amount
of diffusion takes place causing a phase lag with respect to the analytical solution. It is found
that high velocities are found on the interface dry/wet. Moreover, it is found that the combina-
tion conveyance2D = 3, triangular grid and flooding/drying is a risky one.

Version

This test has been carried out with version dflow-fm-x64-1.1.148.41435.
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4.2 Two-dimensional radial free surface oscillations

Purpose

In the test case One-dimensional planar free surface oscillations, the key phenomena of flood-
ing and drying are investigated for a one-dimensional model. In the present test case, a two-
dimensional case is investigated. In the two-dimensional case, free surface oscillations will
be considered for a radially symmetric case with a curved free surface. An analytical solution
is available to compare the numerical results with (William Thacker, Some exact solutions to
the nonlinear shallow-water wave equations, J. Fluid Mech. (1981), vol. 107, pp. 499-608).

Linked claims

Claims that are related to the current test case are:

� claim 2.3.1.1: D-Flow FM can accurately simulate steady and unsteady hydrostatic flow
on grids consisting of triangles, quadrilaterals, pentagons and hexagons

� claim 2.3.2.3: D-Flow FM can accurately simulate the propagation of short waves
� claim 2.3.2.4: D-Flow FM can accurately simulate drying and flooding of tidal areas

Approach

A test model setup is set up to match with the assumptions associated with the analytical
solution. The setup yields a paraboloid topography, prescribed as:

z(r) = −D0

(
1− r2

a2

)
with −D0 the lowest bed level of the geometry and a a measure for the steepness of the
bed. Thacker has figured out multiple analytical solutions for two-dimensional cases in the
absence of bed friction. One of them comprises the description of oscillations for which the
surface is curved. Three grids are generated to represent the paraboloid on: a grid containing
hexagon cells, a grid containing square cells and a grid containing triangular cells (shown in
Figure 4.5).

Figure 4.5: Computational grids for the testcase (only a detail is shown). From left to
right: grid with hexagon cells, square cells and triangular cells. The curved
black line marks the circular area of interest (radius R = 120 km). Notice that
the grids become finer from left to right.

The analytical solution comprises a curved free surface and an initial zero-velocity field. The
solution, derived by Thacker, describes the water level and velocity magnitude as a function
of the radius r and the time t. Although acceleration due to Coriolis’ forces are present in
the solution, the Coriolis’ effect is disregarded in the present test case. Without the Coriolis’
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effect, the solution reads:

h(r, t) = D0

{ √
1− A2

1− A cosωt
− 1− r2

L2

[
1− A2

(1− A cosωt)2 − 1

]}
u(r, t) =

1

2
rω

∣∣∣∣ A sinωt

1− A cosωt

∣∣∣∣
for the water level h and the velocity magnitude u in which:

A =
(D0 + η)2 −D2

0

(D0 + η)2 +D2
0

ω2 =
8gD0

L2

in which L = a = 102 km (geometry of the paraboloid), D0 = 10 m (distance from deepest
point to the reference level) and η = 2 m the largest positive surface elevation (w.r.t. the
reference level). The parameter g = 9.81 m/s2 represents the gravitation acceleration.

Model description

The used grids are (partially) shown in Figure 4.5. Friction and diffusion are switched off. As
already mentioned, the following parameter values are used: L = a = 102 km, D0 = 10 m
and η = 2 m. Hence, via ω, one period T = 2π/ω = 22877 s ≈ 6.35 hours. The run time
yields two periodic cycles. Advection scheme 33 is used. The parameter chkadvd = 0.

Results

The final result for the grid containing hexagons is provided in Figure 4.6.

Figure 4.6: Computational results for the testcase on the hexagonal grid. The values
on the vertical axis represent water levels [m w.r.t. reference] related to the
data represented in blue and represent velocities [m/s] related to the data
represented in red.

This figure shows the analytical and numerical solutions for h (in blue) and u (in red) at
t = 2T . The computational results are projected onto the one axis of symmetry. The point
at which the blue graphs and black parabola intersect can be perceived as the shoreline. The
difference between the locations of the shoreline from the analytical and numerical solution is
marked by two vertical black dashed lines. Analagous figures are shown in Figure 4.7 for all
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the three grids (varying from top to bottom) and two points in time: t = T (left panels) and
t = 2T (right panels).

Figure 4.7: Computational results for the testcase on the hexagonal grid (upper panels),
square grid (center panels) and triangular grid (bottom panels) after one pe-
riod cycle (left panels) and after two period cycles (right panels).

It is relevant to notice that the three grids, shown in Figure 4.5, contain cells of different size.
The grid containing hexagons is the coarsest, the triangular grid is the finest. This different
grade of refinement is also reflected in the numerical results: the top panels in Figure 4.7
reveal the largest deviations from the analytical solution, whereas the bottom panels show the
smallest deviations from the analytical solution.

A remarkable aspect of the output results is the presence of relatively high velocities near
the shoreline. These high velocities appear particularly during drying. For the triangular grid
(bottom panels in Figure 4.7), these high velocities are accompanied with quite some scatter,
which suggests that the output results are not perfectly radialsymmetric.
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Conclusion

D-Flow FM is able to computationally deal with flooding and drying in two-dimensional model
configurations. For a relatively coarse grid, considerable deviations are accounted. In the
shoreline area, considerable velocities are computed which are likely to be due to relative
small water depths.

Version

This test has been carried out with version dflow-fm-x64-1.1.132.38471.
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4.3 One-dimensional dambreak over a dry bed

Purpose

The purpose of this validation study is to test the D-Flow FM modelling accuracy for flooding
over both a dry bed, resulting from a dam break. The D-Flow FM model results are compared
with the analytical solution. In this validation study, multiple grids are considered.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.1.1: D-Flow FM can accurately simulate steady and unsteady hydrostatic flow
on grids consisting of triangles, quadrilaterals, pentagons and hexagons

� claim 2.3.2.1: D-Flow FM can be used for an accurate prediction of flows resulting from
dam breaks

� claim 2.3.2.4: D-Flow FM can accurately simulate drying and flooding of tidal areas

Approach

For one-dimensional dambreak flow over a dry bed, analytical expressions are available to
compare the numerical solution with. The initial state is a stepwise water level with h(x) = hl
for 0 ≤ x ≤ x0 and h(x) = 0 for x0 < x < L, with the discontuinity at x = x0 and a
computational domain from x = 0 to x = L.

The analytical solution, for a dry bed case, can be prescribed for three regions, induced by
two fronts, namely at x = xA and x = xB , with xA = x0− t

√
ghl and xB = x0 +2t

√
ghl.

The analytical solution for the water level along the three parts reads:

h(x, t) =


hl, if x < xA(t),

4

9g

(√
ghl −

x− x0

2t

)2

, if xA(t) ≤ x ≤ xB(t),

0 m, if x > xB(t).

(4.1)

The analytical solution for the velocity along the three parts reads:

u(x, t) =


0 m/s, if x < xA(t),
2

3

(
x− x0

t
+
√
ghl

)
, if xA(t) ≤ x ≤ xB(t),

0 m/s, if x > xB(t).

(4.2)

This solution shows if the scheme is able to locate and treat correctly the wet/dry transition. It
also emphasizes whether the scheme preserves the positivity of the water height.

Model description

For this testcase, several grids are generated (see Figure 4.8). The computational settings
and parameters are:

� domain length L = 60 km,
� time step ∆t = 1.0 seconds,
� hl = 2 m and hr = 0 m,
� no horizontal viscosity and no bottom friction.
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The computational grids developed for this case are shown in Figure 4.8. Grids 1, 2 and 3
contain square cells with increasing refinement, grid 4 contains triangular cells, grid 5 is an
equidistant with elongated cells, grid 6 is a variant of grid 5 with a smoothly varying cell size,
grid 7 has refinements in two directions.

Figure 4.8: Seven grids for the one-dimensional dambreak case. From bottom to top
(numbered from 1 to 7): grids 1, 2 and 3 contain square cells with increasing
refinement, grid 4 contains triangular cells, grid 5 is an equidistant with elon-
gated cells, grid 6 is a variant of grid 5 with a smoothly varying cell size, grid
7 has refinements in two directions.

For the parameter chkadvd, the value 0 m is chosen.

Results

The results of the one-dimensional dambreak are considered after 3200 seconds, when the
waves have considerably propagated without having been reflected by the boundaries. Three
issues are highlighted:

1 the effects of refinement in two directions are discussed (grids 1, 2 and 3),
2 the effects of refinement in one direction are considerend (grids 5 and 6),
3 the effects of the irregularity of the grid are discussed (grids 4 and 7).

Considering issue 1, it turned out that the three squared cell grids show decreasing deviations
from the exact solution with decreasing cell size, as is to be expected. Since the mutual
differences are relatively small, only the result for the finest grid are shown: see Figure 4.9.
The location of the shock deviates from the exact solution by about 4 km, after 3200 seconds.

Figure 4.9: Results for the most refined Cartesian grid (grid 3). Left panel: the water level
(m); right panel: the velocity (m/s).

Considering issue 2, it turned out that elongation of the cells considerably detoriates the re-
sult. The computation on the grid with the equidistantly distributed cells (see Figure 4.10)
underestimates the velocities, but reproduces the shock location relatively well, whereas the
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computation on the grid with smoothly varying cell size (see Figure 4.11) relatively well pre-
dicts the velocities but does a less good job in capturing the shock location.

Figure 4.10: Results for the grid containing equidistant, elongated rectangular cells (grid
5). Left panel: the water level (m); right panel: the velocity (m/s).

Figure 4.11: Results for the grid containing rectangular cells with smoothly varying size
(grid 6). Left panel: the water level (m); right panel: the velocity (m/s).

Considering issue 3, it can be seen that the grid with triangular cells (see Figure 4.12) per-
forms comparable with the squared cells grid. The grid with refinement in two directions (see
Figure 4.13) captures the shock locations less accurately.

Figure 4.12: Results for the triangular grid (grid 4). Left panel: the water level (m); right
panel: the velocity (m/s).

Conclusion

For a one-dimensional dambreak case over a dry bed, D-Flow FM performs fairly well regard-
ing the prediction of the water level and the velocity. The prediction of the actual location of
the propagating shock appeared to be relatively difficult. The best result are obtained using
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Figure 4.13: Results for the grid with refinement in two directions (grid 7). Left panel: the
water level (m); right panel: the velocity (m/s).

square cell grids; deviations from the exact solutions become more pronounced as soon as
the grid is more irregular.

Version

This test has been carried out with version dflow-fm-x64-1.1.116.36629.
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4.4 Two-dimensional dambreak over a dry bed

Purpose

This validation study investigates the flow resulting from a dam break including the interaction
of reflecting bores in a 2D model. The case investigated is based on the experiments by
Stelling & Duinmeijer from 2001. Tests are conducted on Cartesian as well as on triangular
grids.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.1.1: D-Flow FM can accurately simulate steady and unsteady hydrostatic flow
on grids consisting of triangles, quadrilaterals, pentagons and hexagons

� claim 2.3.2.1: D-Flow FM can be used for an accurate prediction of flows resulting from
dam breaks

� claim 2.3.2.4: D-Flow FM can accurately simulate drying and flooding of tidal areas

Approach

For this validation study a model is applied that is described in Stelling & Duinmeijer (2001).
The geometry of the experimental setup is shown in Figure 4.14. The experiments are per-
formed in a closed domain.

Figure 4.14: Experimental setup of the Stelling & Duinmeijer experiment.

Two experiments are considered by Stelling & Duinmeijer:

� a dam break with an initially wet region; and
� a dam break with an initially dry region.

Through the geometry of the experimental setup, reflecting bores interact with each other,
resulting into quite a challanging validation case compared to canonical one-dimensional dam
break problems. In the present validation case, the dry bed case is considered.

The experimental set-up consists of two reservoirs, A and B, separated by a wall with a gate
of width 0.4 m that can be lifted. Reservoir B is initially filled with water of height 0.6 m. Two
experiments are performed. The first experiment contains a thin layer of water with a depth of
0.05 m downstream of the gate and in the second experiment, the reservoir A is initially dry.
The gate is then lifted with a speed of 0.16 m/s and the subsequent flooding in reservoir A is
studied.

44 of 246 Deltares



Flooding and drying

Model description

For this testcase, a Cartesian grid is adopted. The wall that divides the two basins is repre-
sented through thin dams. The computational settings and parameters are:

� domain length L = 31 m,
� domain width D = 8.3 m,
� the Cartesian grid has sizes ∆x = ∆y = 0.1 m and hence 310× 73 cells,
� the triangular grid consists of triangular cells with a typical edge length of 0.1 m.
� time step ∆t = 0.006 seconds,
� Manning bottom roughness = 0.012 m−1/3/s,
� the horizontal eddy viscosity νh = 5.0 · 10−4 m2/s.

For the parameter chkadvd, the value of 0 m is set.

Results

An artist’s impression of the result of the D-Flow FM computation is shown in Figure 4.15. In
this figure, the bore has already been reflected from the boundary at x = L = 31 m, turning
in a backwards propagating front.

Figure 4.15: Computational result after 30 seconds, showing the water level and the ab-
solute velocities.

Timeseries for the water level are available at multiple locations along the centerline of the
flume. Six of these locations are highlighted in Figure 4.16. With reference to the gate location,
these six gauges are located at -1 m, +1 m, 6 m, 9 m, 13 m and 17 m.

Figure 4.16 shows that in the D-Flow FM simulation, the reservoir empties quicker compared
to the experiment. At later stages, the D-Flow FM results are comparable to the Delft-FLS
results. A remarkable difference is seen at 6 m downstream of the gate: the D-Flow FM
computations reveals a backwards reflected bore, induced by the sidewalls, whereas this bore
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(a) Results at 1 m upstream of the gate. (b) Results at 1 m downstream of the gate.

(c) Results at 6 m downstream of the gate. (d) Results at 9 m downstream of the gate.

(e) Results at 13 m downstream of the gate. (f) Results at 17 m downstream of the gate.

Figure 4.16: Results for the two-dimensional dambreak on a dry bed. In lexicographic
ordering: water depth in meters at -1 m, +1 m, 6 m, 9 m, 13 m and 17 m
downstream of the gate.

is not seen in the experiment and Delft-FLS results. From the pictures at 9 m downstream
of the gate, this bore is again visible, proving that it travels the most rapidly in the D-Flow
FM computation. Variants of the D-Flow FM computation can now be undertaken to study
the influences of the gridtype, the gridsize, the value of the bottom friction and the horizontal
eddy-viscosity.

Mutual differences between the results obtained on the Cartesian grid and the triangular grid
are difficultly interpretable. On the Cartesian grid, the reservoir seems to empty faster that in
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the triangular case. Moreover, the wave front due to the dam break appears to move some-
what faster in the Cartesian case compared to the triangular case. However, strict conclusions
that address the actual performance difference between the two simulations cannot be drawn
unequivocally.

Conclusion

D-Flow FM provides fairly good results for the two-dimensional dambreak on a dry bed. The D-
Flow FM results are close to the Delft-FLS results, but should further be explored to investigate
what the main causes are regarding the differences with the experiment.

Version

This test has been carried out with version dflow-fm-x64-1.1.116.36629.

Deltares 47 of 246



D-Flow Flexible Mesh, Validation Document

48 of 246 Deltares



5 Diffusion

5.1 Poiseuille flow with partial slip sidewalls

Purpose

The purpose of this validation case is to examine the performance of D-Flow FM for a plane
Poiseuille flow simulation with a partial slip condition at the sidewalls. By ’partial slip’, it is
meant that the streamwise velocities at the wall are not zero though dictated by friction. D-
Flow FM treats this kind of boundaries by imposing wall friction based on the logarithmic
law-of-the-wall.

Poiseuille flow is pressure-induced flow in a long duct, in which case the flow is confined by
two sidewalls. Poiseuille flow is distinguished from drag-induced flow such as Couette flow.
Furthermore, it is assumed that there is laminar flow of an incompressible Newtonian fluid of
dynamic viscosity µ) induced by a constant positive pressure difference or pressure drop ∆p
in a channel of length L and width B � L.

In fact, a Poisseuille flow with partial slip sidewalls comprises an internal contradiction, since
Poisseuille flow is inherently laminar, whereas partial slip is based on a turbulent wall-law.
Nonetheless, this hypothetical testcase facilitates useful comparison from an academic point
of view.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.3.2: D-Flow FM accurately uses the horizontal eddy viscosity concept for partial-
slip walls

Approach

For this two-dimensional test case, x and y are defined as the longitudinal and lateral coordi-
nates, respectively, with respective velocity components u and v. The origin of the coordinate
system is put at the center of the entrance of the channel. The flow is driven by a pressure
gradient ∇p = (−P, 0) = (−ρg∆H/L, 0) with ∆H the water level difference between
the outflow boundary and inflow boundary, prescribing a flat bottom. The kinematic viscosity
ν = µ/ρ is used. Given the context of the shallow water equations, a uniform horizontal eddy
viscosity νh is used instead.

At the sidewalls, i.e. at y = ±B/2, a partial slip condition is prescribed. This condition is
implemented on the basis of a factor α, being a constant of proportionality between the friction
velocity u∗ and the actual velocity u, such that u∗ = αu. This factor α is prescribed as:

α = κ
/

ln

(
1 +

∆y

2y0

)
, (5.1)

in which κ Von Kármán’s constant equal to 0.41, y0 = ks/30 and ∆y the grid size of a cell
adjacent to the wall. The parameter ks is specified in the mdu-file. Using the coefficients c0

and c1:

c0 = −g∆H

2L
and c1 =

νh
α

√
B · c0 + c0

(
B −∆y

2

)2

, (5.2)
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the velocity profile can now be predicted by:

u(y) =
c1 − c0y

2

νh
and v = 0. (5.3)

Model description

A Cartesian grid consisting of 200×20 cells is established, covering a domain of sizes L×B
equal to 10 km× 1 km. A flat bottom is used. The following flow settings are chosen:

� constant horizontal eddy viscosity νh = 0.1 m2/s,
� Nikuradse roughness ks = 0.1 m,
� water level drop ∆H = −1.0 · 10−4 m.

Through these parameters, the analytical velocity profile is fully determined. The advection
scheme nr. 3 (assigned as Perot q(uio-u)) is used.

Results

First, the solution has to reach a steady state. To check if the steady state has been reached,
the criterion |∂u/∂t|∞ < 10−10 m/s2 is used. The computed velocity profile at the center of
the domain is shown in comparison with the analytical solution in Figure 5.1.

Figure 5.1: Computed profile and analytical profile for the plane Poiseuille flow case with
partial slip sidewalls.

The computed results tend to slightly underestimate the analytical results. The computed
results near the centerline (not at the centerline, due to staggering) differs -0.7261% from
its analytical counterpart. This issue is currently under investigation by Mart Borsboom. The
maximum absolute lateral velocity is of the order of 10−8 m/s.

Conclusion

For plane Poisseuille flow with partial slip sidewalls, D-Flow FM approximates the analytical
solution fairly well: the parabolic profile is reproduced and the maximum velocity is approxi-
mated within 1% accuracy. The numerical results tend to underestimate the analytical results.
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Version

This test has been carried out with version dflow-fm-x64-1.1.116.36629.
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5.2 Poiseuille flow with no-slip sidewalls

Purpose

The purpose of this validation case is to examine the performance of D-Flow FM for a plane
Poiseuille flow simulation with a no-slip condition at the sidewalls. This no-slip condition in-
heres zero-velocities at the sidewalls. Poiseuille flow is pressure-induced flow in a long duct,
in which case the flow is confined by two sidewalls. Poiseuille flow is distinguished from drag-
induced flow such as Couette flow. Furthermore, it is assumed that there is laminar flow
of an incompressible Newtonian fluid of dynamic viscosity µ) induced by a constant positive
pressure difference or pressure drop ∆p in a channel of length L and width B � L.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.3.1: D-Flow FM accurately uses the horizontal eddy viscosity concept for no-slip
walls

Approach

For this two-dimensional test case, x and y are defined as the longitudinal and lateral coordi-
nates, respectively, with respective velocity components u and v. The origin of the coordinate
system is put at the center of the entrance of the channel. The flow is driven by a pressure
gradient ∇p = (−P, 0) = (−ρg∆H/L, 0) with ∆H the water level difference between
the outflow boundary and inflow boundary, prescribing a flat bottom. The kinematic viscosity
ν = µ/ρ is used. Given the context of the shallow water equations, a uniform horizontal eddy
viscosity νh is used instead. The velocities u and v can be shown to satify:

u(y) =
g∆H

8νL

(
B2 − 4y2

)
and v = 0. (5.4)

Model description

A Cartesian grid consisting of 200×20 cells is established, covering a domain of sizes L×B
equal to 10 km× 1 km. A flat bottom is used. The following flow settings are chosen:

� constant horizontal eddy viscosity νh = 0.1 m2/s,
� water level drop ∆H = −1.0 · 10−4 m.

Through these parameters, the analytical velocity profile is fully determined. The advection
scheme nr. 3 (assigned as Perot q(uio-u)) is used.

Results

First, the solution has to reach a steady state. To check if the steady state has been reached,
the criterion |∂u/∂t|∞ < 10−10 m/s2 is used. The computed velocity profile at the center of
the domain is shown in comparison with the analytical solution in Figure 5.2.

The computed results tend to slightly underestimate the analytical results. The computed
results near the centerline (not at the centerline, due to staggering) differs -0.3507% from
its analytical counterpart. This issue is currently under investigation by Mart Borsboom. The
maximum absolute lateral velocity is of the order of 10−8 m/s.
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Figure 5.2: Computed profile and analytical profile for the plane Poiseuille flow case with
no-slip sidewalls.

Conclusion

For plane Poisseuille flow with no-slip sidewalls, D-Flow FM approximates the analytical solu-
tion fairly well: the parabolic profile is reproduced and the maximum velocity is approximated
within 1% accuracy. The numerical results tend to underestimate the analytical results.

Version

This test has been carried out with version dflow-fm-x64-1.1.116.36629.
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6 Coriolis

6.1 Effects of Coriolis’ force on the flow in a straight channel

Purpose

The purpose of this validation case is to examine the balance between the Coriolis force and
the slope of the water surface in a long straight channel with a uniform depth. This is a non-
trivial case, because the equation for u is defined in different points than v, consequently an
interpolation scheme is needed to give an estimate of v to evaluate the contribution from the
Coriolis force to the momentum balance.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.5.1: D-Flow FM can take into account the impact of the Coriolis force associated
with the rotation of the earth

Approach

The model runs are run without advection, without diffusion and without friction. To achieve
that, the following parameters are set:

� AdvecType is set to 0;
� UnifFrictCoef is set to 0.0;
� Vicouu is set to 0.0;
� Vicouv is set to 0.0;
� Smagorinsky is set to 0.0;
� Elder is set to 0.0;
� irov is set to 0;
� Vicoww is set to 0.0;
� TidalForcing is set to 0

The inlet boundary is set to a constant velocity of 0.1 m/s over the entire cross section. The
computational domain is 500 km long and 300 km wide.

The outlet boundary condition applies the Riemann invariant type boundary condition, which
takes the form

ζ = 2Ri −

√
H

g
u (6.1)

on the boundary. The Riemann invariant (Ri) is given by the user on the outlet boundary.
Note that u is positive inward. Here H is the total water depth, ζ is the surface elevation and
g is the acceleration due to gravity. The surface elevation in the steady-state situation is given
as

ζ(y) = −f(y − y0)

g
u (6.2)

where f is the Coriolis constant and y0 = 150 km is taken as the middle of the channel.
The Coriolis constant is set to constant in the computational domain by use of the AngLat
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keyword, and the latitude is taken for 45◦ North. The Coriolis constant is given as

f = 2Ω sinϕ where Ω =
2π

T
[Hz] (6.3)

with T equal to 23 hr. 56 m and 4.1 s, in seconds. ϕ is the latitude. Notice that the analytical
solution for this test case is independent of the lateral bed level variations as long as the
corresponding Riemann invariant is properly applied at the outflow boundary.

Several variations of the subject are considered in this test case:

� variation of the gridcell size,
� variation of the type of grid: quadrilateral or triangular,
� variation of the shape of the bathymetry,
� variation of the way the Riemann boundary condition is imposed.

Model description

To investigate whether or not the numerical solution depends on lateral bed level variations,
four bed configurations are considered in this test case (also see Figure 6.1 for the visualiza-
tion):

1 a flat bed at a level of 500 m below the reference level,
2 a linearly varying bed, from 50 m to 500 m below the reference level,
3 a piecewise linearly varying bed, with flat areas at a level of 50 m below the reference level

and at a level of 500 m below reference level, respectively,
4 a bed level that varies according to the the shape of a cosine, varying from 50 m to 500 m

below the reference level.

Figure 6.1: Various bed level variation approaches for the Coriolis test case. The topog-
raphy only varies in lateral direction; the bed level is constant in longitudinal
(streamwise) direction.

Multiple grids are utilized for this test case. In the basis, distinction is made between grids with
quadrilateral cells and with triangular cells. For both types of grids, several grades of refine-
ment are generated. The refined Cartesian grids are generated by means of refining the grid,
shown in the left panel of Figure 6.2 once and twice with a factor of 2. The refined triangular
grid is generated by means of refining the grid, shown in the right panel of Figure 6.2, once
with a factor of 2. The setups shown in Figure 6.2 have a cosine-shape for the bed, in lateral
direction.
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Figure 6.2: Grids used as basis for the test case. Multiple refinement grades are gener-
ated as well. The colors indicate the bed level. For the bed level, the cosine-
shaped bathymetry is visualized here as an example.

Results

In this section, the results are addressed from multiple viewpoints. First, the way of imposing
the Riemann invariant is addressed. Second, the effects of grid refinement are investigated
for the quadrilateral grids. Third, aspects of the bed level treatment are briefly commented on.
Fourth, the grid type (quadrilateral versus triangular) is addressed.

Spatially varying bathymetry: aspects of prescribing the Riemann invariant
Prescribing a Riemann invariants invokes the need to know the bed level at the boundary
under consideration. Suppose, the gridcell as visualized in Figure 6.3 represents a gridcell at
the edge of the grid.

Figure 6.3: Computational cell with surface level h, face velocities uA, uB , uC and uD
and bed levels b1, b2, b3 and b4.

Think of a boundary at the face with uC as the face-normal velocity and b2 and b3 as the bed
levels along the boundary. The aim is to prescribe the Riemann invariant at the cell center
of the ghost-cell outside the boundary, i.e. the mirrored equivalent of the cell shown. As an
actual depth, necessary to prescribe the Riemann invariant, the value (b2 + b3)/2 might be
the most intuitive choice.

Two approaches to specify the Riemann invariant are followed and mutually compared:

1 use (b2 + b3)/2 for computing the local water depth,
2 use the lowest value, in casu b2, for computing the locat water depth.

The results for both approaches are visualized in Figure 6.4 for each bathymetry (flat bed,
linear bed, piecewise linear bed and cosinal bed). Notice that for the flat bed, no effect of either
the one choice or the other is expected (constant depth). Moreover, notice that taking the
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lowest bed level is equivalent to shift the Riemann boundary data series along the boundary
over half a grid cell.

Figure 6.4: Numerical solution for the various bathymetry configuration in relation to the
exact solution. Left panel: standard way of imposing a Riemann invariant;
right panel: with a Riemann invariant, imposed with a shift of half a gridcell.

The results, shown in Figure 6.4, show that taking the lowest bed level for the computation of
the local water depth returns a good result, whereas this is not the case for the approach in
which we use the mean bed level. For all the bathymetry configurations, the results coincide.

Spatially varying bathymetry: aspects of the bed level treatment
For the treatment of the bed level (cf. Figure 6.3), the user can use the mdu-keywords
conveyance2d and bedlevtyp to make D-Flow FM handle according to the user’s de-
mands. In order to explore the effects of the joint choice for both keywords, the options
conveyance2d = -1/3 and the options bedlevtyp = 1/2/3/4/5 are varied in all
possible combinations.

The results of these additional computations are as follows:

� the options bedlevtyp = 1/2 returned poor results, regardless of the choice for conveyance2d,
� the options bedlevtyp = 3/4/5 returned mutual differences that are of an order of

magnitude smaller than the difference with the exact solution as shown in the left panel of
Figure 6.4, regardless of the choice for conveyance2d.

Flat bathymetry: effects of grid refinement
The flat bed case is used for a grid convergence study. For this purpose, only the three
Cartesian grids are considered: the first with cells with an edge length of 20 km, the second
10 km and the third 5 km. The differences with the exact solution are measured with an L2-
norm. For each simulation, the timestep ∆t = 50 seconds is chosen. The simulations cover
10 days of simulated time, which has proven to be sufficient to reach a steady state.

The L2-norm of the difference between the exact solution and the numerical solution is shown
in Figure 6.5 against the typical grid cell size. Figure 6.5 reveals zeroth order convergence of
the L2-norm measure.

On the type of the grid: quadrilateral or triangular cells
The simulations for the flat bed setup and the cosine bed setup have been conducted on both
a quadrilateral (or Cartesian) grid and a triangular grid. This enables a comparison of the
accuracy of both approaches. Using the L2-norm of the differences between the exact water
levels and the computed water levels, the results read:
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Figure 6.5: Convergence behavior of the L2-norm of the water level difference (the nu-
merical solution minus the exact solution). The dashed line represents first
order behavior.

� Flat bed bathymetry on a Cartesian grid: 2.963195095572729e-04 m,
� Flat bed bathymetry on a triangular grid: 4.813599995505768e-02 m,
� Cosine shaped bathymetry on a Cartesian grid: 1.405800785225406e-02 m,
� Cosine shaped bathymetry on a triangular grid: 8.379261007472463e-03 m.

For the flat bed case, the triangular grid returns less accurate results compared to the quadri-
lateral grid. For the cosine shaped bathymetry case, the opposite appears to hold. Hence, no
clear general conclusion can be drawn on the basis of these results.

Conclusion

From the above considerations, the following conclusions can be drawn:

� D-Flow FM is able to reproduce the analytical solution for the balance between the Coriolis
force and the slope of the water surface in a long straight channel, regardless of the
bathymetry shape,

� the way of prescribing a Riemann invariant at the outflow boundary could be perceived of
as confusing regarding the value of the bed level to use for the water depth definition,

� for the flat bed case, zeroth order convergence behavior is measured for the computed
water level with decreasing grid cell size,

� no clear conclusion can be drawn regarding the accuracy of quadrilateral grids versus
triangular grids.

Version

This test has been carried out with version dflow-fm-x64-1.1.136.39235.
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6.2 Coriolis in a frictionless basin

Purpose

The purpose of this testcase is to assess the ability of D-Flow FM to compute geophysical
flows under influence of the Earth’s rotation through the Coriolis force. In some cases, the
computational results can be compared with (semi-)analytical solutions. This case comprises
propagating waves in a rectangular, semi-closed basin for which a solution can be derived
semi-analytically: the classical Taylor problem from 1921.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.5.1: D-Flow FM can take into account the impact of the Coriolis force associated
with the rotation of the earth

Approach

A rectangular basin as given in Figure 6.6 is adopted. The basin is closed at three edges
and open at the boundary at x = L, with L the length of the basin. For this setup, Taylor
(1921) has figured out that the solution of the shallow water equations then yields the forcing
Kelvin wave, a reflected Kelvin wave and an infinite number of so-called Poincaré waves. This
solution can be derived semi-analytically using the collocation method.

Figure 6.6: The classical Taylor problem: propagation of waves in a semi-closed basin of
rectangular shape.

To mimic the semi-analytical solution of Taylor, the water level elevation at the open boundary
at x = L is prescribed. This elevation, denoted by ζ , is the sum of the incoming and outgoing
Kelvin wave, based on the solution for an infinitely long channel bounded by sidewalls at
y = 0 and y = B. These so-called pseudo-standing Kelvin waves are described by the
following expression:

ζ(y) =
2c

g
U0 exp

(
−fB

2c

)
· cosh

(
f

c

(
B

2
− y
))
· cos kx cosωt (6.4)

+
2c

g
U0 exp

(
−fB

2c

)
· sinh

(
f

c

(
B

2
− y
))
· sin kx sinωt (6.5)

in which B is the width of the basin, g the gravitational accelaration, f the Coriolis parameter
being f = 2Ω sinϕ, with Ω the Earth’s rotation 2π/24/3600 = 7.2722 · 10−5 rad/s and ϕ
the latitude, c the phase speed of the forcing’s wave equal to

√
gH , with H the water depth.

The parameters k and ω are the wavenumber and wavefrequency, respectively, and U0 is the
forcing’s amplitude.

60 of 246 Deltares



Coriolis

The expression for the surface elevation ζ can be rewritten as:

ζin(y) =
c

g
U0· exp

(
−fB

c

)
· exp

(
+
fy

c

)
· (cos kx cosωt− sin kx sinωt) (6.6)

ζout(y) =
c

g
U0· exp

(
−fy
c

)
· (cos kx cosωt+ sin kx sinωt) (6.7)

which enables a prescription of the boundary conditions by means of two signals with dif-
ferent amplitude and with a mutual phase difference equal to the phase difference between
cos kx cosωt− sin kx sinωt and cos kx cosωt+ sin kx sinωt.

Model description

The computational domain is the rectangular basin as shown in Figure 6.6. The chosen input
for the domain is as follows:

� length L× width B is 1800 × 550 km2,
� the water depth H is equal to 80 m (and hence, the phase speed c is determined),
� the latitude ϕ = 52◦ (and hence, the Coriolis parameter f is determined),
� the forcing amplitude U0 is chosen equal to c/g,
� the waveperiod T of the forcing wave is equal to 745 minutes (and hence, the wave-

frequency ω is determined as ω = 2π/T as well as the wavenumber k, namely as
k = ω/c = ω/

√
gH).

The friction is turned off; the horizontal eddy viscosity has the uniform value of 0 m2/s. The
sidewalls are impermeable, but frictionless (normal velocities equal zero). At x = L the
phase lag between ζin and ζout can be computed as 45.12◦.

Three computational grids are examined:

1 a coarse Cartesian grid consisting of 72× 22 cells of 25.0× 25.0 km2,
2 a fine Cartesian grid consisting of 144× 44 cells of 12.5× 12.5 km2,
3 a triangular grid with a typical cell edge size comparable to the typical grid size of the fine

Cartesian grid.

Results

The results for each of the three grids are shown in Figure 6.7 in comparison with the semi-
analytical solution. Maximum surface elevations are shown.

The bottom panel (semi-analytical solution) shows a symmetric image of the absolute surface
elevations. The solution, basically a superposition of the two Kelvin waves and a large number
of Poincaré waves) consists of three amphidromic points.

The computational results (the three top panels) show that D-Flow FM has difficulties in repro-
ducing the amplitudes of the surface elevation. The location of the amphidromic points seems
to agree with the semi-analytical solution. However, the image is diffuse. It should further be
investigated what the explanation for this diffuse picture is.

Conclusion

For geophysical flow under influence of the Coriolis force, but in the absence of friction and
horizontal eddy viscosity, D-Flow FM experiences difficulties in reproducing the amplitudes
of the surface elevation. The location of the amphidromic points seems to agree with the
semi-analytical solution.
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Figure 6.7: Semi-analytical solution (bottom panel) for the Coriolis test without friction.
The upper three panels show the computational result from D-Flow FM on
the triangular grid (upper panel), the fine Cartesian grid (second panel) and
the coarse Cartesian grid (third panel). The colors span surface elevations
from 0 m to 2.8 m.

Version

This test has been carried out with version dflow-fm-x64-1.1.136.39235.

Acknowledgement

The writer is thankful to mr. Koen Berends for providing Matlab-scripts to compute the semi-
analytical solution. These Matlab-scripts are based on: Roos, P.C., Velema, J.J., Hulscher,
S.J.M.H., Stolk, A. (2011), An idealized model of tidal dynamics in the North Sea: resonance
properties and response to large-scale changes, Ocean Dynamics, 61 (12), 2019-2035.

62 of 246 Deltares



Coriolis

6.3 Coriolis in a basin with bottom friction

Purpose

The purpose of this testcase is to assess the ability of D-Flow FM to compute geophysical
flows under influence of the Earth’s rotation through the Coriolis force. In some cases, the
computational results can be compared with (semi-)analytical solutions. This case comprises
propagating waves in a rectangular, semi-closed basin for which a solution can be derived
semi-analytically: the classical Taylor problem from 1921.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.5.1: D-Flow FM can take into account the impact of the Coriolis force associated
with the rotation of the earth

Approach

A rectangular basin as given in Figure 6.8 is adopted. The basin is closed at three edges
and open at the boundary at x = L, with L the length of the basin. For this setup, Taylor
(1921) has figured out that the solution of the shallow water equations then yields the forcing
Kelvin wave, a reflected Kelvin wave and an infinite number of so-called Poincaré waves. This
solution can be derived semi-analytically using the collocation method.

Figure 6.8: The classical Taylor problem: propagation of waves in a semi-closed basin of
rectangular shape.

To mimic the semi-analytical solution of Taylor, the water level elevation at the open boundary
at x = L is prescribed. This elevation, denoted by ζ , is the sum of the incoming and outgoing
Kelvin wave, based on the solution for an infinitely long channel bounded by sidewalls at
y = 0 and y = B. These so-called pseudo-standing Kelvin waves are described by the
following expression:

ζ(y) =
2c

g
U0 exp

(
−fB

2c

)
· cosh

(
f

c

(
B

2
− y
))
· cos kx cosωt (6.8)

+
2c

g
U0 exp

(
−fB

2c

)
· sinh

(
f

c

(
B

2
− y
))
· sin kx sinωt (6.9)

in which B is the width of the basin, g the gravitational accelaration, f the Coriolis parameter
being f = 2Ω sinϕ, with Ω the Earth’s rotation 2π/24/3600 = 7.2722 · 10−5 rad/s and ϕ
the latitude, c the phase speed of the forcing’s wave equal to

√
gH , with H the water depth.

The parameters k and ω are the wavenumber and wavefrequency, respectively, and U0 is the
forcing’s amplitude.
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The expression for the surface elevation ζ can be rewritten as:

ζin(y) =
c

g
U0· exp

(
−fB

c

)
· exp

(
+
fy

c

)
· (cos kx cosωt− sin kx sinωt)(6.10)

ζout(y) =
c

g
U0· exp

(
−fy
c

)
· (cos kx cosωt+ sin kx sinωt)(6.11)

which enables a prescription of the boundary conditions by means of two signals with dif-
ferent amplitude and with a mutual phase difference equal to the phase difference between
cos kx cosωt− sin kx sinωt and cos kx cosωt+ sin kx sinωt.

Model description

The computational domain is the rectangular basin as shown in Figure 6.8. The chosen input
for the domain is as follows:

� length L × width B is 1800 × 550 km2,
� the bottom friction is given by Chézy’s coefficient C , equal to 62.64 m1/2/s, corresponding

with a drag coefficient cd = 2.5 · 10−3,
� the water depth H is equal to 80 m (and hence, the phase speed c is determined),
� the latitude ϕ = 52◦ (and hence, the Coriolis parameter f is determined),
� the forcing amplitude U0 is chosen equal to c/g,
� the waveperiod T of the forcing wave is equal to 745 minutes (and hence, the wave-

frequency ω is determined as ω = 2π/T as well as the wavenumber k, namely as
k = ω/c = ω/

√
gH).

The horizontal eddy viscosity has the uniform value of 0 m2/s. The sidewalls are impermeable,
but frictionless (normal velocities equal zero). At x = L the phase lag between ζin and ζout
can be computed as 45.12◦.

Three computational grids are examined:

1 a coarse Cartesian grid consisting of 72× 22 cells of 25.0× 25.0 km2,
2 a fine Cartesian grid consisting of 144× 44 cells of 12.5× 12.5 km2,
3 a triangular grid with a typical cell edge size comparable to the typical grid size of the fine

Cartesian grid.

Results

The results for each of the three grids are shown in Figure 6.9 in comparison with the semi-
analytical solution. Maximum surface elevations are shown.

The bottom panel (semi-analytical solution) shows an asymmetric image of the absolute sur-
face elevations. This asymmetry is caused by friction. The solution, basically a superposition
of the two Kelvin waves and a large number of Poincaré waves) consists of three amphidromic
points. The surface elevation amplitudes across the domain (ranging from 0 to 1.6 m) are
smaller compared to the case without friction (ranging from 0 to 2.8 m) because of energy
dissipation due to friction.

The computational results (the three top panels) show that D-Flow FM has difficulties in repro-
ducing the amplitudes of the surface elevation, particularly in the corners of the domain. The
location of the amphidromic points agree well with the semi-analytical solution. However, the
image is rather diffuse. It should further be investigated what the explanation for the deviations
in surface elevation amplitude is.
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Figure 6.9: Semi-analytical solution (bottom panel) for the Coriolis test with friction. The
upper three panels show the computational result from D-Flow FM on the
triangular grid (upper panel), the fine Cartesian grid (second panel) and the
coarse Cartesian grid (third panel). The colors span surface elevations from
0 m to 1.6 m.

Conclusion

For geophysical flow under influence of the Coriolis force and bottom friction, but under the
absence of horizontal eddy viscosity, D-Flow FM experiences difficulties in reproducing the
amplitudes of the surface elevation. The location of the amphidromic points agree well with
the semi-analytical solution.

Version

This test has been carried out with version dflow-fm-x64-1.1.136.39235.

Acknowledgement

The writer is thankful to mr. Koen Berends for providing Matlab-scripts to compute the semi-
analytical solution. These Matlab-scripts are based on: Roos, P.C., Velema, J.J., Hulscher,
S.J.M.H., Stolk, A. (2011), An idealized model of tidal dynamics in the North Sea: resonance
properties and response to large-scale changes, Ocean Dynamics, 61 (12), 2019-2035.

Deltares 65 of 246



D-Flow Flexible Mesh, Validation Document

66 of 246 Deltares



7 Bed friction

7.1 Bed friction formulations

Purpose

The purpose of this validation case is to examine the working of different bed friction formu-
lations. D-Flow FM facilitates bed friction values for Chézy, Manning and White-Colebrook
formulations. For White-Colebrook, two versions are available: one that is compliant with
Delft3D and one that is compliant with WAQUA.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.4.2: D-Flow FM can take into account several friction formulations (Chezy, Man-
ning, White-Colebrook or roughness height z0)

Approach

For this test case, a straight, stationary, homogeneous channel flow is chosen. Given a bot-
tom that varies linearly with a slope ib, a discharge Q and a certain friction coefficient, an
equilibrium depth he can be computed. Given a Chézy friction value C , the water depth he is
given by:

he =

(
Q

BC
√
ib

)2/3

. (7.1)

In this test, four friction formulations are tested:

1 Chézy, with a friction factor C ,
2 Manning, with a friction factor m, related to C through:

m =
1

C
h1/6
e , (7.2)

in which the constant ’1’ has a unit such that the coefficient m has no unit,
3 White-Colebrook (in Delft3D-formulation), with a friction factor wd, related to C through:

wd =
30 · he

exp
(

1 + κ√
g
C
) , (7.3)

in which κ (in the formulation of White-Colebrook for Delft3D) represents Von Kármán’s
constant equal to 0.41,

4 White-Colebrook (in WAQUA-formulation), with a friction factor wq, related to C through:

wq =
12 · he
10C/18

, (7.4)

in which the constant ’18’ has the unit m1/2/s.

In principle, the he represents the hydraulic radius. However, in the current testcase, the water
depth is considered the hydraulic radius.

Given these formulations, a certain Chézy friction factor can be chosen and, thereafter, be
translated into other friction factor types through the above expressions.
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Model description

For this test case, one particular computational grid is generated. The grid is of Cartesian
type. The longitudinal size L of the domain is 10 km, whereas the lateral size B of the
domain is 500 m. In longitudinal direction 20 cells are deployed, whereas in lateral direction
only one grid cell is present.

A discharge Q equal to 2500 m3/s is prescribed at the inflow boundary. The bottom slope ib
is prescribed to be 10−4. The bottom level at the inflow boundary is 0 m (w.r.t. reference) and
at the outflow boundary -1 m (w.r.t. reference). The Chézy friction coefficient C is set to 65
m1/2/s. Given the above values, the equilibrium water depth he is 3.8967669 m. The other
friction factors can hence be computed as:

1 Chézy factor (see e02-f04-c010) – C = 65 m1/2/s,
2 Manning factor (see e02-f04-c011) – m = 0.019299114465780,
3 White-Colebrook factor (Delft3D) (see e02-f04-c012) – wd = 0.008674691060828 m,
4 White-Colebrook factor (WAQUA) (see e02-f04-c013) – wq = 0.011449184837085 m,

Results

The actual water level differences (numerical versus analytical) at cell face points along the
channel are computed as the root-mean-square difference of the computed water depths and
the analytical equilibrium water depth. The results are:

1 Chézy – 4.97119 · 10−8 m
2 Manning – 2.07954 · 10−6 m
3 White-Colebrook (Delft3D) – 8.13436 · 10−9 m
4 White-Colebrook (WAQUA) – 5.62659 · 10−9 m

Conclusion

For a stationary hydraulic computation of flow over an inclined bottom (with friction, a dis-
charge inflow boundary and a Neumann outflow boundary), D-Flow FM is able to accurately
treat friction formulations according to Chézy, Manning, White-Colebrook (Delft3D) and White-
Colebrook (WAQUA).

Version

This test has been carried out with version dflow-fm-x64-1.1.116.36629.
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7.2 Refinement study for channel flow using Cartesian grids

Purpose

The purpose of this validation case is to examine the performance of D-Flow FM for the
simulation of a schematized uniform and homogeneous channel flow. This validation case
focuses on the effects of the refinement of a Cartesian grid. The topography comprises a
linearly varying bathymetry with a constant slope.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.1.1: D-Flow FM can accurately simulate steady and unsteady hydrostatic flow
on grids consisting of triangles, quadrilaterals, pentagons and hexagons

Approach

To enable academic comparison of the computational output with a known analytical solution,
the topography of the bed varies linearly with a slope ib. Given a discharge Q and a friction
coefficient (in this case, Chézy’s factor C is used), an equilibrium water depth de can be
computed as:

de =

(
Q

BC
√
ib

)2/3

. (7.5)

If the grid is refined several times, the order of accuracy of the numerical integration routines
can be assessed. For this purpose, only Cartesian grids are considered (triangular grids are
considered in case e02-f01-c011).

Model description

For this test case, five computational grids are generated. The outflow parts of these grids are
shown in Figure 7.1. The five grids are of Cartesian type. The longitudal size L of the domain
is 10 km, whereas the lateral size B of the domain is 500 m.

Figure 7.1: From left to right: five Cartesian grids in order of refinement grade. Each
refinement comprises twice as much cells in each direction. Only the outflow
part of the grid is shown.

A discharge Q equal to 2500 m3/s is prescribed. The bottom slope ib is prescribed to be
10−4. The bottom level at the inflow boundary is 0 m (w.r.t. reference) and at the outflow
boundary -1 m (w.r.t. reference). The Chézy friction coefficient C is set to 65 m1/2/s. Given
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the above values, the equilibrium water depth de is computed to be 3.89677 m:

de =

(
Q

BC
√
ib

)2/3

=

(
2500

500 · 65 ·
√

10−4

)2/3

= 3.89677m. (7.6)

In order to properly impose an outflow boundary that is grid independent, a Neumann-boundary
is prescribed at the outflow: ∂h/∂xn = −ib, with h the water level. The computational
time step is set automatically being restricted by a CFL limit value equal to 0.5. Upstream,
the keyword jbasqbnddownwindhs is set to 1 (relevant for the inflow boundary), whereas
izbndpos = 0 (relevant for the outflow boundary). For the bed friction, the option Conveyance2D
= 3 is set (i.e. an analytic expression is used for the hydraulic radius).

Results

First, recall the quantity hu, which represents the upstream water level (cell center) at the
location of a velocity point (cell face). This quantity is used as the water depth within the
computation of the bed friction at a velocity point. As a result, the water depth equals the
water level at the upstream cell center minus the bed level at the cell face.

Hence, if a water depth is to be computed as part of the postprocessing, this water depth
should be computed in analogy, namely as the difference between the bed level at a velocity
point and the upstream water level. This value for hu should then be assessed against the
backdrop of the equilibrium depth de (see Equation (7.5)) being equal to 3.89677 m, in this
case.

Figure 7.2: Computational cell with surface level h, face velocities uA, uB , uC and uD
and bed levels b1, b2, b3 and b4.

The way of postprocessing the water depth can further be clarified by considering an arbitrary
computational cell, as shown in Figure 7.2. Recall that the principal variables are the water
level (located at the cell center) and the face-normal velocities (located at the center of the
faces). The level of the bed is given in the cell corners. The value of hu at the location of, for
instance, velocity uC is then computed as h−(b2 +b3)/2 (in case of bedlevtyp = 3; the
options 4 and 5 take min(b2, b3) and max(b2, b3), respectively, to be subtracted from the
water level). However, choosing for Conveyance2D = 3 implies an approach according to
bedlevtyp = 4.

Since the analytical solution is known for this flow situation, the deviations of the computed
results from the analytical results can be measured exactly. As a measure, the L2-norm of the
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residual Res (i.e. the difference between the analytical and the numerical solution) is taken,
defined as

ResL2 =

√√√√ 1

N

N∑
i=1

Res2
i (7.7)

with N the number of evaluated grid locations. Differences with the analytical solution for the
five different grids are shown in Figure 7.3 through this measure.

Figure 7.3: Rate of convergence, measured by means of the L2-norm using the analyt-
ical solution and the computational output. Left panel: convergence of the
computed water depth; right panel: convergence of the computed velocity.

Figure 7.3 reveals that the actual differences between the computational and analytical out-
comes are very small (both for the water levels and the velocities). However, the rate of the
convergence tends to be of order 0 (both for the water levels and the velocities).

Conclusion

For the two-dimensional, stationary, homogeneous and uniform channel flow simulations, the
following conclusions can be drawn:

1 on all the five grids (of different grade of refinement), the computational outcomes ap-
proximate the analytical outcomes very closely, both regarding the water levels and the
velocities,

2 the differences between the computational and analytical outcomes converge at rate 0
with decreasing cell size.

Version

This test has been carried out with version dflow-fm-x64-1.1.116.36629.
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7.3 Refinement study for channel flow using triangular grids

Purpose

The purpose of this validation case is to examine the performance of D-Flow FM for the
simulation of a schematized uniform and homogeneous channel flow. This validation case
focuses on the effects of the refinement of a grid with only triangular cells. The topography
comprises a linearly varying bathymetry with a constant slope.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.1.1: D-Flow FM can accurately simulate steady and unsteady hydrostatic flow
on grids consisting of triangles, quadrilaterals, pentagons and hexagons

Approach

To enable academic comparison of the computational output with a known analytical solution,
the topography of the bed varies linearly with a slope ib. Given a discharge Q and a friction
coefficient (in this case, Chézy’s factor C is used), an equilibrium water depth de can be
computed as:

de =

(
Q

BC
√
ib

)2/3

. (7.8)

If the grid is refined several times, the order of accuracy of the numerical integration routines
can be assessed. For this purpose, only triangular grids are considered (Cartesian grids are
considered in case e02-f01-c010).

Model description

For this test case, trhee computational grids are generated. The outflow parts of these grids
are shown in Figure 7.4. The three grids are of triangular type. The longitudal size L of the
domain is 10 km, whereas the lateral size B of the domain is 500 m.

Figure 7.4: From left to right: three triangular grids in order of refinement grade. Each
refinement comprises twice as much cells in each direction. Only the outflow
part of the grid is shown.

A discharge Q equal to 2500 m3/s is prescribed. The bottom slope ib is prescribed to be
10−4. The bottom level at the inflow boundary is 0 m (w.r.t. reference) and at the outflow
boundary -1 m (w.r.t. reference). The Chézy friction coefficient C is set to 65 m1/2/s. Given
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the above values, the equilibrium water depth de is computed to be 3.89677 m:

de =

(
Q

BC
√
ib

)2/3

=

(
2500

500 · 65 ·
√

10−4

)2/3

= 3.89677m. (7.9)

In order to properly impose an outflow boundary that is grid independent, a Neumann-boundary
is prescribed at the outflow: ∂h/∂xn = −ib, with h the water level. The computational
time step is set automatically being restricted by a CFL limit value equal to 0.5. Upstream,
the keyword jbasqbnddownwindhs is set to 1 (relevant for the inflow boundary), whereas
izbndpos = 0 (relevant for the outflow boundary). For the bed friction, the option Conveyance2D
= 3 is set (i.e. an analytic expression is used for the hydraulic radius).

Results

First, recall the quantity hu, which represents the upstream water level (cell center) at the
location of a velocity point (cell face). This quantity is used as the water depth within the
computation of the bed friction at a velocity point. As a result, the water depth equals the
water level at the upstream cell center minus the bed level at the cell face.

Hence, if a water depth is to be computed as part of the postprocessing, this water depth
should be computed in analogy, namely as the difference between the bed level at a velocity
point and the upstream water level. This value for hu should then be assessed against the
backdrop of the equilibrium depth de (see Equation (7.8)) being equal to 3.89677 m, in this
case.

Figure 7.5: Computational cell with surface level h, face velocities uA, uB , uC and uD
and bed levels b1, b2, b3 and b4.

The way of postprocessing the water depth can further be clarified by considering an arbitrary
computational cell, as shown in Figure 7.5. Recall that the principal variables are the water
level (located at the cell center) and the face-normal velocities (located at the center of the
faces). The level of the bed is given in the cell corners. The value of hu at the location of, for
instance, velocity uC is then computed as h−(b2 +b3)/2 (in case of bedlevtyp = 3; the
options 4 and 5 take min(b2, b3) and max(b2, b3), respectively, to be subtracted from the
water level). However, choosing for Conveyance2D = 3 implies an approach according to
bedlevtyp = 4.

Since the analytical solution is known for this flow situation, the deviations of the computed
results from the analytical results can be measured exactly. As a measure, the L2-norm of the
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residual Res (i.e. the difference between the analytical and the numerical solution) is taken,
defined as

ResL2 =

√√√√ 1

N

N∑
i=1

Res2
i (7.10)

with N the number of evaluated grid locations. Differences with the analytical solution for the
five different grids are shown in Figure 7.6 through this measure.

Figure 7.6: Rate of convergence, measured by means of the L2-norm using the analyt-
ical solution and the computational output. Left panel: convergence of the
computed water depth; right panel: convergence of the computed velocity.

Figure 7.6 reveals that the actual differences between the computational and analytical out-
comes are significantly larger compared to the ones found for the Cartesian grids (both for
the water levels and the velocities, see the documentation for case e02-f01-c010). The resid-
ual is assessed with the entire domain taken into account. Morever, the deviations from the
analytical solution appear not to converge (both for the water levels and the velocities). The
same has appeared to hold for the medium part of the domain, intending to leave potential
boundary effects out of consideration.

Conclusion

For the two-dimensional, stationary, homogeneous and uniform channel flow simulations, the
following conclusions can be drawn:

1 on all the three grids (of different grade of refinement), the computational outcomes ap-
proximate the analytical outcomes with an accuracy being significantly coarse compared
to the simulations on Cartesian grids, both regarding the water levels and the velocities,

2 the differences between the computational and analytical outcomes appear not to con-
verge.

Version

This test has been carried out with version dflow-fm-x64-1.1.116.36629.
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7.4 Channel with curvilinear grid distortion

Purpose

The purpose of this validation study is to investigate the effect of a misaligned grid, i.e. a
grid that makes an angle with the flow direction, on the accuracy of the model results. This
validation study is directly derived from the validation document for Delft3D.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.1.1: D-Flow FM can accurately simulate steady and unsteady hydrostatic flow
on grids consisting of triangles, quadrilaterals, pentagons and hexagons

Approach

A uniform flow in a simple straight channel over a sloping topography is considered. In the
steady state, the slope of the water level should equal the slope of the bed. In this test case,
it is examined to what extent the numerical solution is dependent on the grid it is computed
on. For this purpose, the outcomes obtained on a Cartesian grid are compared with the
outcomes obtained on a sinusoidally distorted grid. This sinusoidally distorted grid is shown
in Figure 7.7. A computation on an equivalent, strictly Cartesian grid of M ×N = 10× 80
cells is carried out for comparison.

Figure 7.7: The computational grid for curvilinearly distorted grid case. The bed level
ranges from -4 m (left) to -4.5 m (right) w.r.t. the reference level. The flow is
from left to right.

To enable academic comparison of the computational output with a known analytical solution,
the slope of the bed is set varying linearly with a slope ib. Given a discharge Q and a friction
coefficient (in this case, Chézy’s factor C is used), an equilibrium water depth de can be
computed as:

de =

(
Q

BC
√
ib

)2/3

. (7.11)

Model description

The settings for the computation are (taken from the Delft3D validation document):

� length L = 500 m and width B = 240 m,
� bed slope ib = 10−3,
� inflow velocity U = 2.933654 m/s or inflow discharge Q = 1434.2047 m3/s,
� Chézy’s coefficient C = 65 m1/2/s.

With this parameters, the equilibrium depth is de = 2.037 m. Including the ∆x/2 distance
between the outflow boundary and the cell centers of the ghost cells, the output water level is
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set equal to:

hout = bed level + equilibrium depth− ib ·∆x/2
= −4.5 + 2.037− 10−3 · 500/80/2

= −2.466125 m+NAP

Hence, the output water level is set equal to -2.466125 m w.r.t. the reference level. Two
specific settings to be mentioned are:

1 the location of the outflow water levels is set on the cell center of the ghost cell outside the
grid, being mirrored due to grid staggering (i.e. izbndpos = 0),

2 at the inflow boundary, no specific corrections are made for the interpolation of the water
levels, based on the downwind water level (i.e. jbasqbnddownwindhs = 0).

The two computations are carried out twice: one time with a velocity boundary condition
upstream, and one time with a discharge boundary condition upstream.

Results

Figure 7.8 shows the water depth at the end of the simulation time in case a velocity condition
is applied at the inflow boundary. One can see that deviations from the analytical equilibrium
depth are present. The closer to the outflow boundary, the more the depth approaches the
analytical equilibrium depth of 2.037 m.

Figure 7.8: The water depth at the end of the simulation time (steady state solution).
Upper panel: results on the Cartesian grid; lower panel: results on the curvi-
linearly distorted grid. For this result, a velocity condition is applied at the
inflow boundary. The analytical equilibrium depth is 2.037 meters.

For this case with curvilinear distortion of the grid, the deviations from the analytical solution
are significantly larger for the distorted grid compared to the rectangular grid. It should, more-
over, be remarked that this two-dimensional case does not attain the same accuracy for this
type of case as the one-dimensional case does (cf. case e02-f05-c020).

Figure 7.9 shows the water depth at the end of the simulation time in case a discharge
condition is applied at the inflow boundary.
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Figure 7.9: The water depth at the end of the simulation time (steady state solution).
Upper panel: results on the Cartesian grid; lower panel: results on the curvi-
linearly distorted grid. For this result, a discharge condition is applied at the
inflow boundary. The analytical equilibrium depth is 2.037 meters.

As Figure 7.9 shows, the deviations in the outflow region are quite comparable with their
equivalents from Figure 7.8. However, it is seen that the deviations become smaller the more
the inflow boundary is approached. From this it could be concluded that the discharge inflow
boundary condition is favorable over the velocity inflow boundary condition.

Remark that the timestep ∆t is computed automatically, based on a CFL limit value of 0.7.
If jbasqbnddownwindhs = 1 is chosen in the mdu-file, the computation on the curvilin-
early distorted grid starts wiggling.

Conclusions

Misalignment of the grid has a clear effect on the accuracy of the model results. For the curvi-
linearly distorted grid, the maximum deviation from the analytical solution for the equilibrium
depth is significantly larger compared to the equivalent Cartesian grid case.

Version

This test has been carried out with version dflow-fm-x64-1.1.116.36629.
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8 Wind

8.1 Sudden uniform wind forcing in a partially open basin

Purpose

Wind is present in many applications requiring simulation of surface waters. Rodney Sobey
published a set of analytical solutions for the fluid flow in shallow-water situations with wind
forcing in the paper Analytical Solutions for Storm Tide Codes in Coastal Engineering (2002,
46: 213-231). Here, the case "ST3: Sudden uniform wind on a partially open basin" has been
selected for benchmarking. One more case from the same suite is presented in the following
section.

Conveniently, analytical solutions enable us to know in advance the flow field that follows from
specific initial conditions, boundary conditions and external forcing in a certain basin. Both
the governing equations for fluid flow and the shape of the basin need simplification in order
to provide exact solutions by means of analytical integration.

Upon reproducing the cases for which analytical solutions are available, the attending for-
mulations and algorithms of D-Flow FM are subject to an objective, although not exhaustive,
critical exercise.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.4.3: D-Flow FM is able to apply linearized friction in two-dimensional flow simu-
lations

� claim 2.3.5.2: D-Flow FM can be used for an accurate prediction of wind driven flow

Approach

A basin with rectangular shape and uniform depth is considered. The reference level for
vertical distances is the quote of the undisturbed water surface. Water levels are indicated as
η. The basin depth isH . The wind blows parallel to one pair of sides, taken as the x-direction.
Free mass exchange with external water is allowed at the upwind side (x =0), while the other
boundaries are closed vertical walls. Depending on scale, such a basin can be seen as a
crude representation of anything from a harbour to a marginal sea.

The equations for which the analytical solution is derived differ from the general shallow-water
equations on the following counts:

� the advective accelerations are neglected;
� the Coriolis force is neglected;
� the viscosity effects are neglected;
� the surface elevations are small with respect to the undisturbed water depth (η/H � 1);
� bed friction is a linear function of the depth-averaged velocity;
� vertical walls exert no friction.

Under these assumptions, the governing equations are linearised; the motion is one-dimensional
and always aligned with the wind direction; and, finally, the water body is in dynamical equi-
librium, acted on by free-surface gradients, surface shear and bed friction.

Sobey develops his treatment in terms of the net mass flux in the x-direction per unit of
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basin’s width q (discharge per unit width, for short). Here, rather, the formalism is in terms
of the depth-averaged velocity u, following the implementation of D-Flow FM. By virtue of the
linearisation, the two quantities are related by the relationship q = uH , which holds between
the solutions of q and H .

The following equations for the mass and x-momentum conservation are solved for:

∂η

∂t
= −H∂u

∂x
(8.1)

∂u

∂t
= −g ∂η

∂x
− λu+

F0

H
(8.2)

where λ is the linear friction coefficient and F0 = τs/ρw is a shorthand for the wind forcing
term, with τs being the surface shear stress and ρw the water density.

Linear friction is used at times in ocean modelling, while a quadratic parametric law is used in
shallow waters (fully-developed turbulent friction). Translating a linear friction coefficient into
an equivalent roughness parameter for turbulent flows requires the estimation of some typical
value for the flow velocity, û. This scale is arbitrary and its choice depends on judgement. For
the Manning friction law (with roughness coefficient m), the following correspondence holds:

λ =
gm2

H
7
3

û (8.3)

Finally, the steady and uniform wind forcing could be seen as an approximation for an air
stream getting to blow above the basin after a rapid sideward displacement, parallel with the
sea entrance.

An exact solution is determined for initial conditions representing a body accelerating from
rest:

η(x, 0) = u(x, 0) =
∂η

∂t

∣∣∣∣
(x,0)

= 0 ,
∂u

∂t

∣∣∣∣
(x,0)

= F0 ;

for a constant water level at the upwind open boundary (x = 0):

η(0, t) =
∂u

∂x

∣∣∣∣
(0,t)

= 0 ;

and for an impervious wall at the downwind boundary (x = L):

u(L, t) = 0 ,
∂η

∂x

∣∣∣∣
(L,t)

=
F0

C2
.

The analytical solutions for η and u contain a steady-state solution plus a transient summation
of standing waves (free modes) damped by bed friction:

η(x, t) =
F0

C2
x+ e−

λ
2
t

∞∑
n=1

(
cosωnt+

λ

2

sinωnt

ωn

)
f̂nXn(x) (8.4)

u(x, t) = 0 + e−
λ
2
t 1

H

∞∑
n=1

sinωnt

ωn
ĝn Yn(x) (8.5)
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where C2 = gH is the squared long-wave celerity. To compute the transient contributions in
Equation (8.4) and Equation (8.5), the following space-dependent quantities need be deter-
mined from the basin length L for each oscillating mode n:

βn =

(
n− 1

2

)
π

L
(8.6)

Xn =

(
2

L

) 1
2

sin βnx

Yn =

(
2

L

) 1
2

cos βnx

f̂n = −F0

C2

∫ L

0

xXn(x) dx

ĝn = F0

∫ L

0

Yn(x) dx

The corresponding angular velocities are then calculated with the long-wave dispersion rela-
tionship in a damped system:

ωn =

√
β2
nC

2 −
(
λ

2

)2

(8.7)

Only the combinations ofL,H (viaC) and λ giving a positive radicand for Equation (8.7) lead
to the development of the transient oscillating phase. In particular, in Equation (8.7) one can
recognize the period of inertial waves, 2π/βnC , and the 1/e-decay time, 2/λ, associated
with exponential damping. The dispersion relationship, thus, indicates how the time scales
of standing waves and of friction combine to produce the basin’s response (e.g. how many
oscillations can take place before the transient phase is damped down to the steady-state
solution).

Lastly, the solution η(x, t) scales with F0L/C
2 = η̂, the steady-state wind set-up at the

downwind end. The solution of u(x, t) scales with F0L/CH = û, the maximum depth-
averaged velocity at the open boundary in case of frictionless oscillations. Locally, the corre-
sponding scales at each position are

η̂x = η̂
x

L
, ûx = û

L− x
L

, (8.8)

which will be used later on to normalise the results.

In spite of the linearity requirements, the analytical solution describes a non-trivial behaviour
of the water levels and depth-averaged velocities, with regular variations of sign and rates of
change, that makes it well-suited for testing numerical codes.

A free surface tilted with constant slope and no net mass flux everywhere is the eventual
steady-state balance (wind set-up). However, such a wind set-up arrangement can be pre-
ceded by a transient phase with oscillating water elevations and with alternate water exchange
at the open boundary.

The wind onset is sudden. Its shearing action over the surface of the entire basin drives
a current against the closed boundary downwind. Hence, the surge starts off as a heave
of water at the downwind end. While the water keeps on piling up there, the raised waters
increase in height and longitudinal extent upwind.
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At the same time, these raising water levels cause an increasing free-surface slope that pro-
motes a return flow in competition with the wind-driven flow. Once a net outflow is established
at the upwind open boundary, emptying begins, which then favours the wind-driven surge
once again.

This alternating prevalence of wind-shear and surface-slope forcing is damped by bed friction
exponentially, until the steady wind set-up is reached. Interesting for guiding intuition, the
basin’s peak response to the wind forcing can occur in the transient phase.

These mechanisms are of fundamental nature and expectedly blueprint those occurring with
non-linear physics at play, such as neglected terms (e.g. advection) or more complex parametriza-
tions (e.g. turbulent bed friction).

Model description

Here Sobey’s indications have been followed, unless otherwise stated. No sensitivity analysis
to parameters range has been carried out. The domain has a length of L = 5000 m and a
depth of H = 2 m. The width, immaterial for the one-dimensional flow pattern, has been set
to W = 250 m.

When comparing the analytical and numerical solutions, care is needed in handling the staggered-
grid arrangement implemented by D-Flow FM. In the solver’s representation, open boundaries
are drawn onto the cells faces, that is to say velocity grid points. The water-level grid points
where the boundary conditions are applied, however, are actually located at ‘ghost’ stations
half cell-size off the open boundary. Therefore, the analytical solution has effectively been
worked out for a basin of effective length L = 5000 m + ∆x/2, where 5000 m is the distance
between the boundaries as a user would normally define it in D-Flow FM, while ∆x is the cell
size.

The atmospheric forcing is equal to F0 = 1.5 × 10-3 m2/s2. This can be obtained from the
classic wind-drag parametrization with wind velocity of 25 m/s (Bft 10), a drag coefficient of
Cd = 0.002 and air density ρa = 1.2 kg/m3. These values are realistic. As a result, C =
4.429 m/s, η̂ = 0.3832 m and û = 0.8487 m/s.

The linear friction coefficient is λ = 10-4 s-1. Based on Equation (8.3), using the above
velocity scale û, this λ corresponds to a Manning coefficient m = 0.0055 s/m1/3, representing
an unusually smooth bed. On the other hand, for the purpose of validation, this choice of λ
appears to lead to all terms of the governing equations being equally relevant. On so doing,
the assessment of the flow solver’s attending formulations is more comprehensive than a
stereotyped field case.

The initial conditions are a horizontal water level at η = 0 and quiescent water. Based on the
relationship t1/e = 2/λ, a simulation of 6 hours will include the amplitude exponential decay
down to 1/e, 37%, of the undamped value.

Both a Cartesian grid and a structured triangular grid are used to discretize the domain. The
condition η = 0 is implemented at the upwind open boundary. The upwind parts of these grids
are shown in Figure 8.1.

The cells in the Cartesian grid are squares with side of ∆x = 25 m (user-defined). The short-
est wavelength determinable on a grid is 2∆x (Nyquist criterion), whereby the upper-bound
wave number is π/∆x. This restriction holds for reasons inherent to space discretization only.
As a result, the flow solver can only resolve the transient components having wave number
βn ≤ π/∆x. Since the solutions ((8.4)) and ((8.5)) contain infinite summations of standing
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Figure 8.1: Test case ‘Sudden uniform forcing in a partially open basin’. Computational
grids: Cartesian-type (left) and structured with triangular cells (right). Part
view near the upwind open boundary: the domain has a closed end at x =
5000 m.

waves, for a fair comparison, the number of modes in the exact solution can be limited to
n = nx + 1, where nx is the number of cells in the direction of wave propagation.

Further, the resolved mode with the smallest wavelength 2∆x also dictates the smallest os-
cillation period that should be computed. Since ωnx+1 = 0.5566 rad/s after the dispersion
relationship ((8.7)), the fastest period of all resolvable components is Tnx+1 = 11.28 s. Again
for the Nyquist criterion, a time step less than the half of this period suffices to resolve all
temporal oscillations of interest. Here, ∆t = 5 s.

Therefore, with this choice of grid spacing and time step, the transient phase in Equation (8.4)
and Equation (8.5) is fully resolved in both space and time within the accuracy allowed by the
domain discretization. It could be shown that, on so doing, the unity Courant number criterion
is also fulfilled.

The cells in the triangular grid are equilateral with side of ∆x = 25 m.

The numerical results are compared with the same evaluation of the analytical solution as the
Cartesian grid. In order to linearise the governing equations, the following settings have been
specified in the mdu file:

� AdvecType = 0
� Lincontin = 1
� Umodlin = 1
� UnifFrictCoefLin = 〈λH〉

Additionally, an ad hoc modification was applied to the source code to linearise the wind
forcing term by dividing the shear stress by H rather than by η+H . The following flags have
been modified with respect to default settings:

� Teta0 = 0.5
� CFLMax = 1

in order to integrate the algebraic water-level gradients consistently with the acceleration term
(through the implicitness factor θ) and to avoid automatic changes of the time step, respec-
tively. The Technical Reference Manual provides further context to this information. The other
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settings take default values.

Results

The simulated histories of water level and depth-averaged velocity have been compared with
the analytical counterparts at selected observation points on the basin’s middle longitudinal
axis. The corresponding profiles along the basin at selected time instants are not shown, as
they do not add essential information.

In the following plots, using Equation (8.8), the water levels have been normalised with η̂x,
the expected local elevation at steady state, and the depth-averaged velocities with ûx, the
expected local maximum velocity of frictionless oscillations. Seen that the flow field is spatially
variable, the results are thus presented in proportion to the expected local values.

Each plot displays the exact values (in red), the computed value (in blue or green, dashed).
The deviation of the latter from the former (in black) is then plotted with a secondary axis.
Dashed red lines support the interpretation, showing the steady-state situation and the expo-
nential damping function of Equation (8.4) and Equation (8.5). The results for the Cartesian
and triangular grid are given in separate columns. For ease of interpretation with regard to
the staggered-grid arrangement, from here onwards x denotes the co-ordinate value that a
D-Flow FM user would normally deal with, as in Figure 8.1.

Water levels are shown in Figure 8.2 for three stations at mid length (x = 2512.5 m, η̂x =
0.1930 m), three-quarter length (x = 3762.5 m, η̂x = 0.2866 m) and at the basin’s closed end
(x = 5000 m, η̂x = 0.3832 m). These observation points are located in the downwind half of
the basin, where water levels are the largest.

The water level history is a damped square wave, where periods of rapid change alternate
with periods of almost horizontal level. Over each cycle, at each location, the final water
elevation and the amplitude of the ensuing cycle decrease exponentially, eventually tending
to the steady-state wind set-up.

As for the hydrodynamic processes as seen at fixed stations, rapid rise indicates the arrival
of the water already piled up by the wind against the downwind end, as the heave grows and
moves upwind. There, in the net, wind-driven flux and return flux cause convergence in the
water column. Rapid fall indicates the onset of a flux-divergence situation as the return flow,
driven by the surface slope, prevails over the wind-driven flow, causing emptying and lowering
of the water column. The nearly flat intervals are a reflection of a time lag while these waves
of change travel from the downwind end to the location in point with celerity C . Consistently,
the water-level history has a saw-tooth pattern at the downwind end itself.

The agreement between the numerical and analytical solutions is such that the two curves
can hardly be distinguished. The deviations are well less than 2% of the local scales for
both the Cartesian grid and the triangular grid at each station. The box-and-whisker plots of
Figure 8.3 show the magnitude of the deviations occurring during the simulations. The red
stripes indicate the median value, the upper and lower ends of the box delimit the values
capping 25% and 75% of the data points, and the whiskers mark the entire value range. The
deviations magnitude is in the order of millimetres, for both grids at each observation point.

The largest discrepancies closely correspond to changes in the flow development, as de-
scribed above, and are quickly reduced, repeating a regular pattern specific to location and
grid type. In all cases, the deviations show an oscillating value with no noticeable trend and
remain bounded for more than 4000 time steps.
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Figure 8.2: Water levels. History of normalised values at mid (top), three-quarter (middle)
and full basin length (bottom). Cartesian grid (left), triangular grid (right). Pri-
mary y-axis: analytical solution (A, red); D-Flow FM solution (N, blue dashed).
Secondary y-axis: residuals (N-A, black). Dashed red lines: steady-state
wind set-up at location and exponential decay law.

The equivalent plots for the depth-averaged velocity are shown in Figure 8.4, for three stations
at the open boundary (x = 0 m, ûx = 0.8466 m/s) and at one-quarter (x = 1250 m, ûx =
0.6350 m/s) and one-half basin length (x = 2500 m, ûx = 0.4233 m/s). These observation
points are located in the upwind half of the basin, where the flow velocities are the largest.
Positive values indicate flow landwards, negative seawards.

The exact solution for the depth-averaged velocity has the same pattern as the water levels in
a mirror-like fashion, with a saw-tooth pattern at the open boundary (representing phases of
uniformly accelerating and retarded flow) and damped square waves in the interior domain.
The effect of bed friction is clearly seen from the exponentially decreasing values.

Here too, numerical and analytical results are in close agreement, with deviations from the
local scales contained in the ±2% range. The magnitude of the deviations observed in the
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Figure 8.3: Water levels. Deviations in absolute value between numerical and analytical
histories in Figure 8.2. Cartesian grid (left), triangular grid (right). Station 1:
mid basin. Station 2: three-quarter basin. Station 3: full basin length.

simulation is summarized in Figure 8.5 in the box-and-whisker plots. The deviations are in
the order of mm/s in most cases. Only the deviations at the open boundary station in the
triangular grid are in the order of cm/s, with a bias towards underestimation. This peculiarity
is plausibly caused by the more complex cell arrangement in that area (Figure 8.1) and has
negligible impact at the downstream locations.

Conclusion

This test concerned the temporal and spatial variations of water levels and depth-averaged ve-
locities in a partially-open rectangular basin with uniform depth, acted on by a steady, uniform
and suddenly applied wind. The resulting flow is one-dimensional.

This test case is a partial but objective verification of the D-Flow FM skills for computing
storm surges. Both partiality and objectivity reside in the analytical solution, whose existence
requires a simplification of the complete shallow-water governing equations. However, once
D-Flow FM is set to solve the same simplified equations, the comparison between the exact
and simulated flow quantities assesses whether the computations are correctly devised and
implemented.

In the governing equations, the inertial acceleration and surface gradient terms have been
considered in the general form. In line with the assumption of small water-level changes with
respect to the undisturbed water depth, the flux-convergence term in the continuity equation
and the wind-shear term in the momentum equations have been linearised based on scal-
ing arguments. Bed friction has been linearised by means of a first-order, laminar-flow type
parametrization of the shear stress. Finally, advection, horizontal viscous friction and the
Coriolis force have been neglected altogether.

The terms retained after these simplifications are, or closely represent, driving mechanisms
essential to the storm-surge generation process. D-Flow FM has been adapted to solve the
linearised equations by means of available input keywords in the driver file and of one modi-
fication to the source code of little generality. The time step has been chosen to resolve the
flow field down to the temporal resolution consequent on the user-defined grid spacing.

Moreover, the numerical treatment of the simplified equations still couples the discrete conti-
nuity and momentum equations one to another upon performing the same algorithms as the
general formulation. In spite of specifics, the flow solver still aims to work out water levels
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Figure 8.4: Depth-averaged velocity. History of normalised values at open boundary
(top), one-quarter (middle) and mid basin length (bottom). Cartesian grid
(left), triangular grid (right). Primary y-axis: exact solution (A, red); D-Flow
FM solution (N, green dashed). Secondary y-axis: deviation (N-A, black).
Dashed red lines: steady-state rest and exponential decay law.

and velocities that are nearly mass- and momentum-conserving at each grid location and
time level, as a result of the evolving inner flow field and of the (time-steady) initial conditions,
boundary conditions and external forcing. Therefore, a central part of the coding in D-Flow
FM is put to the test.

In summary, the agreement of the time-varying water levels and depth-averaged velocities at
selected stations in the basin is very high, whether the basin is represented with a mesh of
rectangular or triangular elements. The deviations are consistently small, in both absolute and
relative sense, and show a bounded, periodic behaviour in computations of the order of 4000
time steps. Such deviations do not taint the flow prediction with spurious effects of practical
significance.

The flow at the open boundary is solved accurately upon prescribing a fixed water level alone.

Deltares 87 of 246



D-Flow Flexible Mesh, Validation Document

1 2 30.000

0.005

0.010

0.015

0.020

0.025

De
vi

at
io

n 
|N
−
A
| [

m
/s

]

Depth-Averaged Velocity | Errors on Cartesian Grid

1 2 30.000

0.005

0.010

0.015

0.020

0.025

De
vi

at
io

n 
|N
−
A
| [

m
/s

]

Depth-Averaged Velocity | Errors on Triangular Grid

Figure 8.5: Depth-averaged velocity. Deviations in absolute value between numerical and
analytical histories in Figure 8.4. Cartesian grid (left), triangular grid (right).
Station 1: open boundary. Station 2: basin first quarter. Station 3: mid basin.

The standing-wave contributions that constitute the transient flow are handled correctly with-
out causing spurious reflection in the inner domain.

In view of the necessary assumptions, anticipated behaviours and chosen settings, D-Flow
FM appears to compute the expected flow field with highly accurate and stable results on a
Cartesian and a structured triangular grid. Subject to the additional consideration of non-linear
processes, whether neglected or simplified here, D-Flow FM is expected to correctly simulate
the long-wave component in storm-surge situations acted on by steady and uniform winds.
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8.2 Travelling wind pulse in a partially open basin

Purpose

This validation exercise implements the test "ST4: Moving pulse across a partially open basin"
published by Rodney Sobey in the paper Analytical Solutions for Storm Tide Codes in Coastal
Engineering (2002, 46: 213-231). The paper presents a set of analytical solutions for the fluid
flow in shallow-water situations with wind forcing.

This section is companion to the previous one that considered a sudden uniform wind. This
case rather addresses the effect of a wind pulse of limited spatial extent that travels over the
basin. A wind pulse could be seen as an approximation for short-lived intensifications of the
air stream, such as those caused by squall lines. Much of the explanation presented here
draws from the companion section. Shared features are only repeated concisely for ease of
reading.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.4.3: D-Flow FM is able to apply linearized friction in two-dimensional flow simu-
lations

� claim 2.3.5.2: D-Flow FM can be used for an accurate prediction of wind driven flow

Approach

The basin has rectangular shape and uniform depth, crudely representing anything from a
harbour to a marginal sea. The quote of the undisturbed water surface is the reference level
for vertical positions. Water levels are indicated as η, the basin depth with H . The wind pulse
blows parallel to one pair of sides, taken as the x-direction. The upwind side of the basin is
open to a larger external water basin (at x = 0), while the other boundaries are closed vertical
walls.

The wind pulse is represented by a stretch of length inside which the surface shear on the wa-
ter increases sharply from the background zero value to a uniform value τs. The longitudinal
extent of the pulse region is l, unchanging in time. The wind pulse has forward speed V and
the head of pulse enters the basin at t = 0. Therefore, the wind forcing term acting on each
water column is

F(x, t) = F0

[
H
(
t− x

V

)
−H

(
t− l + x

V

)]
(8.9)

where F0 = τs/ρw is the surface shear inside the pulse, normalized with the water density
ρw, while the Heaviside functions of time

H(τ) =

{
1 τ ≥ 0

0 τ < 0

describe a step change from 0 to 1 at time τ .

The simplifications to the general shallow-water equations to achieve an analytical solution
consist of neglecting advective accelerations, the Coriolis force and the horizontal effects of
viscosity. Furthermore, it must be assumed that the surface elevations are small with respect
to the undisturbed water depth (η/H � 1), that bed friction is a linear function of the depth-
averaged velocity and that vertical walls exert no friction.
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As a result, indicating the depth-averaged velocity as u, the following equations for the mass
and x-momentum conservation are solved for:

∂η

∂t
= −H∂u

∂x
(8.10)

∂u

∂t
= −g ∂η

∂x
− λu+

F
H

(8.11)

where λ is the linear friction coefficient and F is the wind forcing term of Equation (8.9).

The exact solution is elaborated for initial conditions representing a body at rest:

η(x, 0) = u(x, 0) =
∂η

∂t

∣∣∣∣
(x,0)

=
∂u

∂t

∣∣∣∣
(x,0)

= 0 ;

for a constant water level at the upwind open boundary (x = 0):

η(0, t) =
∂u

∂x

∣∣∣∣
(0,t)

= 0 ;

and for an impervious wall at the downwind boundary (x = L):

u(L, t) = 0 ,
∂η

∂x

∣∣∣∣
(L,t)

=
F
C2

[
H
(
t− L

V

)
−H

(
t− l + L

V

)]
,

where C2 = gH is the squared long-wave celerity.

The analytical solutions for η and u are given by an infinite summation of modes. These read:

η(x, t) =
∞∑
n=1

Xn(x)

∫ t

0

e−
λ
2

(t−τ) sin[ωn(t− τ)]

ωn
[An(τ) +Bn(τ)] dτ (8.12)

u(x, t) =
1

H

∞∑
n=1

Yn(x)

∫ t

0

e−
λ
2

(t−τ) sin[ωn(t− τ)]Cn(τ) dτ (8.13)

The space-dependent functions in Equation (8.12) and Equation (8.13) are defined from the
basin length L through:

βn =

(
n− 1

2

)
π

L
(8.14)

Xn =

(
2

L

) 1
2

sin βnx

Yn =

(
2

L

) 1
2

cos βnx

The time-dependent parts in Equation (8.12) and Equation (8.13) are given by convolution
integrals representing the memory effect of the wind-pulse passage. Their determination
requires knowing firstly the angular velocities ωn, which can be computed from the long-wave
dispersion relationship in a damped system:

ωn =

√
β2
nC

2 −
(
λ

2

)2

, (8.15)
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and, secondly, evaluating the functions:

An(t) = F0

(
2

L

) 1
2

{[H1(t)−H2(t)] sin(βnV t)− [H3(t)−H4(t)] sin[βn(V t− l)]} (8.16)

Bn(t) = F0

(
2

L

) 1
2

{−(−1)n [H2(t)−H4(t)]} (8.17)

Cn(t) = F0V

(
2

L

) 1
2 {[
H1(t)−H2(t)

]
cos(βnV t)−

[
H3(t)−H4(t)

]
cos[βn(V t− l)]

}
(8.18)

The following shorthand notations have been used for the Heaviside functions:

H1(t) = H(t) ,H2(t) = H(t− L

V
) ,H3(t) = H(t− l

V
) ,H4(t) = H(t− l + L

V
)

which signal important moments of change such as the present time, the time to cover the
basin length at speed V , the times when the pulse has entered the basin in full and has left
the basin behind, respectively.

Like in the case of the sudden uniform wind, the dispersion relationship ((8.15)) indicates
how inertial oscillations and friction combine and produce the basin’s response (e.g. how
effectively friction hampers the changes in free-surface elevation). In addition, the functions
((8.16)), ((8.17)), ((8.18)) describe a complex time development associated with the lasting
effect of the wind-pulse transit.

Lastly, the solution η(x, t) scales with F0L/C
2 = η̂. The solution u(x, t) scales with

F0LV/C
2H = û, which is V/C times the same scale in the sudden uniform wind. Unlike

the sudden uniform wind, these scales only anticipate the order of magnitude of the solution,
since the steady-state condition is merely the return to a quiescent basin here. They will be
used later on to normalise the results.

In terms of hydrodynamic processes on the basin as a whole, as the wind pulse enters the
basin, the water columns underneath are sheared and raised while the flow begins to move
leeward. The flow response, then, depends on the comparison between the pulse’s forward
speed and the basin’s long-wave celerity (in essence, its depth).

In the case worked out here, the wind pulse travels with a velocity that is very close to the
long-wave celerity. Hence, the free-surface disturbance is a bulge of water that travels along
the basin without spreading too far away from the pulse region overhead, bearing some re-
semblance with a solitary progressive wave. When such raised waters reach the basin’s end
while the wind pulse leaves the basin behind, the sudden piling-up against the wall occurs
and the deformed free surface is reflected.

The surface slope resulting from the piling-up at the wall promotes the emptying of the basin,
now in the absence of wind forcing. The reflected bulge of water then travels back towards
the sea entrance where it is reflected back again into the inner basin, in compliance with the
standing wave behaviour consequent on the boundary condition.

Eventually, this repeating bouncing behaviour will die off on account of friction and of the mass
exchange with the sea, which gradually bring the basin back to rest.

Therefore, in spite of the linearity requirements on the governing equations, the analytical
solutions ((8.12)) and ((8.13)) describe a non-trivial behaviour of the water levels and depth-
averaged velocities. The significant spatial and temporal variability of flow direction and inten-
sity makes this test case very well-suited for assessing numerical codes.
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Model description

In the test model set-up, Sobey’s indications have been followed unless otherwise stated. No
sensitivity analysis to parameters range has been carried out. The domain has a length of L
= 5000 m and a depth ofH= 2 m. The width, immaterial for the one-dimensional flow pattern,
has been set to W = 250 m.

The atmospheric forcing is equal toF0 = 1.5×10-3 m2/s2. This can be obtained realistically
from the classic wind-drag parametrization with wind velocity of 25 m/s (Bft 10), a drag coeffi-
cient of Cd = 0.002 and air density ρa = 1.2 kg/m3. As a result, C = 4.429 m/s, η̂ = 0.3832 m
and û = 0.8487 m/s.

The wind pulse travels with a forward speed V = 5 m/s, which is higher than Sobey’s original
setting of 1 m/s. This speed results in a pulse advance of one grid cell per time step according
to the specifications presented later on. It has been chosen to rule out from the outset that
the interpolation of the discrete wind field representing the pulse interferes in the numerical
solution.

The linear friction coefficient is λ = 10-4 s-1. Using the above velocity scale û, λ corresponds
to a Manning coefficient m = 0.0055 s/m1/3, representing an unusually smooth bed. On the
other hand, for the purpose of validation, this choice of λ appears to lead to all terms of the
governing equations being equally relevant. Therefore, the flow solver’s formulations for all
terms in the governing equations (8.10) and (8.11) are assessed comprehensively.

The initial conditions are a horizontal water level at η = 0 and quiescent water. The condition
η = 0 is implemented at the upwind open boundary.

When comparing the analytical and numerical solutions, care is needed in handling the staggered-
grid arrangement implemented by D-Flow FM. In the solver’s representation, open boundaries
are drawn onto the cells faces, that is velocity grid points. The water-level grid points where
the boundary conditions are applied, however, are actually located at ‘ghost’ stations half cell-
size off the open boundary. Therefore, the analytical solution has effectively been worked out
for a basin of effective length L = 5000 m + ∆x/2, where 5000 m is the distance between
the boundaries as a user would normally define it in D-Flow FM, while ∆x is the cell size.

Figure 8.6: Test case ‘Travelling wind pulse in a partially open basin’. Computational
grids: Cartesian-type (left) and structured with triangular cells (right). Part
view near the upwind open boundary: the domain has a closed end at x =
5000 m.

Both a Cartesian grid and a structured triangular grid are used to discretize the domain. The
upwind parts of these grids are shown in Figure 8.6.
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The cells in the Cartesian grid are squares with side of ∆x = 25 m (user-defined).

As detailed in the previous section, the analytical solutions ((8.12)) and ((8.13)) contain infinite
summations of inertial waves, while the grid spacing limits the possibility of reproducing the
entire spectrum of oscillations. Therefore, in compliance with the Nyquist criterion, the number
of modes in the exact solution has been limited to n = nx + 1, where nx is the number of
cells in the direction of wave propagation. Likewise, a time step ∆t = 5 s suffices to resolve
all temporal oscillations that result from the dispersion relationship ((8.15)). As a result of this
handling, the unity Courant number criterion is fulfilled too.

The cells in the triangular grid are equilateral with side of ∆x = 25 m. The numerical results
are compared with the same evaluation of the analytical solution as the Cartesian grid.

Concerning the time-dependent part in Equations ((8.12)) and ((8.13)), inconveniently, the
convolution integrals have no straightforward solution in closed form. Therefore, they have
been evaluated numerically with the so-called trapezoidal rule∫ t

0

f(τ)dτ ≈ ∆t

t/∆t∑
n=0

f ((n+ 1)∆t) + f(n∆t)

2

where f is a generic integrand. This estimate is second-order accurate in time and compatible
with the accuracy of the numerical solution.

In order to linearise the governing equations, the following settings have been specified in the
mdu file:

� AdvecType = 0
� Lincontin = 1
� Umodlin = 1
� UnifFrictCoefLin = 〈λH〉

The implicitness factor θ and the maximum Courant number have been modified with respect
to default settings into

� Teta0 = 0.5
� CFLMax = 1

Additionally, one ad hoc modification was applied to the source code to linearise the wind
forcing term by dividing the shear stress by H rather than by η +H . The other settings take
default values.

Results

The simulated histories of water level and depth-averaged velocity have been compared with
the analytical counterparts at selected observation points on the basin’s middle longitudinal
axis. In the following plots, the water levels and the depth-averaged velocities have been
normalised with η̂ and û, respectively.

Each plot displays the exact values (in red), the computed value (in blue or green, dashed).
The residuals of the computed values with respect of the exact ones (in black) are also plotted
with a secondary axis. The results for the Cartesian and triangular grid are given in separate
columns. For ease of interpretation with regard to the staggered-grid arrangement, from here
onwards x denotes the co-ordinate value that a D-Flow FM user would normally deal with, as
in Figure 8.6.
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Figure 8.7: Water levels. History of normalised values at mid (top), three-quarter (middle)
and full basin length (bottom). Cartesian grid (left), triangular grid (right). Pri-
mary y-axis: analytical solution (A, red); D-Flow FM solution (N, blue dashed).
Secondary y-axis: residual (N-A, black). Dashed red lines: steady-state wind
set-up at location and exponential decay law.

Like for the case of uniform and sudden wind forcing, the water levels are shown in Figure 8.7
for three stations closely at mid length (x = 2512.5 m), three-quarter length (x = 3762.5 m)
and at the closed end of the basin (x = 5000 m). These observation points are located in the
downwind half of the basin, where the largest water levels are expected owing to the water
piling up against the wall.

As for the hydrodynamic processes as seen at fixed stations, the still-water level holds until
the arrival of the wind-sheared water. The first sudden increase and fall of the water level
corresponds to the passage of the water directly raised by the pulse overhead. Then, the
subsequent positive surge is the trace of the water bulge while it returns after having bounced
against the downwind wall (where, obviously, the raising and bouncing occur in a single surge
peak).
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Figure 8.8: Water levels. Deviations in absolute value between numerical and analytical
histories in Figure 8.7. Cartesian grid (left), triangular grid (right). Station 1:
mid basin. Station 2: basin third quarter. Station 3: full basin length.

The ensuing negative surge is the result of the free-surface depression travelling landwards
after the reflection, like a standing wave, at the sea entrance. A second pass of a negative
surge then occurs on the way back of the same depression that, after having been reflected
at the wall, is also enhanced due to concomitant flow divergence. This sequence of events
then repeats itself and decays at a slow pace.

The numerical solution approaches the analytical solution very closely. The patterns of the
residuals are rugged and indicate that the numerical solution deviates the most at times of
sharp changes. However, such spikes are rapidly reduced as the computation proceeds, and
do not appear to build up while the quasi-periodic pattern repeats itself. Recalling that the
scale η̂ only relates to the situations at the downwind wall, these plots provide qualitative
information elsewhere. The maximum relative error at the downwind wall is±9.2%.

Turning to the box-and-wisker plots of Figure 8.8, the entire variability of the differences of the
numerical and analytical solutions is summarised in absolute values. Such differences are at
most 1.75 cm, 1.78 cm and 3.52 cm in the stations at middle, three-quarter and full length,
against expected water-elevation ranges of -19 cm through 22 cm in both inner stations and
-35 through 40 cm at the wall.

The results obtained with the structured triangular grid are similar to those from the Cartesian
grid.

The equivalent plots for the depth-averaged velocity are shown in Figure 8.9, for three stations
at the open boundary (x = 0 m) and at one-quarter (x = 1250 m) and one-half basin length (x
= 2500 m). Positive values indicate flow landwards, negative seawards.

Here too, numerical and analytical results are in close qualitative agreement, with similar
results for the Cartesian and structured triangular grid alike. The magnitude of the residuals
observed in the simulation is summarized in Figure 8.10 as box-and-whisker plots, where the
peak deviations for the Cartesian grid are in the order of 7 cm/s at the open boundary and
4 cm/s at the other stations. The expected ranges of the depth-averaged velocity at these
stations are -84 cm/s through 75 cm/s at the open boundary, -46 cm/s through 41 cm/s at the
other stations.

The results obtained with the structured triangular grid show slightly lower residuals.
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/û

Station x = 0 m | û = 0.958 m/s
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/û

Station x = 2500 m | û = 0.958 m/s
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Figure 8.9: Depth-averaged velocity. History of normalised values at open boundary
(top), one-quarter (middle) and one-half basin length (bottom). Cartesian grid
(left), triangular grid (right). Primary y-axis: exact solution (A, red); D-Flow
FM solution (N, green dashed). Secondary y-axis: deviation (N-A, black).

These observations support the conclusion that the largest relative deviations between nu-
merical and analytical flow fields are within the ±10% range. Interesting enough, the results
obtained with a forward wind speed of 1 m/s (Sobey’s original value, not discussed here)
showed smaller deviations, arguably because of the more gradual development of the flow re-
sponse when the pulse speed is lower than the long-wave celerity. The considerations drawn
here can thus be regarded to be on the side of caution.
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Figure 8.10: Depth-averaged velocity. Deviations in absolute value between numerical
and analytical histories in Figure 8.9. Cartesian grid (left), triangular grid
(right). Station 1: open boundary. Station 2: basin first quarter. Station 3:
middle basin.

Conclusions

This test concerned the temporal and spatial variations of water levels and depth-averaged
velocities in a partially-open rectangular basin with uniform depth, acted on by a wind pulse
of limited extent travelling along its length. The resulting flow is one-dimensional and, with the
parameters selected here, shows considerable spatial and temporal variability.

D-Flow FM has been adapted to solve the linearised equations of the analytical solution by
means of available input keywords in the driver file and of one modification to the source
code of little generality. The time step has been chosen to resolve the flow field down to the
temporal resolution consequent on the user-defined grid spacing.

In spite of this simplification, a central part of the coding in D-Flow FM is put to the test.
Not only are the terms retained in the equations driving mechanisms for the storm-surge
generation process, but also working out the numerical solution activates the same algorithms
as for the general governing equations. Given the objectivity of the analytical solution, it can
then be checked how closely D-Flow FM solves for water levels and velocities that are mass-
and momentum-conserving at each grid location and time level, as a result of the evolving
inner flow field and of the initial conditions, boundary conditions and external forcing.

In this test, the agreement of the time-varying water levels and depth-averaged velocities at
selected stations in the basin appeared to be high, whether the basin is represented with a
mesh of rectangular or triangular elements. The residuals are consistently within ±10% of
the expected flow scales and show a bounded behaviour in computations in the order of 2000
time steps. Such residuals peak at times of sharp changes of the flow condition and do not
taint the flow prediction with spurious effects of practical significance.

Therefore, in view of the necessary assumptions, anticipated behaviours and chosen settings,
D-Flow FM has computed the expected flow field with fairly accurate and stable results on a
Cartesian and a structured triangular grid.

Subject to the additional consideration of non-linear processes neglected or simplified here,
these results lend a high degree of confidence that D-Flow FM can correctly simulate the
long-wave component of storm surges acted on by spatially and rapidly variable wind fields.
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8.3 Wind over a schematized lake

Purpose

The present test case investigates the flow that is induced by a uniform wind field. This case
has been taken from the Delft3D validation document. Solutions obtained on several grids
(Cartesian/triangular, coarse/fine) can be compared with the solution that is obtained using
Delft3D.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.5.2: D-Flow FM can be used for an accurate prediction of wind driven flow

Approach

This validation study represents a schematised lake. It is a closed basin in which a (constant)
northwestern wind forcing is applied, under an angle of 315◦ with the north-direction and with
a velocity of 5 m/s. Thus, the wind direction is not aligned along the grid lines.

A space varying depth is applied. The schematised lake is the deepest in the center of the
basin, see Figure 8.11. Due to the constant wind forcing, a steady state solution is reached.
The prescription of the bathymetry is available on a resolution of 1 km× 1 km.

Figure 8.11: Geometry and bathymetry of the schematized lake.

For comparison, the outcomes of a Delft3D computation are available. This Delft3D compu-
tation has been run on a grid with cells of varying size: the left part of the schematised lake
has a constant grid size of 2000 m and the right part of 1000 m, yielding a grid refinement of
a factor of two. Results from Delft3D are only available for the first 2.5 days (60 hours) of the
simulated time.
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Model description

The settings for this wind test case are:

� domain sizes are L = B = 198 km,
� the computational time step varies in time, using a CFL timestep limit equal to 0.7,
� a Manning type roughness with a uniform friction value equal to 2.6 s m−1/3,
� a uniform horizontal eddy viscosity equal to 1.0 m2/s,
� a linear dependency of the wind drag coefficient Cd on the wind speed, varying from
Cd = 6.3 · 10−4 for zero wind speed to Cd = 7.23 · 10−3 for a wind speed equal to 100
m/s,

� the simulated time is 12 days.

Five grids have been established in D-Flow FM for this particular test case: three Cartesian
grids with strictly square cells and two triangular grids:

� a coarse Cartesian grid with 22× 22 square cells of size 9× 9 km2,
� a medium Cartesian grid with 66× 66 square cells of size 3× 3 km2,
� a fine Cartesian grid with 198× 198 square cells of size 1× 1 km2,
� a coarse triangular grid with cells of typical edge length of 9 km,
� a medium triangular grid with cells of typical edge length of 3 km.

Recall that the bathymetry resolution is 1 km. The two coarse grids are shown in Figure 8.12.

Figure 8.12: Cartesian and triangular grids for the schematized lake case. For both grids,
a refined (by a factor of 3 in each direction) equivalent is available in addition.
For the Cartesian, a refined grid (by a factor of 9 in each direction) is also
available.

Results

As soon as the computation has started, oscillations come into existence that damp out to-
wards a steady state. This steady state is reached after about 12 days. The velocity field in
this steady state is shown in Figure 8.13. The flow in the shallow parts of the domain is in
the direction of the wind, whereas in the deepest part of the domain the flow is in opposite
direction. The results shown in Figure 8.13 are obtained on the coarse triangular grid.

Time series are shown in Figure 8.14 for all the five grids. The development towards a steady
state is clearly seen. The associated time scale is independent of the grid size; the eventual
equilibrium water level, however, is.

The equilibrium values for the maximum and minimum water levels are tabulated in Table 8.1.
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Figure 8.13: Velocity vectors for the coarse triangular grid (steady state).

Figure 8.14: Minimum water levels (in red) and maximum water levels (in black) for the
two grids: evolution towards steady state.

This table reflects the steepening of the water level gradient with decreasing grid size which is
probably due to the more accurate representation of the bathymetry on finer grids. The shape
of the cells appears to hardly influence the final result.

From the equivalent Delft3D computations, the maximum and minimum water levels are only
available for the first 60 hours, with intervals of 6 hours. These results are shown in Figure 8.15
for these first 60 hours. The associated D-Flow FM results are only highlighted for the fine
mesh with square cells. No particular conclusions are drawn from this concise comparison.
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Table 8.1: Maximum and minimum water levels in meters for several grids, as well as the
associated slope.

Grid type Refinement hmax [m] hmin [m] slope [-]

square cells coarse 0.01394841 -0.01338925 1.02278545·10−7

medium 0.01888039 -0.01769081 1.32614055·10−7

fine 0.02323332 -0.02120412 1.59502644·10−7

triangular cells coarse 0.01398769 -0.01339067 1.01621116·10−7

medium 0.01949882 -0.01776750 1.36178155·10−7

Figure 8.15: Comparison of the D-Flow FM results (for the fine Cartesian grid) with the
Delft3D results, for the first 30 hours of the simulated time.

Conclusion

A square lake with a non-uniform topography has been subjected to an external force induced
by a uniform wind field. The solutions reached a steady state, showing an increasing water
level slope with increasing cell density of the grid. This is probably due to the more accurate
representation of the bathymetry. Differences in cell shape (square/triangle) appeared to yield
minor mutual differences.

Version

This test has been carried out with version dflow-fm-x64-1.1.116.36629.
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9.1 Critical weir flow

Purpose

Weirs are applied to regulate river flow. In particular, in Dutch rivers many so-called groynes
are located in the summer bed of rivers. Furthermore, in the winter bed of rivers many small
dikes and other small obstacles exist. In D-Flow FM, the effect of these weirs (either groynes
or dikes) on the water levels can be modelled. Weirs are fixed, non-movable obstacles causing
energy losses due to constriction of flow.
In D-Flow FM there are two approaches to represent these weirs: subgrid or supergrid. In
case of subgrid modelling these weirs are not represented in the bathymetry. Instead, in the
input file a so-called Fixedweir should be defined at the location of an obstacle. Then, locally
a special numerical scheme for horizontal advection is applied in order to compute the energy
loss. Alternatively, in case of supergrid modelling a weir is modelled by elevating the local bed
level at several grid cells. The standard advection scheme is applied, without any adaptation
for weirs. This supergrid approach requires a relatively high grid resolution near obstacles
and thus leads to more computation time compared to the subgrid approach.
The flow condition at the crest of a weir may be critical or subcritical. The present test case
investigates both subgrid and supergrid modelling for computing critical flow over a weir in
case of quasi-1D flow.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.6.1: D-Flow FM can be used to investigate the hydrodynamic impact of hydraulic
structures, such as gates, weirs and barrier

� claim 2.3.6.2: D-Flow FM can accurately simulate subcritical and supercritical flows and
the transition region when the flow changes from subcritical to supercritical or vice versa

Approach

For critical flow the discharge over a weir is completely determined by the energy head up-
stream. Then, the discharge is limited by:

Qcritical = ccriticalW
2

3
E1

√
2

3
gE1 (9.1)

with ccritical an empirical coefficient for representing the geometry that is specified by the user
in the input file, W the width of the channel and E1 the energy height upstream. For more
details we refer to the D-Flow FM technical manual. In order to examine the accuracy of both
approaches for weirs in D-Flow FM, five test models are constructed. Each of the five models
is based on a simple Cartesian grid consisting of 8 × 1 grid cells. Variation is achieved by
choosing a certain refinement strategy for both approaches (either subgrid or supergrid).
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Table 9.1: Computed discharges for the five different model grids.

supergrid, 30 m grid 137 m3/s

supergrid, locally 10 m near weir 47.7 m3/s

supergrid, 10 m grid 58.0 m3/s

subgrid, 30 m grid 54.4 m3/s

subgrid, 10 m grid 54.4 m3/s

Model description

This validation case is referred to as ’Beyer004’ (Beyer, 2001). For both approaches we study
the effect of local grid refinement. The following grids are generated (see Figure 9.10):

� grid 1: the basis grid consisting of 8×1 grid cells of 30 m×30 m each, for which the weir
is represented in the bed level;

� grid 2: as grid 1, but with a local grid refinement of the cell directly downstream of the
weir; the crest of the weir is represented over the full three cells of 10 m each, which is
the result of the refinement;

� grid 3: the basis grid consisting of 24 × 1 grid cells of 10 m ×30 m each, for which the
weir is represented in the bed level;

� grid 4: as grid 1, but with the subgrid approach instead of supergrid approach;
� grid 5: as grid 3, but with the subgrid approach instead of supergrid approach.

Upstream of the model a water level boundary is specified at a constant level of 13 m. Down-
stream also a water level boundary condition is specified. Initially the level is 13 m and goes to
11.5 m at the end of the simulation.The initial water level is 13 m. The bathymetry is constant
at a level of 11 m, yielding a constant initial water depth of 2 m. The simulation period is 2
hrs. The weir is located in the centre of the model domain and has a crest height of 12 m. So,
the energy height upstream E1 of the crest is about 1 m. In this testcase the bottom friction
is switched off. For this testcase the theoretical discharge for the critical flow Qcritical over the
weir yields 54.4 m3/s.

Results

In Table 9.1 the computed discharges are shown for the five different model grids, in which
both the subgrid and supergrid approaches have been validated.

It is evident that on the coarse grid (30 m) the supergrid approach yields inaccurate results.
For the supergrid approach (locally) a higher resolution is required. For the subgrid approach
the numerical method is designed such that for critical flow the theoretical critical discharge
is computed exactly as given in Equation (9.1). The accuracy is independent of the grid
resolution. This explains why in this validation case the subgrid model results are identical on
10 m and 30 m grids.

Conclusions

This validation case shows that D-Flow FM is able to compute the discharge flow accurately
over a weir for critical flow.. The subgrid approach (fixed-weir) for computing discharges for
critical flow gives exact results and is to be preferred. In case of supergrid modelling the error
is dependent on the grid size. The order is 10 % provided that a locally refined grid resolution
is applied around the weir crest.
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Figure 9.1: Computational grid for the weir case. The weir, with crest level 12 m (w.r.t.
reference), is represented by the red line. The observation points are repre-
sented by the black dots. The coloring of the grid cell corner points indicate
the bed level.

Version

This test has been carried out with version dflow-fm-x64-1.1.142.40690.
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9.2 Transition between subcritical and critical weir flow

Purpose

The flow condition at the crest of a weir is either critical or subcritical. The present test case
investigates the transition of subcritical to critical flow and vice versa. This is only validated
for the subgrid approach in D-Flow FM. For subcritical flow the energy loss over a weir is
completely determined by discretization of the advective terms in the momentum equations.
D-Flow FM has available a so-called contraction coefficient in order to calibrate the energy
loss due to weirs.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.6.1: D-Flow FM can be used to investigate the hydrodynamic impact of hydraulic
structures, such as gates, weirs and barrier

� claim 2.3.6.2: D-Flow FM can accurately simulate subcritical and supercritical flows and
the transition region when the flow changes from subcritical to supercritical or vice versa

Approach

In D-Flow FM the energy loss over a weir is completely determined by discretization of the ad-
vective terms in the momentum equations. The numerical scheme introduced by Kramer and
Stelling (2008) is locally applied at the crest of the weir. Upstream of a weir the discretization
of the advective terms is such that ’energy conservation’ is guaranteed, while at the down-
stream part ’conservation of momentum’ is used. In this way, the resulting energy loss over a
weir depends on the local mesh size and the local bathymetry.
D- Flow FM offers the possibility to fine tune this energy loss via adapting the contraction
coefficient. In case of critical flow the contraction coefficient is 1.0 and the discharge coeffi-
cient coincides with ccritical in Eq. (9.1). The critical flow scales linearly with the value of this
contraction coefficient. For subcritical flow the contraction coefficient influences the discharge
over a weir as well. Thus, a contraction coefficient influences the discharge at critical flow and
the energy loss at subcritical flow.
The default value for this contraction coefficient reads 1.0. When decreasing the contraction
coefficient (e.g. to 0.9), then the wetted cross section of a cell face at which a weir is located,
is reduced by 10%. As a result, the velocity at the weir crest increases and thus the energy
loss. Similarly, by increasing the contraction coeffcient the energy loss reduces. In summary,
the contraction coefficient can be seen as a calibration parameter for the energy loss.

In this validation case the model results are compared with the model results of software sys-
tem WAQUA, which adds in the momentum equation an empirical energy loss, derived from
measured datasets. Numerical modelling of weirs in WAQUA has been extensively validated
with measurements and is applied for many decades to compute water levels in the main
Dutch rivers.
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Model description

The following models are generated (see Figure 9.10):

� model 1: with a grid consisting of 8 × 1 grid cells of 30 m ×30 m each in combination
with the subgrid approach for the weir. Noted that this case is identical to the ’critical weir
flow’ test case with grid 4. The contraction coeffcient equals 1.0. This test case is referred
to as ’Beyer004’ (Beyer, 2001).

� model 2: as model 1, but with a contraction coefficient of 0.9;
� model 3: as model 1, but with a contraction coefficient of 1.1;
� model 4: as model 1, but with a different bathymetry. In models 1 to 3 a flat bathymetry of

+11 m is applied. In model 4 the bathymetry after the weir is +1 m; thus, 10 m lower than
in the other three models. This test case is referred to as ’Beyer007’ (Beyer, 2001).

To simulate the transition between subcritical and critical weir flow, the discharge at the inflow
boundary is increased from 0 to 200 m3/s in 24 hours.The next 24 hours the discharge is
decreased from 200 m3/s to 0 m3/s. The downstream boundary is constant at a level of
12.5 m. The initial water elevation is 12.5 m. The depth is constant at +11 m, yielding an
initial water depth of 1.5 m. The weir is located in the centre of the model domain and has a
crest level of 12 m. So, the initial energy height upstream E1 is 0.5 m. The global mesh size
is 30 m. The simulation period is 2 days. This tescase is run without bottom friction. In this
testcase the change from critical to subcritical flow and vice versa is examed. The condition
changes around 55 m3/s.

Figure 9.2: Computational grid for the weir case. The weir, with crest level 12 m (w.r.t.
reference), is represented by the red line. The observation points are repre-
sented by the black dots. The coloring of the grid cell corner points indicate
the bed level.

Figure 9.3: Transition between subcritical and critical weir flow
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Figure 9.4: Transition between subcritical and critical weir flow (2)

Results

Figure 9.3 contains the water levels both upstream and downstream of the weir. The difference
in the water level over the weir is an indication for the computed energy loss. It shows that
the energy losses for D-Flow FM with the default contraction coefficient of 1.0 (see blue lines)
and WAQUA (seem black lines) are in reasonable agreement with each other.
By decreasing the contraction coefficient to 0.9, the energy loss increases (see red line).
Similarly, when increasing the contraction coeffcient to 1.1, the energy loss decreases.
For model 4 the bathymetry downstream of the weir is decreased by 10 m. Also for this model,
the D-Flow FM and WAQUA model results are in acceptable agreement with each other; see
Figure 9.4, with in red and blue the water levels for models 4 and 1, respectively.

Conclusions

This validation case shows that D-Flow FM is able to smoothly simulate the transition from
subcritical to critical flow and vice versa. The agreement with the validated WAQUA software is
reasonable. Furthermore, by fine tuning the contraction coefficient the user has the possibility
to further improve the model results.

Version

This test has been carried out with version dflow-fm-x64-1.1.142.40690.
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9.3 Empirical Tabellenboek and Villemonte approach for fixed weirs

Purpose

The present validation case investigates the empirical Tabellenboek and Villemonte approach
for the computation of the weir energy losses. Next to a numerical approach for weirs, which
is applied in the other weir validation cases in this document, D-Flow FM also allows for the
use of the empirical Tabellenboek and Villemonte approach.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.6.1: D-Flow FM can be used to investigate the hydrodynamic impact of hydraulic
structures, such as gates, weirs and barrier

� claim 2.3.6.2: D-Flow FM can accurately simulate subcritical and supercritical flows and
the transition region when the flow changes from subcritical to supercritical or vice versa

Approach

Two different subgrid approaches are available in D-Flow FM to compute the energy losses by
fixed weirs. First of all, a numerical approach is available. Then, a special discretization of the
advective terms before and after a fixed weir is applied. This option corresponds with keyword
fixedweirtype=6. Next to the numerical approach, there is an empirical approach to
compute the energy loss by weirs, for which two options are availabe in D-Flow FM, namely the
so-called ’Tabellenboek’ and ’Villemonte’. The Tabellenboek option corresponds with keyword
fixedweirtype=8 and the Villemonte approach with keyword fixedweirtype=9. The
two corresponding empirical formulas have been taken from the Simona software, see the
website http://www.helpdeskwater.nl/onderwerpen/applicaties-model/
applicaties-per/watermanagement/watermanagement/simona. These two
empirical formulas have been derived from flume measurements. In the empirical approach
an additional term is added to the momentum equation. We remark that the discretization of
the advective terms is not changed. Modelling of weirs via the Tabellenboek with the Simona
software suite has been extensively validated with measurements and is applied for many
decades to compute water levels in the main Dutch rivers.

In this validation case the D-Flow FM model results for the numerical approach and the two
empirical approaches (Tabellenboek and Villemonte) are compared with each other. The
same model as in validation case 9.2 is applied, in which the transition of subcritical to critical
flow and vice versa is examined.

Model description

The following models are generated (see Figure 9.6):

� model 1: with a grid consisting of 8 × 1 grid cells of 30 m ×30 m each in combination
with the subgrid approach for a weir. Noted that this case is identical to the ’critical weir
flow’ test case of validation case 9.2. The numerical approach (fixedweirtype=6) is
applied. This validation case is referred to as ’Beyer004’ (Beyer, 2001).

� model 2: as model 1, but with the Tabellenboek approach (fixedweirtype=8)
� model 3: as model 1, but with the Villemonte approach (fixedweirtype=9)

To simulate the transition between subcritical and critical weir flow, the discharge at the inflow
boundary is increased from 0 to 200 m3/s in 24 hours. The next 24 hours the discharge is
decreased from 200 m3/s to 0 m3/s. The downstream boundary is constant at a level of
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12.5 m. The initial water elevation is 12.5 m. The depth is constant at +11 m, yielding an initial
water depth of 1.5 m. The weir is located in the centre of the model domain and has a crest
level of 12 m. So, the initial energy height upstream E1 is 0.5 m. The simulation period is two
days. This validation case is run without bottom friction. In this validation case the change
from critical to subcritical flow and vice versa is examined. The flow condition changes around
a discharge of 55 m3/s.
For Villemonte the default settings are applied. This e.g. means that the downward and
upward slope are at the scale of 1-to-4.

Figure 9.5: Computational grid for the weir case. The weir, with crest level 12 m, is rep-
resented by the red line. The observation points are represented by the black
dots. The coloring of the grid cell corner points indicate the bed level.

Figure 9.6: Water levels near inflow and outflow boundary for the numerical approach (in
blue), the Tabellenboek (in green) and Villemonte (in red)

Results

Figure 9.6 contains the water levels near the inflow and outflow boundary for the numeri-
cal approach (in blue), the Tabellenboek (in green) and Villemonte (in red). Near the infow
boundary all three simulations give almost identical results. Therefore, only the results for the
numerical approach are visible. Near the outflow boundary the Tabellenboek (in green) and
Villemonte (in red) yield almost identical results. The numerical approach (in blue) leads to
slightly different water levels. The difference in the water level over the weir is an indication
for the computed energy loss. Figure 9.6 shows that the computed energy losses for all three
approaches in D-Flow FM are comparable.

Conclusions

This validation case shows that the three approaches in D-Flow FM for the computation of
energy losses due to fixed weirs yield similar results. The two empirical approaches yield
almost identical results. The numerical approach gives almost similar results. In validation
case 9.2 it was already shown that the numerical approach yields model results that are in
reasonable agreement with the validated Simona software. Now, it is also shown that this is
the case for the Tabellenboek and the Villemonte approaches.
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In practice, these two empirical approaches are to be preferred, because a disadvantage of
the numerical approach is that it does not allow that fixed weirs are located in neighbouring
grid cells. In real-life models this is often the case.

Version

This test has been carried out with version dflow-fm-x64-1.1.169.44046
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9.4 Two-dimensional critical flow over an oblique weir

Purpose

In earlier test cases, the focus has been on testing weirs in D-Flow FM for quasi one-dimensional
flows. In the present test case, two-dimensional critical flow over an oblique weir is consid-
ered. For modelling of fixed weirs different approaches are available. In these tescases the
numerical approach (fixedweirscheme=6) is applied.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.6.1: D-Flow FM can be used to investigate the hydrodynamic impact of hydraulic
structures, such as gates, weirs and barrier

� claim 2.3.6.2: D-Flow FM can accurately simulate subcritical and supercritical flows and
the transition region when the flow changes from subcritical to supercritical or vice versa

Approach

For critical flow the discharge over a weir is completely determined by the energy head up-
stream. Two model domains with a mesh size of 30 m and 10 m are considered, respectively.
The oblique weir in these models makes a corner of either 45 degrees or 30 degrees with the
grid.

Model description

The following grids are generated (see Figure 9.10, Figure 9.8 and Figure 9.9):

� grid 1: grid cells of 30 m with an oblique weir; see left panel in Figure 1,
� grid 2: grid cells of 10 m with an oblique weir; see right panel in Figure 1,
� grid 3: uniform skew channel flow with grid cells of 30 m under 45 degrees; see left panel

in Figure 2,
� grid 4: as grid 3, but with straight (1D) flow near the weir; see middle panel in Figure 2,
� grid 5: as grid 3, but with a supergrid approach for the weir; see right panel in Figure 2,
� grid 6: uniform skew channel flow with grid cells of 30 m under 30 degrees; see top panel

in Figure 3,
� grid 7: as grid 6, but with a supergrid approach for the weir; see middle panel in Figure 3,
� grid 8: as grid 6, but with a mesh size of 10 m; see bottom panel in Figure 3.

For weirs that make a corner of 45 degrees with the grid (see grids 1 to 5), the critical flow
should be a factor of

√
2 larger compared to the 1D weir validation case for critical flow. This

is due to the fact that the length of the weir increases with this factor. This yields
√

2× 54.92
m3/s =71.6 m3/s. For weirs that make a corner of 30 degrees with the grid the discharge
should be

√
5 × 54.92 m3/s =97.61 m3/s.
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Figure 9.7: weir grid in the form of a sandglas.

Figure 9.8: uniform weir flow on a skew grid under 45 degrees.

Results

In Table 9.4 the computed discharges are shown for the five different model grids, in which
an oblique weir that makes a corner of 45 degrees with the grid. The theoretical value reads
71.6 m3/s. This shows that the subgrid approach for weirs in D-Flow FM is able to compute
discharges over weirs in a reasonable accurate way in such cases. The errors are in the order
of 5 to 10 %. In case of a supergrid approach the errors are somewhat larger.

In Table 9.5 the computed discharges are shown for three different model grids, in which an
oblique weir that makes a corner of 30 degrees with the grid. Now, the theoretical value equals
97.6 m3/s. Again, the subgrid approach computes more accurate discharges compared to
the supergrid approach.

Table 9.2: Discharges across the weir for the 45 ◦variant.

skew grid, 30 m grid 70.1 m3/s

skew grid, 10 m 70.7 m3/s

uniform skew grid, 30 m grid 74.5 m3/s

uniform skew grid with straight flow near weir, 30 m grid 76.9 m3/s

uniform skew grid, supergrid approach, 30 m grid 80.4 m3/s
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Figure 9.9: uniform weir flow on a skew grid under 30 degrees.

Conclusions

This validation case shows that the numerical approach (fixedweirscheme=6) in D-Flow
FM can compute critical flow over an oblique weir in a reasonable accurate way. The sub-
grid approach for computing discharges for critical flow is to be preferred over the supergrid
approach, both in terms of accuracy and computation time.

Version

This test has been carried out with version dflow-fm-x64-1.2.94.66139.
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Table 9.3: Discharges across the weir for the 30 ◦variant.

uniform skew grid, 30 m grid 103.0 m3/s

uniform skew grid, supergrid approach, 10 m grid 94.7 m3/s

uniform skew grid, 10 m grid 91.8 m3/s
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9.5 Flooding over an obliquely oriented weir

Purpose

In Dutch rivers dikes have been constructed in order to protect flooding and to create a fore-
land (in Dutch "uiterwaarden") that act as a buffer to store floodwaters. The so-called summer
dikes separate the main river channel from the forelands. These dikes are quite often not
aligned with the computational grid. In this validate case we therefore examine the flooding of
a schematized river weir that represents a summer dike that is not aligned with the grid.

Linked claims
� claim 2.3.6.1: D-Flow FM can be used to investigate the hydrodynamic impact of hydraulic

structures, such as gates, weirs and barrier
� claim 2.3.6.2: D-Flow FM can accurately simulate subcritical and supercritical flows and

the transition region when the flow changes from subcritical to supercritical or vice versa

Approach

From the WAQUA software system it is known that flooding over an obliquely oriented weir can
cause abrupt changes in model results. Even oscillations in the time behaviour of discharges
over such a weir can occur. Therefore, the main criterion in this validation case is whether the
flow over this weir smooth a smooth time evolution.

Model description

This validation case is referred to as ’Beyer044’, see (Beyer, 2001). This validation case is
referred to as ’Beyer044’ (Beyer, 2001). The test model consists of a square grid of 10 by 10
grid cells with a diagonal channel. The dikes along this channel are at a height of 14 m, exact
for two weirs that are at +12 m and thus 2 m lower; see the red lines in the left panel of Figure
1. This validation case consists of many ’stair cases’ with respect to the location of the weirs.

As an alternative, D-Flow FM allows the possibility to nicely aligned weirs in a diagonal chan-
nel. This is illustrated in the right panel of Figure 1. Only behind the location of the weirs a
few triangulars are required to connect the grid cells in the main channel (summer bed) and
the winter bed.

Results

Figure 9.11 contains the water levels at both sides of the weir, representing the water level in
the river (summer bed) and in the winter bed. After about 8 hours the weir starts to overflow,
yielding an increase in water level at the winter bed (see red line). After about 11 hrs the water
levels in the summer bed (green and blue line) and winter bed are more or less equal. The
green and blue line represent water levels at two locations very near to the weir. This figure
also shows that flooding over an obliquely oriented weir occurs smoothly. The transition from
critical to subcritical flow causes a very small disturbance at around 7hrs. Figure 9.12 shows
a similar results for the model grid in which the weirs are nicely aligned with the grid. The
water levels at both sides of the weir are also smooth. In both cases the transition from critical
to subcritical flow is almost perfectly smooth.

Conclusions

This validation case shows that D-Flow FM is able to smoothly simulate flooding over an
obliquely oriented weir, both over aligned and non-aligned grids.
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Figure 9.10: Computational grid for the weir case. The weir, with crest level 12 m (w.r.t.
reference), is represented by the red line. The black lines indicate closed
walls. The observation points are represented by the black dots. The green
coloring of the grid cell corner points indicate a bed level of 10 m (w.r.t.
reference).

Figure 9.11: Water levels for flow over a skew weir

Figure 9.12: Water levels for flow over a skew weir for an aligned grid

Version
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This test has been carried out with version dflow-fm-x64-1.1.142.40690.
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9.6 Two-dimensional critical flow over an oblique weir

Purpose

In earlier test cases, the focus has been on testing weirs in D-Flow FM for quasi one-dimensional
flows. In the present test case, two-dimensional critical flow over an oblique weir is consid-
ered. For modelling of fixed weirs different approaches are available. In these tescases the
Villemonte approach (fixedweirscheme=9) is applied.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.6.1: D-Flow FM can be used to investigate the hydrodynamic impact of hydraulic
structures, such as gates, weirs and barrier

� claim 2.3.6.2: D-Flow FM can accurately simulate subcritical and supercritical flows and
the transition region when the flow changes from subcritical to supercritical or vice versa

Approach

For critical flow the discharge over a weir is completely determined by the energy head up-
stream. Two model domains with a mesh size of 30 m and 10 m are considered, respectively.
The oblique weir in these models makes a corner of either 45 ◦ or 30 ◦ with the grid.

Model description

The following grids are generated (see Figure 9.13, Figure 9.14 and Figure 9.15):

� grid A: grid cells of 30 m with an oblique weir; see Figure 9.13a,
� grid B: grid cells of 10 m with an oblique weir; see Figure 9.13b,
� grid C: uniform skew channel flow with grid cells of 30 m under 45 ◦; see Figure 9.14a,
� grid D: as grid C, but with straight (1D) flow near the weir; see Figure 9.14b,
� grid F: uniform skew channel flow with grid cells of 30 m under 30 ◦; see Figure 9.15a,
� grid H: as grid F, but with a mesh size of 10 m; see Figure 9.15b.

For weirs that make a corner of 45 ◦ with the grid (see grids A to E), the critical flow should be a
factor of

√
2 larger compared to the 1D weir validation case for critical flow, see Equation (9.1).

This is due to the fact that the length of the weir increases with this factor. This yields
√

2 ×
54.92 m3 s−1 = 71.6 m3 s−1. For weirs that make a corner of 30 ◦ with the grid the discharge
should be

√
5 × 54.92 m3 s−1 = 97.61 m3 s−1.
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(a) Grid A (b) Grid B

Figure 9.13: Weir grid in the form of a sandglas.

(a) Grid C (b) Grid D

Figure 9.14: Uniform weir flow on a skew grid under 45 ◦.

(a) Grid F
(b) Grid H

Figure 9.15: Uniform weir flow on a skew grid under 30 ◦.
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Results

In Table 9.4 the computed discharges are shown for the five different model grids, in which an
oblique weir that makes a corner of 45 ◦ with the grid. The theoretical value reads 71.6 m3 s−1.
In Table 9.5 the computed discharges are shown for two different model grids, in which an
oblique weir that makes a corner of 30 degrees with the grid. Now, the theoretical value
equals 97.6 m3 s−1. The results in both tables show that the Villemonte subgrid approach for
weirs in D-Flow FM is able to compute discharges over weirs in a reasonable accurate way in
such cases. The errors are in the order of 5 to 10 %.

Table 9.4: Discharges across the weir for the 45 ◦ variant.

skew grid, 30 m grid 71.8 m3 s−1

skew grid, 10 m 72.5 m3 s−1

uniform skew grid, 30 m grid 74.5 m3 s−1

uniform skew grid with straight flow near weir, 30 m grid 76.1 m3 s−1

Table 9.5: Discharges across the weir for the 30 ◦ variant.

uniform skew grid, 30 m grid 105.7 m3 s−1

uniform skew grid, 10 m grid 91.7 m3 s−1

Conclusions

This validation case shows that the Villemonte approach (fixedweirscheme=9) in D-
Flow FM can compute critical flow over an oblique weir in a reasonable accurate way.

Version

This test has been carried out with version dflow-fm-x64-1.2.94.66139.
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10 Barriers

10.1 Gate flow

Purpose

In shallow water flow, different flow regimes occur near a gate, which depends on the down-
stream water level. Both subcritical and critical flow is possible. In D-Flow FM moveable
structures are called ’gates’. This section focusses on gates. A gate consists of a sill and/or
a gate door. Gate flow occurs between the sill and the gate, but overtopping of a gate door is
possible as well. The present test cases investigate both critical and subcritical flow through
a gate in case of quasi-1D flow.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.6.1: D-Flow FM can be used to investigate the hydrodynamic impact of hydraulic
structures, such as gates, weirs and barrier

� claim 2.3.6.2: D-Flow FM can accurately simulate subcritical and supercritical flows and
the transition region when the flow changes from subcritical to supercritical or vice versa

Approach

Four possible conditions can occur at gates. The flow is either influenced (or in other words
’restricted’) by a gate door or not. In case of gate-restricted flow either critical or subcritical
flow through a gate can occur. If the flow is not restricted by a gate door, we have ’free
surface flow’ through a gate. Then, the flow is influenced by the sill and we may have critical
and subcritical flow as well. In total, this yields only four different cases, which are illustrated
in Figure 10.1.

Figure 10.1: gate conditions

Thus, four different flow conditions cases are investigated. These cases are based on the
Rajaratnam flume experiment from 1967. The D-Flow FM model results are compared with
the WAQUA model results. Numerical modelling of gates in WAQUA has been extensively
validated with measurements and is applied for many decades to compute water levels in
the main Dutch rivers. Furthermore, the same numerical approach of so-called ’discharge
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relations’ from SOBEK are applied in D-Flow FM. SOBEK is the Dutch’ modelling systems for
1D networks. This means that based on the water level before and after the gate, a discharge
is computed from theoretical formula for the discharge. D-Flow FM uses the formulas of
SOBEK, which means that there are slightly different compared to WAQUA.

Model description

The model domain has a length of 300 m and is subdivided into 30 equidistant grid cells
of 10 m. At both ends there is a water level boundary. In the mid a gate is situated. By
varying the water levels and by varying the lower edge of the gate door, four different cases
are represented:

� model 1: subcritical flow for gate restricted flow;
� model 2: critical flow for gate restricted flow;
� model 3: subcritical free surface flow (with sill, but without gate door);
� model 4: critical free surface flow (with sill, but without gate door)

In all four models 35 cases of different combinations of upstream and downstream water levels
are verified. A simulation period of 35 days is applied, so that each case lasts for one day.

Figure 10.2: Subcritical flow for gate restricted flow

Figure 10.3: Critical flow for gate restricted flow
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Figure 10.4: Subcritical flow for sill

Figure 10.5: Critical flow for sill

Results

Figure 10.2 contains the model results for the gate restricted flow with subcritical conditions.
In all four figures the discharge through the gate computed by WAQUA is in red, while the
discharge computed by D-Flow FM is in blue. In Figure 10.3 the results for gate restricted flow
under critical conditions are shown. Figure 10.4 contains the results for free surface subcritical
gate flow due to a sill. In Figure 10.5 the results are shown for free surface critical gate flow
due to a sill.

In all four figures the agreement between computed gate discharges between D-Flow FM and
WAQUA is reasonable. One should take in mind that the computed water levels at both sides
of the gate somewhat differ between D-Flow FM and WAQUA because of different underlying
numerical schemes. Consequently, there are differences in discharge as well. Differences
also occur due to the slightly different theoretical discharge relations that are applied to com-
pute the discharge through a gate. D-Flow FM uses the discharge formulations of SOBEK,
while WAQUA uses slightly different formulations.
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Conclusions

This validation case shows that D-Flow FM is able to compute the discharge flow through a
gate in a reasonably accurate way. Qualitatively there is a good agreement with the WAQUA
model results. Quantitatively differences occur due to the different numerical schemes and
the slightly different theoretical formulas for the discharge through a gate. This holds for all
gate conditions, namely for gate restricted flow and free surface flow, both under subcritical
and critical conditions.

Version

This test has been carried out with version dflow-fm-x64-1.1.149.41664.
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11 Boundary conditions

11.1 Time dependent boundary condition

Purpose

In many hydraulic computations, the boundary conditions are time dependent. This test case
examines whether the D-Flow FM correctly facilitates the coupling with time dependent bound-
ary conditions.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.8.1: D-Flow FM can deal with boundary conditions that are prescribed as time-
series, as harmonic components and as astronomic components

� claim 2.3.8.2: D-Flow FM can deal with boundary conditions for the water level, the velocity
and the discharge

Approach

The case is kept as simple as possible. A rectangular domain is chosen with one single open
boundary condition which is time dependent. A Delft3D computation is run as a backdrop to
check if the resulting time series collapse.

Model description

A domain of sizes 130 m × 1 m is covered by a grid containing 130 × 1 cells. At one of the
two short edges of the domain, a time dependent water level boundary is imposed. At the
other three edges, the boundary is closed and frictionless. The water level signal imposed at
the open boundary, is shown in Figure 11.1.

Figure 11.1: Imposed data on the open boundary. The dots indicate the actual data; the
intermediate lines indicate the interpolation in time.

The following settings are inserted:

� the bottom level of the domain is set equal to -0.2 m w.r.t. the reference level,
� the initial water level is 0 m w.r.t. the reference level,
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� the bottom friction is set equal to 60 m1/2/s (as Chézy coefficient),
� the horizontal eddy viscosity is set equal to 0 m2/s.

A Delft3D computation is used to compare the D-Flow FM output with. The settings of the
Delft3D computation is chosen exactly the same as the D-Flow FM computation to ensure
sound comparison.

Results

In each grid cell an observation point is present. The observation point at the center of the
domain is chosen for comparison of the D-Flow FM output with the Delft3D output. The
water level timeseries and streamwise velocity timeseries from both packages are shown in
Figure 11.2.

Figure 11.2: Water level evolution (left panel) and streamwise velocity evolution (right
panel) at the observation point in the very center of the channel.

Figure 11.2 shows good agreement between the D-Flow FM results and the Delft3D results
indicating the proper working of the time dependent water level boundary condition.

One important remark has to be made. Suppose that the boundary conditions are specified
in time from tb1 to tb2 and that the computational time runs from start time tc1 to stop time tc2,
then care should be taken in case:

� tc1 < tb1, then the boundary condition is set to zero for tc1 ≤ t < tb1,
� tc2 > tb2, then the boundary condition value is extrapolated for tb2 ≤ t < tc2.

Conclusion

The time dependent boundary conditions functionality appears to work properly. In case the
computational start/stop times do not match with the boundary condition times, more safety
should be implemented in the code.

Version

This test has been carried out with version dflow-fm-x64-1.1.90.31666.
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11.2 Harmonic boundary condition

Purpose

In many hydraulic computations, the boundary conditions are prescribed through harmonic
components. This test case examines whether the D-Flow FM correctly facilitates this func-
tionality.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.8.1: D-Flow FM can deal with boundary conditions that are prescribed as time-
series, as harmonic components and as astronomic components

� claim 2.3.8.2: D-Flow FM can deal with boundary conditions for the water level, the velocity
and the discharge

Approach

The case is kept as simple as possible. A rectangular domain is chosen with one single open
boundary condition which is time dependent. A Delft3D computation is run as a backdrop to
check if the resulting time series collapse.

Model description

A domain of sizes 130 m × 1 m is covered by a grid containing 130 × 1 cells. At one of the
two short edges of the domain, a time dependent water level boundary is imposed. At the
other three edges, the boundary is closed and frictionless. In Delft3D, harmonic boundaries
are prescribed by means of .bch-files; in D-Flow FM, harmonic boundaries are prescribed
by means of .cmp-files.

The following settings are inserted:

� the bottom level of the domain is set equal to -0.2 m w.r.t. the reference level,
� the initial water level is 0 m w.r.t. the reference level,
� the bottom friction is set equal to 60 m1/2/s (as Chézy coefficient),
� the horizontal eddy viscosity is set equal to 0 m2/s.

The Delft3D settings for the boundary condition, as .bch-file, is as follows:

0.0000 2160.0000 4320.0000 6480.0000

0.001 0.005 0.004 0.001
0.001 0.005 0.004 0.001

90.0 24.0 -10.0
90.0 24.0 -10.0

Remark that in the .bch-file, the periodicity is prescribed through a frequency with unit [de-
grees/hour]. In D-Flow FM, the periodicity is prescribed through the period time span in min-
utes. Hence, the frequency 2160 degrees/hour turns to 60 min/hour × 360 degrees/period
/ 2160 degrees/hour = 10 minutes. The D-Flow-FM settings for the boundary condition, as
.cmp-file, is as follows (period [min] – amplitude [m] – phase shift [degrees]):
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0.0000000 0.0010000 0.0000000
10.0000000 0.0050000 90.0000000
5.0000000 0.0040000 24.0000000
3.3333333 0.0010000 -10.0000000

A Delft3D computation is used to compare the D-Flow FM output with. The settings of the
Delft3D computation is chosen exactly the same as the D-Flow FM computation to ensure
sound comparison. Output results at each observation point are writte each 6 seconds.

Results

In each grid cell an observation point is present. The observation point at the center of the
domain is chosen for comparison of the D-Flow FM output with the Delft3D output. The
water level timeseries and streamwise velocity timeseries from both packages are shown in
Figure 11.3.

Figure 11.3: Water level evolution (left panel) and streamwise velocity evolution (right
panel) at the observation point in the very center of the channel.

Figure 11.3 shows good agreement between the D-Flow FM results and the Delft3D results
regarding the reproduction of the four elementary components. This indicates the proper
working of the time dependent water level boundary condition. Rather small deviations only
comprise some spin-up wiggle-like fluctuations in the first 30 minutes.

Conclusion

The harmonic boundary conditions functionality appears to work properly.

Version

This test has been carried out with version dflow-fm-x64-1.1.90.31666.
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11.3 Astronomic boundary condition

Purpose

In many geophysical computations, the boundary conditions are prescribed through astro-
nomic components. This test case examines whether the D-Flow FM correctly facilitates this
functionality.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.8.1: D-Flow FM can deal with boundary conditions that are prescribed as time-
series, as harmonic components and as astronomic components

� claim 2.3.8.2: D-Flow FM can deal with boundary conditions for the water level, the velocity
and the discharge

Approach

The case is kept as simple as possible. A rectangular domain is chosen with one single open
boundary condition which is time dependent. A Delft3D computation is run as a backdrop to
check if the resulting time series collapse.

Model description

A domain of sizes about 445 km × 4.45 km is covered by a grid containing 41 × 4 cells. At
the two short edges of the domain, a time dependent water level boundary is imposed. At the
other two edges, the boundary is closed and frictionless. In Delft3D, astronomic boundaries
are prescribed by means of .bca-files; in D-Flow FM, astronomic boundaries are prescribed
by means of .cmp-files. The computation is run in spherical coordinates.

The following settings are inserted:

� the bottom level of the domain is set equal to -10.0 m w.r.t. the reference level,
� the initial water level is 0 m w.r.t. the reference level,
� the bottom friction is set equal to 0.024 (as Manning coefficient),
� the horizontal eddy viscosity is set equal to 25.0 m2/s.

At the left boundary (water level boundary), two signals are prescribed: a M2-signal with an
amplitude equal to 0.5 m and phase equal to 0◦ and a S2-signal with an amplitude equal to
1.0 m and a phase equal to 0◦.

At the right boundary (water level boundary), two signals are prescribed: a M2-signal with an
amplitude equal to 0.5 m and phase equal to 0◦ and a S2-signal with an amplitude equal to
1.0 m and a phase equal to 11.2047◦.

A Delft3D computation is used to compare the D-Flow FM output with. The settings of the
Delft3D computation is chosen exactly the same as the D-Flow FM computation to ensure
sound comparison. Output results at each observation point are writte each 10 minutes.
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Results

Along the centerline of the grid, five observation points are present. The observation point at
the center of the domain is chosen for comparison of the D-Flow FM output with the Delft3D
output. The water level time series and streamwise velocity timeseries from both packages
are shown in Figure 11.4.

Figure 11.4: Water level evolution (left panel) and streamwise velocity evolution (right
panel) at the observation point in the very center of the channel.

Figure 11.4 shows fair agreement between the D-Flow FM results and the Delft3D results
regarding the reproduction of the two elementary astronomic components. This indicates the
fair working of the time dependent water level boundary condition. A difference is seen when
the water at the center is set in motion: the water level increase is slightly differently predicted
by the two models.

For the streamwise velocities, the deviations between the two packages are relatively large,
regarding the simplicity of the testcase. Particularly, it is remarkable that in the first 6 hours of
the simulated time, the D-Flow FM velocities are non-zero, whereas the Delft3D velocities are
exactly zero and the waterlevel has not been affected by the external forcing yet.

Conclusion

The astronomic boundary conditions functionality appears to work properly. However, the de-
viations in the streamwise velocities are relative large regarding the simplicity of the testcase.

Version

This test has been carried out with version dflow-fm-x64-1.1.90.31666.
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11.4 Salinity boundary condition

Purpose

If salinity plays a role in a hydraulic computation, boundary conditions for the salinity have to
be prescribed as well, obviously. This prescription can be done either through time-series files
or component files. This test case examines whether the D-Flow FM correctly facilitates this
functionality.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.7.2: D-Flow FM can be used for an accurate prediction of the density driven flow

Approach

The case is kept as simple as possible. A rectangular domain is chosen with two open bound-
ary conditions (water level as a sea and discharge as a river) which are both time dependent.
A Delft3D computation is run as a backdrop to check if the resulting time series collapse.

Model description

A domain of sizes 130 m × 1 m is covered by a grid containing 130 × 1 cells. At the left
short edges of the domain, a time dependent water level boundary is imposed by means of a
.cmp-file containing one harmonic component. At the right short edge, a discharge boundary
is imposed by means of a .cmp-file containing five harmonic components. At the other two
edges, the boundary is closed and frictionless. At the water level boundary, a constant salinity
of 12.5 ppt is prescribed; at the discharge boundary, a constant salinity of 0.0 ppt is prescribed.

The following settings are inserted:

� the bottom level of the domain is set equal to -0.2 m w.r.t. the reference level,
� the initial water level is 0 m w.r.t. the reference level,
� the bottom friction is set equal to 60 m1/2/s (as Chézy coefficient),
� the horizontal eddy viscosity is set equal to 0 m2/s.

A Delft3D computation is used to compare the D-Flow FM computation with. The settings of
the Delft3D computation are chosen exactly the same as the D-Flow FM computation to en-
sure sound comparison. Output results at each observation point are written each 6 seconds.

Results

In each grid cell an observation point is present. The observation point 20 km from the water
level boundary (and hence 90 km from the discharge boundary) is chosen for comparison of
the D-Flow FM output with the Delft3D output. First, two computations are run as a backdrop:
one computation with constant zero salinity and one computation with a constant salinity of
12.5 ppt at both the two boundaries as well as initially. The results for the water level in these
two cases is shown in Figure 11.5: in the left panel with 0 ppt at the boundaries (and as initial
condition) and in the right panel with 12.5 ppt at the boundaries (and as initial condition).

Figure 11.5 shows perfect agreement of the water levels from the D-Flow FM results with the
Delft3D results, both with 0 ppt and 12.5 ppt. This indicates the proper processing of the time
dependent water level and discharge boundary signals.
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Figure 11.5: Water level evolution at the observation point 20 km near the water level
boundary. The results stem from a computation without salinity (left panel)
and a computation with constant salinity (right panel); hence, 0 ppt (left) and
12.5 ppt (right), respectively, at boundaries and as initial value.

Figure 11.6 shows the results of the computation if variable salinity actually is included, i.e.
12.5 ppt at the water level boundary and 0 ppt at the discharge boundary. The initial salinity
field yields 0 ppt. At the considered observation point, the salinity evolution shows a block-like
development. The results from D-Flow FM show smooth blocks, whereas the Delft3D results
show some wiggles.

Figure 11.6: Water level evolution (left panel) and salinity evolution (right panel) at the
observation point 20 km near the water level boundary.

It is remarkable that the water levels do not coincide anymore: the D-Flow FM results and the
Delft3D results deviate to typical values of 10% in amplitude of the water level. This deviation
is absent in Figure 11.5. The comparison of Figure 11.6 with Figure 11.5 shows unaffected D-
Flow FM results and affected Delft3D results with changing boundary condition configuration.
The specific boundary condition functionality for the salinity itself appears to work properly.

Conclusion

The salinity boundary conditions functionality appears to work properly.

Version

This test has been carried out with version dflow-fm-x64-1.1.90.31666.
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11.5 Qh-boundary conditions

Purpose

The purpose of this validation case is to examine the performance of D-Flow FM for a schema-
tized homogeneous channel flow simulation where the downstream boundary condition has
been prescribed using a Qh-boundary type, in which a water level boundary condition is pre-
scribed based on the discharge passing through the outflow boundary section. In this sense,
this type of boundary condition could also be referred to as a Qζ-boundary condition, since ζ
represents the water level with respect to the reference level.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.8.1: D-Flow FM can deal with boundary conditions that are prescribed as time-
series, as harmonic components and as astronomic components

� claim 2.3.8.3: D-Flow FM can deal with boundary conditions for derived quantities by
means of a Qh-table, a Neumann-type condition for the water level and a Riemann invari-
ant

Approach

A flow setup is chosen for which an analytical solution is known. The flow setup selected is a
quasi one-dimensional channel flow which homogeneous friction and an equilibrium between
the pressure gradient the bed friction, provided a discharge prescribed upstream and a water
level prescribed downstream. The water level described downstream is computed from a
Qh-table.

Model description

Three grids are developed to be used to compute the quasi one-dimensional channel flow on.
These grids are visualized in Figure 11.7. The three testcases concern a straight channel flow
with a constant bed slope and constant roughness factor under equilibrium flow conditions.

Figure 11.7: Setup of the grids for the testing of the QH-boundary, flow is from left to right.

A discharge Q equal to 2500 m3/s is prescribed. The bottom slope ib is prescribed to be
10−4. The bottom level at the inflow boundary is 0 m (w.r.t. reference) and at the outflow
boundary -1 m (w.r.t. reference). The Chézy friction coefficient C is set to 65 m1/2/s. At the
downstream boundary the equilibrium flow depth is prescribed which is computed by

he =

(
Q

BC
√
ib

)2/3

= 3.89677. (11.1)
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The outflow boundary is provided as a Qh-table:

* Downstream Q-h water level boundary

* Discharge (m3/s)

* Water level (m)

*
0 1.846766937769912

2500 2.846766937769912
5000 3.846766937769912
7500 4.846766937769912

The prescription of the outflow water level values requires some explanation. Since, the equi-
librium depth is 3.89677 m, the relation Q = 2500 m3/s versus h = 3.89677 should be part
of the Qh-table. However, since D-Flow FM uses ghost-cells at the boundary (mirrored cell-
centers), the artifically added length of 1 ·∆x should be taken into account when considering
the total length of the channel.

With respect to the mirroring of cell-center locations at the boundaries, one additional remark
should be made. The center of the fictitous boundary cells (ghost cells) is computed on the
basis of two parameters, namely dj and bA, being the distance from the inside cell-center
location to the grid rim and the area of the cell, respectively. The distance from the rim to
the fictitious cell-center is set as max(dj,

1
2

√
bA). For the grids shown in Figure 11.7, this

mirrored cell-center is hence on dj (exact mirror), 1
2

√
bA and dj (exact mirror), respectively.

The values for the outflow Qh-tables are modified in line with this location.

Results

The result for one of the grids in Figure 11.7 - the upper one - is visualized in Figure 11.8
against the backdrop of the analytical solution. The root-mean-square error with respect to
the analytical solution is presented as well.

Figure 11.8: Analytical and computed waterlevel versus the distance from the inflow
boundary. The results are shown for the coarsest grid.
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For all the three grids, the root-mean-square errors are:

� the coarsest grid: 3.70 · 10−8 m,
� the refined (one direction) grid: 3.61 · 10−3 m,
� the refined (two directions) grid: 3.69 · 10−8 m.

On the basis of these numbers, two remarks can be made. Firstly, it is seen that theQh-table
approach appears to work properly. Secondly, it is seen that the rms-error is the largest for
the second grid. Perhaps not coincidentally, this is the only grid that does not use the exact
mirrored cell-center at the boundary.

Conclusion

TheQh-table boundary condition type returns the expected results for one-dimensional chan-
nel flow, which corroborates the proper working of this type of boundary condition prescription.

Version

This test has been carried out with version dflow-fm-x64-1.1.137.40169.
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11.6 Stationary flow with Neumann type outflow boundary

Purpose

The purpose of this validation case is to examine the working of Neumann type boundary
conditions. This type of boundary conditions has been implemented for the water level, i.e.
∂ζ/∂xn = 0 at the boundary.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.8.1: D-Flow FM can deal with boundary conditions that are prescribed as time-
series, as harmonic components and as astronomic components

� claim 2.3.8.3: D-Flow FM can deal with boundary conditions for derived quantities by
means of a Qh-table, a Neumann-type condition for the water level and a Riemann invari-
ant

Approach

For this Neumann type boundary case, a straight channel is chosen derived from the Chézy
friction type test case. For this particular case, an analytical solution is known. The slope of
the bottom varies linearly with a slope ib. Given a discharge Q and a friction coefficient (in
this case, Chézy’s factor C is used), the water depth he, given as:

he =

(
Q

BC
√
ib

)2/3

(11.2)

can be computed as the equilibrium water depth.

Model description

For this test case, one particular computational grid is generated. The grid is of Cartesian
type. The longitudinal size L of the domain is 10 km, whereas the lateral size B of the
domain is 500 m. In longitudinal direction 20 cells are deployed, whereas in lateral direction
only one grid cell is present.

A discharge Q equal to 2500 m3/s is prescribed at the inflow boundary. The bottom slope ib
is prescribed to be 10−4. The bottom level at the inflow boundary is 0 m (w.r.t. reference) and
at the outflow boundary -1 m (w.r.t. reference). The Chézy friction coefficient C is set to 65
m1/2/s. Given the above values, the equilibrium water depth he is computed as:

he =

(
2500

500 · 65 ·
√

1.0 · 10−4

)2/3

= 3.8967669 m. (11.3)

The computational time step is fixed at 10 seconds. At the outflow boundary, a Neumann
condition is prescribed: ∂ζ/∂xn = −ib. At the inflow, jbasqbnddownwindhs = 1 is
prescribed.

Results

The actual water level differences (numerical versus analytical) at cell face points along the
channel are shown in Figure 11.9. Figure 11.9 reveals that the slopes of the free surface
agree well and that the absolute water levels themselves coincide as well. From this, it can be
concluded that the Neumann outflow boundary condition correctly does what it is supposed
to do.
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Figure 11.9: Spatial development of the water level along the center axis of the channel.
The water levels are visualized at the cell faces.

The way of visualizing the water level, as done in Figure 11.9, requires some explanation.
Thereto, consider an arbitrary computational cell, as shown in Figure 11.10. Recall that the
principle variables are the water level (located in the cell center) and the face-normal velocities
(located at the center of the faces). The level of the bed is given in the cell corners.

To prescribe the bed friction (defined at flow links), D-Flow FM needs information on the
hydraulic radius. This information can be provided by the user through the mdu-file key
Conveyance2D. By default, D-Flow FM uses an analytic 2D conveyance approach. As
an alternative, the user could specify simply the waterdepth as hydraulic radius. In order to
resolve the face-normal velocity, D-Flow FM utilizes the (locally) upwind water level for the
prescription of the hydraulic radius for the bed friction.

Consider, for instance, velocity uC . Suppose, the flow is unidirectional with an orientation

Figure 11.10: Computational cell with surface level h, face velocities uA, uB , uC and uD
and bed levels b1, b2, b3 and b4.
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exactly aligned with the orientation of uC . In that case, the surface level h, as given in Fig-
ure 11.10, is used as surface elevation at the cell face center. The bed level applied to this
location comprises the mean, the minimum or the maximum value of the quantity-set (b2, b3),
depending on the choice for the keyword izbndpos in the associate mdu-file: 3, 4 or 5,
respectively.

For the testcase under consideration, in which:

� b1 = b4,
� b2 = b3,
� uB = uD = 0 m/s and
� uA should equal uC ,

the waterdepth is equal to d = h− b2 = h− b3. This value for the waterdepth is compared
with the analytical value (provided by Equation (11.3)) and redrawn as water level at the cell
faces in Figure 11.9. As shown by the root-mean-square value in Figure 11.9, the differences
between the numerical outcomes and the analytical value can be considered small.

Conclusion

For a stationary hydraulic computation of flow over an inclined bottom (with friction, a dis-
charge inflow boundary and a Neumann outflow boundary), D-Flow FM is able to accurately
reproduce the water surface slope, as well as the absolute water levels.

Version

This test has been carried out with version dflow-fm-x64-1.1.90.31666.
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11.7 Non-stationary flow with Neumann type boundary

Purpose

By means of a Neumann boundary condition, the desired value of the gradient of the water
level can be prescribed at a boundary. The purpose of this test case is to investigate if D-Flow
FM correctly deals with Neumann type boundary conditions in case of the simulation of a
non-stationary flow in a rectangular box.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.8.1: D-Flow FM can deal with boundary conditions that are prescribed as time-
series, as harmonic components and as astronomic components

� claim 2.3.8.3: D-Flow FM can deal with boundary conditions for derived quantities by
means of a Qh-table, a Neumann-type condition for the water level and a Riemann invari-
ant

Approach

Since a stationary flow case has already been considered, a non-stationary case is consid-
ered now. To that end, a two-dimensional rectangular box with one open boundary is defined.
The boundary condition at the open boundary is intended to fill the domain with water. At one
of the boundaries perpendicular to the open boundary, a Neumann boundary is prescribed,
whereas at the other boundary perpendicular to the open boundary, a free slip boundary
condition is imposed.

Model description

A domain of sizes 100 m× 40 m is considered. The boundary conditions and initial conditions
are chosen as shown in Figure 11.11. The domain is covered by 10× 4 grid cells.

Figure 11.11: Flow geometry and imposed boundary boundary conditions and initial con-
dition.

The upper boundary is of Neumann-type, the left and lower boundaries are of free slip type
(irov = 0). At the open boundary (the right boundary), a constant water level equal to 1 m
(w.r.t. the reference level) is prescribed. The initial condition yields a water level equal to 0 m.
Thus, after start a non-stationary flow comes into existence representing the filling of the box
with water.
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The following settings are inserted:

� the bottom level of the domain is set equal to -5.0 m w.r.t. the reference level,
� the bottom friction is set equal to 0.023 (as Manning coefficient),
� the horizontal eddy viscosity is set equal to 1.0 m2/s.

Results

After 10 seconds, the water level and the velocity vectors look like shown in Figure 11.12.
The basic check whether the test case succeeds is to check the water level in the ghost cell,
just outside the domain. Since this these data are not available in the standard map-files,
these values can only be checked in the development environment of D-Flow FM. This check
has been performed yielding successful outcomes, though not visualized in this validation
document.

Figure 11.12: Water level and velocity vectors 10 seconds after the start of the computa-
tion.

In order to provide another way of proving the validity of the case, the water levels and velocity
vectors are shown in Figure 11.12. Since ∂ζ/∂xn = 0 is applied at the upper boundary, a
free-slip boundary is present at the lower boundary and a constant bed level is present in the
entire domain, no lateral flow is induced. Hence, a (nearly) symmetrical flow field is expected.
The flow behavior exposed in Figure 11.12 is hence expected.

Conclusion

The Neumann boundary condition test for non-stationary flow yields results that coincide with
the expectations: the imposed water level gradient at the Neumann boundary is met along the
full duration of the computation.

Version

This test has been carried out with version dflow-fm-x64-1.1.90.31666.

142 of 246 Deltares



Boundary conditions

11.8 Weakly reflecting boundary conditions in one dimension

Purpose

At a Riemann boundary we do not allow any outgoing perturbation with respect to some ref-
erence boundary state to reflect back from the boundary. This can be achieved by prescribing
the incoming Riemann invariant. In D-Flow FM, a Riemann invariant at the boundary can
be imposed by means of prescribing the reference boundary water level, using linear theory.
Reflections can hence be reflected for small perturbations. In the present test, it is checked
whether or not these reflections actually do not occur. In this test case, a one-dimensional
case is considered.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.8.1: D-Flow FM can deal with boundary conditions that are prescribed as time-
series, as harmonic components and as astronomic components

� claim 2.3.8.3: D-Flow FM can deal with boundary conditions for derived quantities by
means of a Qh-table, a Neumann-type condition for the water level and a Riemann invari-
ant

Approach

A quasi-1D channel is developed with a flat bed and a flat initial water level. At both the
ends of the channel, Riemann boundary conditions are imposed with a reference water level
associated with the flat initial water level field. Perturbations are induced by lifting the initial
water level in the center of the channel. The flow, thus induced, consists of two propagating
waves: one to the left and one to the right. The focus of this test is to measure the extent to
which the wave is reflected at the two boundaries.

Model description

For this test, two domains are developed: a short domain and an elongated variant of it. The
short domain has a length of 10 km and a width of 500 m. This grid is covered by 40 × 3
square cells. The elongated domain has a length of 3 × 10 km and a width of 500 m. The
elongated grid is covered by 120× 3 square cells.

The bed is flat at a level equal to 0 m (with respect to the reference level). The initial water
level is 10 m (with respect to the reference level) everywhere. The perturbation is given a
Gaussian shape, to prevent sharp moving fronts. Hence, the initial water level reads:

h(x, t = 0) = exp

(
−
(
x− L/2

c

)2
)

+ h0

with x from 0 to L, with L = 10 km, h0 = 10 m (w.r.t. reference) and c = 1 km. Along the
domain, 8 observation points are placed to monitor the development of the water level in time.
The initial water level and the observation points are shown in Figure 11.13.

Processes associated with diffusion and bed friction are turned off. The simulated time is 3600
seconds. The wave propagation speed

√
gh equals about 10 m/s. Travelling along half the

domain takes about 5000 m/10 m/s = 500 s for the wave in the short/small domain, whereas
15000 m/10 m/s = 1500 s for the large/elongated domain. Notice that the perturbation yields
10% of the water depth.
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Figure 11.13: Initial water level along the domain. The observation point locations are
given in red.

Results

In Figure 11.14, time series are provided of the computed water level at several stations in
the domain. It is seen that the initially induced wave can leave the domain without major
reflections; the reflection at the boundary is minor with an amplitude of about 2 cm. The
reflections due to the boundary (which is only weakly reflective, because of the linearization)
is directly visible through the small-amplitude ripples.

If the center station (ID = 5) is considered, the presence of the reflected wave can easily be
recomputed. For the small domain, the peak occurs at 1000 s after start (equal to twice 500 s
needed to travel forth and back); for the large domain, the peak occurs at 3000 s after start
(equal to twice 1500 s).

For the other stations, a similar behavior is observed. In these cases, small amplitude waves
are represented in the time series signal. It is left to the reader to recompute the occurrence
of the peak times by hand.

Conclusion

Riemann-type boundary conditions are successfully facilitated by D-Flow FM. The Riemann-
type boundary condition is weakly reflective; hence, some reflection is present if the pertur-
bation is relatively large.

Version

This test has been carried out with version dflow-fm-x64-1.1.191.47129.
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Figure 11.14: Time series of the computed water level at the observation point locations.
The results for the small/short domain are given in blue; the results for the
large/elongated domain are given in red.
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11.9 Weakly reflecting boundary conditions in two dimensions

Purpose

At a Riemann boundary we do not allow any outgoing perturbation with respect to some ref-
erence boundary state to reflect back from the boundary. This can be achieved by prescribing
the incoming Riemann invariant. In D-Flow FM, a Riemann invariant at the boundary can
be imposed by means of prescribing the reference boundary water level, using linear theory.
Reflections can hence be reflected for small perturbations. In the present test, it is checked
whether or not these reflections actually do not occur. In this test case, a two-dimensional
case is considered.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.8.1: D-Flow FM can deal with boundary conditions that are prescribed as time-
series, as harmonic components and as astronomic components

� claim 2.3.8.3: D-Flow FM can deal with boundary conditions for derived quantities by
means of a Qh-table, a Neumann-type condition for the water level and a Riemann invari-
ant

Approach

A circular domain is developed with a flat bed and a flat initial water level. Along the boundary
of the domain (the edge of the circle), a Riemann boundary condition is imposed with a ref-
erence water level associated with the flat initial water level field. Perturbations are induced
by lifting the initial water level in the center of the channel. This thus constructed initial field
induces a flow field that fundamentally differs from its one-dimensional equivalent: the water
level at the center (where the perturbation is the largest) is subceeded in due course, whereas
this is not the case in the one-dimensional case.

Model description

For this test, two domains are developed: a short domain and an elongated variant of it. The
short domain has a radius of 90 km, whereas the elongated domain has a radius of 120 km.
This grid is covered by triangular cells.

The bed is flat at a level equal to 0 m (with respect to the reference level). The initial water
level is 10 m (with respect to the reference level) everywhere. The perturbation is given a
Gaussian shape, to prevent sharp moving fronts. Hence, the initial water level reads:

h(x, t = 0) = exp

(
−x

2 + y2

c2

)
+ h0

with h0 = 10 m (w.r.t. reference) and c = 20 km. Along the domain, 9 observation points are
placed to monitor the development of the water level in time. The initial water level and the
observation points are shown in Figure 11.15.

Processes associated with diffusion and bed friction are turned off. The simulated time is
36000 seconds (10 hours). The wave propagation speed

√
gh equals about 10 m/s. Travelling

from the center of the domain to the edge of the domain takes about 90000 m/10 m/s =
9000 s for the wave in the short/small domain, whereas 120000 m/10 m/s = 12000 s for the
large/elongated domain. Notice that the perturbation yields 10% of the water depth.
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Figure 11.15: Initial water level in the domain in meters respect to the reference level.
The observation point locations are given in red. The grid is circular and
consists of triangular cells. Only a part of the grid is shown. The radius of
the visualized grid is 90 km.

Results

If station number 1 is considered (5 km out of the center), the presence of the reflected wave
can easily be approximated. For the small domain, the peak occurs at approximately 18000 s
after start (equal to twice 9000 s needed to travel forth and back); for the large domain, the
peak occurs at 24000 s after start (equal to twice 12000 s).

Figure 11.16: Time series of the computed water level at the observation point locations.
The results for the small/short domain are given in blue; the results for the
large/elongated domain are given in red.

For the other stations, a similar behavior is observed. In these cases, small amplitude waves
are represented in the time series signal. It is left to the reader to recompute the occurrence
of the peak times by hand.
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Conclusion

Riemann-type boundary conditions are successfully facilitated by D-Flow FM. The Riemann-
type boundary condition is weakly reflective; hence, some reflection is present if the pertur-
bation is relatively large.

Version

This test has been carried out with version dflow-fm-x64-1.1.191.47129.
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12 Input and output functionality

12.1 Output test for a realistic model run

Purpose

The [output] field of the [mdu]-file facilitates the export of flow data to the output directory
at specified times. This test investigates the result of specifying non-zero-value intervals at all
entries. The MapOutputTimeVector-entry is kept out of consideration.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.1.3: D-Flow FM is able to produce his-files, map-files and restart files with output
timeseries and field output data

It is claimed that the following output is created:

� one _his.nc-file containing multiple flow variables at the times prescribed by the time
interval, including the start time and end time,

� one _map.nc-file containing multiple flow variables at the times prescribed by the time
interval and the input file, including the start time and end time,

� several _rst.nc-files at the times prescribed by the time interval, including the start time
and end time.

Approach

In the [output] field in the associated [mdu]-file, zero values are inserted for the time in-
tervals. Only for the HisInterval-entry, the MapInterval-entry and the RstInterval-
entry, input is provided.

Model description

A Westerscheldt model is used to generate output data. Two boundaries are present: at
the one boundary, a periodic water level signal is imposed, whereas at the other boundary a
discharge is prescribed. The physical parameters as such are not of particular interest for this
test case. Start time is 10 minutes and stop time is 120 minutes w.r.t. the reference time. The
_his.nc-file, the times _map.nc-file times and the _rst.nc-file times are:

� input as the ‘interval’, the ‘start period’ and ‘end period’ (s): 1200.0
� input as the ‘interval’, the ‘start period’ and ‘end period’ (s): 960.0 3600.0
� input as the ‘interval’, the ‘start period’ and ‘end period’ (s): 480.0 6000.0 6800.0

as claimed result in seconds after the reference date. The user time step DtUser is 20
seconds and the maximum time step DtMax are set to 60.0 seconds. The initial time step is
set to 1.0 s. The time step is CFL limited.
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Results

In the directory dflowfmoutput, a simplebox_his.nc file and a simplebox_map.nc
file, respectively, have appeared containing flow data at the times:

� 600.00 1800.00 3000.00 4200.00 5400.00 6600.00 7200.00 in seconds after the refer-
ence date for the his-file,

� 600.00 3600.00 4560.00 5520.00 6480.00 7200.00 in seconds after the reference date
for the map-file.

The following _rst.nc-files are produced:

westerscheldt_19920831_000000_rst.nc
westerscheldt_19920831_001000_rst.nc
westerscheldt_19920831_014000_rst.nc
westerscheldt_19920831_014800_rst.nc
westerscheldt_19920831_020000_rst.nc

Conclusion

The obtained result comprises the result that is claimed to be obtained.

Version

This test has been carried out with version dflow-fm-x64-1.1.116.35661.
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12.2 Restart from a map-file, with stationary boundary conditions (2D)

Purpose

D-Flow FM facilitates the restart of a computation from flow data resulting from a previously
performed computation. For this purpose a _map.nc-file and an _rst.nc-file can be used.
Both types can be specified in the .mdu-file.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.1.3: D-Flow FM is able to produce his-files, map-files and restart files with output
timeseries and field output data

It is claimed that:

� a computation restarted from a _map.nc-file yields exactly the same output data as the
previously performed computation from which the original _map.nc-file was a result.

Approach

A computation is run for 240 seconds. Along the time path, several _map.nc-files and
_rst.nc-files are written. From the output _map.nc file that has been generated, the
flow field at 60 seconds, after the original start, is used as input for the computation subjected
to the test. The results after 240 seconds, both from the cold start and from the restart file,
should exactly be the same. The boundary conditions specified are constant in time, in this
case.

Model description

A simple 10 × 4 grid is generated with one open boundary. At this boundary, a constant
water level signal and salinity signal are imposed. The physical parameters as such are not of
particular interest for this test case. The start time and stop time of the original computation
are 0 seconds and 240 seconds w.r.t. the reference time, respectively. Output, either as a
_map.nc-file and as an _rst.nc-file, is generated at arbitrary times. The restart informa-
tion is specified in the mdu-file as follows:

� [restart]
RestartFile = original/simplebox_map.nc
RestartDateTime = 20010101000100

Results

The difference between the results from the cold start and from the restart at t = 240 sec-
onds, is examined for the water levels, the face-normal velocities and the salinity by means of
the root-mean-square difference measure:

� water levels h, measured difference ∆hrms = 0.0000671 m (w.r.t. reference),
� velocities u, measured difference ∆urms = 0.0000114 m/s,
� salinity s, measured difference ∆srms = 0.0001740 ppt.

Since all the three values are non-zero, it can be concluded that the restart is not fully exact.
The restart functionality itself appears to be properly.
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Conclusion

The functional working of the possibility to use _map.nc-files for restart purpose does oper-
ate properly. However, the restart is not fully exact.

Version

This test has been carried out with version dflow-fm-x64-1.1.116.35661.
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12.3 Restart from a map-file, with instationary boundary conditions (2D)

Purpose

D-Flow FM facilitates the restart of a computation from flow data resulting from a previously
performed computation. For this purpose a _map.nc-file and an _rst.nc-file can be used.
Both types can be specified in the .mdu-file.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.1.3: D-Flow FM is able to produce his-files, map-files and restart files with output
timeseries and field output data

It is claimed that:

� a computation restarted from a _map.nc-file yields exactly the same output data as the
previously performed computation from which the original _map.nc-file was a result.

Approach

A computation is run for 240 seconds. Along the time path, several _map.nc-files and
_rst.nc-files are written. From the output _map.nc file that has been generated, the
flow field at 60 seconds, after the original start, is used as input for the computation subjected
to the test. The results after 240 seconds, both from the cold start and from the restart file,
should exactly be the same. The boundary conditions specified are varying in time, in this
case.

Model description

A simple 10 × 4 grid is generated with one open boundary. At this boundary, a time-varying
water level signal and salinity signal are imposed. The physical parameters as such are not of
particular interest for this test case. The start time and stop time of the original computation
are 0 seconds and 240 seconds w.r.t. the reference time, respectively. Output, either as a
_map.nc-file and as an _rst.nc-file, is generated at arbitrary times. The restart informa-
tion is specified in the mdu-file as follows:

� [restart]
RestartFile = original/simplebox_map.nc
RestartDateTime = 20010101000100

Results

The difference between the results from the cold start and from the restart at t = 240 sec-
onds, is examined for the water levels, the face-normal velocities and the salinity by means of
the root-mean-square difference measure:

� water levels h, measured difference ∆hrms = 0.0000976 m (w.r.t. reference),
� velocities u, measured difference ∆urms = 0.0000303 m/s,
� salinity s, measured difference ∆srms = 0.0002557 ppt.

Since all the three values are non-zero, it can be concluded that the restart is not fully exact.
The restart functionality itself appears to be properly.
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Conclusion

The functional working of the possibility to use _map.nc-files for restart purpose does oper-
ate properly. However, the restart is not fully exact.

Version

This test has been carried out with version dflow-fm-x64-1.1.116.35661.
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12.4 Restart from an rst-file, with stationary boundary conditions (2D)

Purpose

D-Flow FM facilitates the restart of a computation from flow data resulting from a previously
performed computation. For this purpose a _map.nc-file and an _rst.nc-file can be used.
Both types can be specified in the .mdu-file.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.1.3: D-Flow FM is able to produce his-files, map-files and restart files with output
timeseries and field output data

It is claimed that:

� a computation restarted from a _rst.nc-file yields exactly the same output data as the
previously performed computation from which the original _rst.nc-file was a result.

Approach

A computation is run for 240 seconds. Along the time path, several _map.nc-files and
_rst.nc-files are written. From the output _rst.nc files that have been generated, the
file containing the flow field after 60 seconds (w.r.t. the original start), is used as input for the
computation subjected to the test. The results after 240 seconds, both from the cold start
and from the restart file, should exactly be the same. The boundary conditions specified are
constant in time, in this case.

Model description

A simple 10 × 4 grid is generated with one open boundary. At this boundary, a constant
water level signal and salinity signal are imposed. The physical parameters as such are not of
particular interest for this test case. The start time and stop time of the original computation
are 0 seconds and 240 seconds w.r.t. the reference time, respectively. Output, either as a
_map.nc-file and as an _rst.nc-file, is generated at arbitrary times. The restart informa-
tion is specified in the mdu-file as follows:

� [restart]
RestartFile = original/simplebox_20010101_000100_rst.nc
RestartDateTime =

Results

The difference between the results from the cold start and from the restart at t = 240 sec-
onds, is examined for the water levels, the face-normal velocities and the salinity by means of
the root-mean-square difference measure:

� water levels h, measured difference ∆hrms = 0.0000671 m (w.r.t. reference),
� velocities u, measured difference ∆urms = 0.0000114 m/s,
� salinity s, measured difference ∆srms = 0.0001740 ppt.

Since all the three values are non-zero, it can be concluded that the restart is not fully exact.
The restart functionality itself appears to be properly.
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Conclusion

The functional working of the possibility to use _rst.nc-files for restart purpose does oper-
ate properly. However, the restart is not fully exact.

Version

This test has been carried out with version dflow-fm-x64-1.1.116.35661.
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12.5 Restart from an rst-file, with instationary boundary conditions (2D)

Purpose

D-Flow FM facilitates the restart of a computation from flow data resulting from a previously
performed computation. For this purpose a _map.nc-file and an _rst.nc-file can be used.
Both types can be specified in the .mdu-file.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.1.3: D-Flow FM is able to produce his-files, map-files and restart files with output
timeseries and field output data

It is claimed that:

� a computation restarted from a _rst.nc-file yields exactly the same output data as the
previously performed computation from which the original _rst.nc-file was a result.

Approach

A computation is run for 240 seconds. Along the time path, several _map.nc-files and
_rst.nc-files are written. From the output _rst.nc files that have been generated, the
file containing the flow field after 60 seconds (w.r.t. the original start), is used as input for the
computation subjected to the test. The results after 240 seconds, both from the cold start
and from the restart file, should exactly be the same. The boundary conditions specified are
varying in time, in this case.

Model description

A simple 10 × 4 grid is generated with one open boundary. At this boundary, a time-varying
water level signal and salinity signal are imposed. The physical parameters as such are not of
particular interest for this test case. The start time and stop time of the original computation
are 0 seconds and 240 seconds w.r.t. the reference time, respectively. Output, either as a
_map.nc-file and as an _rst.nc-file, is generated at arbitrary times. The restart informa-
tion is specified in the mdu-file as follows:

� [restart]
RestartFile = original/simplebox_20010101_000100_rst.nc
RestartDateTime =

Results

The difference between the results from the cold start and from the restart at t = 240 sec-
onds, is examined for the water levels, the face-normal velocities and the salinity by means of
the root-mean-square difference measure:

� water levels h, measured difference ∆hrms = 0.0000976 m (w.r.t. reference),
� velocities u, measured difference ∆urms = 0.0000303 m/s,
� salinity s, measured difference ∆srms = 0.0002557 ppt.

Since all the three values are non-zero, it can be concluded that the restart is not fully exact.
The restart functionality itself appears to be properly.
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Conclusion

The functional working of the possibility to use _rst.nc-files for restart purpose does oper-
ate properly. However, the restart is not fully exact.

Version

This test has been carried out with version dflow-fm-x64-1.1.116.35661.
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13 Miscellaneous

13.1 Dry points through a sample set

Purpose

Under certain circumstances, it may become necessary to exclude user-specified grid cells
from the flow computations. These cells are marked by ’dry points’ that are supplied by the
user by means of samples or polygons. This test-case examines whether D-Flow FM can
correctly detect and disable the dry cells, based on a sample set with dry points.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.8.5: D-Flow FM can take into account the explicit specification of dry points

Approach

A Cartesian mesh is deployed in a rectangular domain. Appropriate boundary conditions
are applied to create a stationary flow field. Dry points are specified by a sample set and
effectively divide the mesh into three parts: one part contains both the inflow and outflow
boundaries and is separated from the other two parts by means of the dry points. The two
other parts are divided such that on of them contains only the inflow boundary, while the other
only contains the outflow boundary.

The three parts are connected by 1D flowlinks to enable a stationary flow. The flow-field
through the one part that contains both boundaries should be identical to the flow-field through
the two other parts that connected by the 1D flowlinks.

Model description

The computational domain is 50× 40 m2. A velocity boundary condition of 1 m/s is supplied
at the left-hand side and a uniform waterlevel of 0 m (w.r.t. reference) is specified at the right-
hand side of the domain.

The computational grid contains cells of 10×10 m2 and is depicted in Figure 13.3. The upper
part of the middle column of cells, and a complete row of cells are disable by the samples as
shown in the figure. The upper-left and upper-right part of the grid are connected through the
two 1D-flowlinks shown in pink. The width and bedlevel of the 1D flowlinks equals the width
and bedlevel of the 2D gridcells.

The bottom part of the domain contains (a part of) both the inflow and outflow boundaries and
is completely separated from the top parts by the dry points. The top-left part contains only
(a part of) the inflow-boundary, while the top-right part contains only (a part of) the outflow
boundary. The top parts are separated by dry points, but connected trough the 1D flowlinks.

The simulation period is set to 150 sec. and the time-step is 1 sec. Since horizontal
momentum diffusion and higher-order advection are discretized differently at the 1D flowlinks,
we have set the horizontal viscosity coefficient to zero and employed a first-order advection
scheme, respectively.
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Figure 13.1: Computational mesh; dry points are specified by the samples as shown in
red; 1D links are shown in pink; observation stations are shown as blue
crosses.

Results

The water levels at the observations points are presented in Figure 13.4. The water levels in
the top part of the domain are identical to the water levels in the bottom part.

Figure 13.2: Water levels at the observation points

Conclusion

Dry points can be specified by means of a sample set and used to exclude computational
cells from the computations.

Version

This test has been carried out with version dflow-fm-x64-1.1.116.36629.
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Miscellaneous

13.2 Dry points through a polygon

Purpose

Under certain circumstances, it may become necessary to exclude user-specified grid cells
from the flow computations. These cells are marked by ’dry points’ that are supplied by the
user by means of samples or polygons. This test-case examines whether D-Flow FM can
correctly detect and disable the dry cells defined by a polygon.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.8.5: D-Flow FM can take into account the explicit specification of dry points

Approach

A Cartesian mesh is deployed in a rectangular domain. Appropriate boundary conditions are
applied to create a stationary flow field. Dry points are defined by a polygon and effectively
divide the mesh into three parts: one part contains both the inflow and outflow boundaries
and is separated from the other two parts by means of the dry points. The two other parts are
divided such that on of them contains only the inflow boundary, while the other only contains
the outflow boundary.

The three parts are connected by 1D flowlinks to enable a stationary flow. The flow-field
through the one part that contains both boundaries should be identical to the flow-field through
the two other parts that connected by the 1D flowlinks.

Model description

The computational domain is 50× 40 m2. A velocity boundary condition of 1 m/s is supplied
at the left-hand side and a uniform waterlevel of 0 m (w.r.t. reference) is specified at the right-
hand side of the domain.

The computational grid contains cells of 10×10 m2 and is depicted in Figure 13.3. The upper
part of the middle column of cells, and a complete row of cells are disable by the polygon as
shown in the figure. The upper-left and upper-right part of the grid are connected through the
two 1D-flowlinks shown in pink. The width and bedlevel of the 1D flowlinks equals the width
and bedlevel of the 2D gridcells.

The bottom part of the domain contains (a part of) both the inflow and outflow boundaries and
is completely separated from the top parts by the dry points. The top-left part contains only
(a part of) the inflow-boundary, while the top-right part contains only (a part of) the outflow
boundary. The top parts are separated by dry points, but connected trough the 1D flowlinks.

The simulation period is set to 150 sec. and the time-step is 1 sec. Since horizontal
momentum diffusion and higher-order advection are discretized differently at the 1D flowlinks,
we have set the horizontal viscosity coefficient to zero and employed a first-order advection
scheme, respectively.

Results

The water levels at the observations points are presented in Figure 13.4. The water levels in
the top part of the domain are identical to the water levels in the bottom part.
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Figure 13.3: Computational mesh; dry points are specified by the polygon as shown in
blue; 1D links are shown in pink; observation stations are shown as blue
crosses.

Figure 13.4: Water levels at the observation points

Conclusion

Dry points can be specified by means of a polygon and used to exclude computational cells
from the computations.

Version

This test has been carried out with version dflow-fm-x64-1.1.116.36629.
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14 Practical cases

14.1 Schematized Frisian inlet

Purpose

For D-Flow FM, a coupling with an external wave module has been established. The quality
of the joint functionality is assessed in a distinct test engine (engine e26 for D-Flow FM, also
see engine e23 for the coupling with Delft3D) by means of a set of five separate test cases.
For all these five test cases, insight in the flow behavior itself, i.e. without waves, is required in
particular to see if the fundament of the wave test case is sound. For this purpose, the results
of these five test cases (without waves) are analyzed with the associated Delft3D results as a
backdrop. This particular test case examines one of these five test cases. In this test case, a
strongly schematized version of the Frisian Inlet is considered.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.1.2: D-Flow FM is suitable for the prediction of the tidal dynamics in estuaries or
coastal seas

Approach

The following actions have been deployed in order to come to a sound test case validation:

1 Working copies of the original Delft3D models have been created for the five test cases.
2 The Delft3D models are modified in order to:

� switch off the wave functionality,
� switch off any reference to sed/mor-type of functionality,
� switch off any reference to source/sink-functionality,
� switch off any reference to 3D-functionality (scope is restricted to 2D).

3 The five Delft3D test models are converted to D-Flow FM equivalents by means of the
Matlab tool dflowfmConverter, available within OpenEarth.

4 The way of dealing with the bathymetry is different in D-Flow FM compared to Delft3D. In
order to come closest to a methodology, the settings for the bathymetry are set to:

� Delft3D: Dryflp=NO, Dpsopt=MAX and Dpuopt=MEAN,
� D-Flow FM: BedLevType = 3 and Conveyance2D = -1.

5 In case astronomic or harmonic boundary conditions are imposed, one additional modifi-
cation is applied regarding the number of support points. Consider a boundary condition
prescribed through 2 support points, with different amplitude and phase for each support
point, then the approaches are as following:

� Delft3D: linearly interpolate the amplitudes and phases between the 2 support points,
and then construct the timeseries for the quantity under consideration,

� D-Flow FM: construct the timeseries at the 2 support points, and then linearly interpo-
late between the support points.

These two approaches can lead to differences if the distance between 2 support points
is relatively large. In order to circumvent differences due to this cause, additional sup-
port points are prescribed in the Delft3D model, yielding additional support points in the
converted D-Flow FM equivalents.

6 A dedicated Matlab script is written to visualize the entire flow field (velocity vectors) as
well as the water level and velocity magnitude at an arbitrary observation point of interest.
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(a) The grid, the bathymetry and the locations of the ob-
servation points.

(b) Velocity vectors after 25.0 hours from the start of the
simulation (Delft3D in blue, D-Flow FM in red).

(c) Timeseries of the water level at observation location
4 (see Figure 14.1a).

(d) Timeseries of the velocity magnitude at observation
location 4 (see Figure 14.1a).

Figure 14.1: Analysis of the schematized Frisian Inlet case.

Model description

The model consists of a curvilinear grid. This grid as well as the imposed bathymetry are
visualized Figure 14.1a. The model has directly been derived from the original Delft3D test
case found in this repository:

https://repos.deltares.nl/repos/DSCTestbench/cases/trunk/e23_d3dflow-wave/

as test case:

e23_f01_c08-f34

In addition to the original case, an extra boundary support point has been added at the north
side.
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Practical cases

Results

Some selected results are highlighted in Figure 14.1. The flow fields from Delft3D and D-Flow
FM after 25 hours of simulated time have appeared to be very close to each other. To keep the
analysis brief and concise, only the water level and velocity magnitude are plotted for only one
location: Figure 14.1 shows that the water levels and the velocity magnitudes fairly coincide
at the observation point in the center of the domain, which is a representative result for the
other observation locations as well.

Conclusion

The test case for the schematized Frisian Inlet is suitable to serve as a test case for the joint
functionality of D-Flow FM with the external wave module.

Version

This test has been carried out with version dflow-fm-x64-1.1.116.36086.
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14.2 Realistic Frisian inlet

Purpose

For D-Flow FM, a coupling with an external wave module has been established. The quality
of the joint functionality is assessed in a distinct test engine (engine e26 for D-Flow FM, also
see engine e23 for the coupling with Delft3D) by means of a set of five separate test cases.
For all these five test cases, insight in the flow behavior itself, i.e. without waves, is required in
particular to see if the fundament of the wave test case is sound. For this purpose, the results
of these five test cases (without waves) are analyzed with the associated Delft3D results as a
backdrop. This particular test case examines one of these five test cases. In this test case, a
schematized though realistic version of the Frisian Inlet is considered.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.1.2: D-Flow FM is suitable for the prediction of the tidal dynamics in estuaries or
coastal seas

Approach

The following actions have been deployed in order to come to a sound test case validation:

1 Working copies of the original Delft3D models have been created for the five test cases.
2 The Delft3D models are modified in order to:

� switch off the wave functionality,
� switch off any reference to sed/mor-type of functionality,
� switch off any reference to source/sink-functionality,
� switch off any reference to 3D-functionality (scope is restricted to 2D).

3 The five Delft3D test models are converted to D-Flow FM equivalents by means of the
Matlab tool dflowfmConverter, available within OpenEarth.

4 The way of dealing with the bathymetry is different in D-Flow FM compared to Delft3D. In
order to come closest to a methodology, the settings for the bathymetry are set to:

� Delft3D: Dryflp=NO, Dpsopt=MAX and Dpuopt=MEAN,
� D-Flow FM: BedLevType = 3 and Conveyance2D = -1.

5 In case astronomic or harmonic boundary conditions are imposed, one additional modifi-
cation is applied regarding the number of support points. Consider a boundary condition
prescribed through 2 support points, with different amplitude and phase for each support
point, then the approaches are as following:

� Delft3D: linearly interpolate the amplitudes and phases between the 2 support points,
and then construct the timeseries for the quantity under consideration,

� D-Flow FM: construct the timeseries at the 2 support points, and then linearly interpo-
late between the support points.

These two approaches can lead to differences if the distance between 2 support points
is relatively large. In order to circumvent differences due to this cause, additional sup-
port points are prescribed in the Delft3D model, yielding additional support points in the
converted D-Flow FM equivalents.

6 A dedicated Matlab script is written to visualize the entire flow field (velocity vectors) as
well as the water level and velocity magnitude at an arbitrary observation point of interest.
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Model description

The model consists of a curvilinear grid. This grid as well as the imposed bathymetry are
visualized Figure 14.2a. The model has directly been derived from the original Delft3D test
case found in this repository:

https://repos.deltares.nl/repos/DSCTestbench/cases/trunk/e23_d3dflow-wave/

as test case:

e23_f01_c04-botnow_curnow

which comprises a realistic Frisian Inlet model with tidal flats.

Results

Some selected results are highlighted in Figure 14.2. The flow fields from Delft3D and D-Flow

(a) The grid, the bathymetry and the locations of the observation
points (box highlighted in Figure 14.2b).

(b) Velocity vectors after 31.5 hours from the
start of the simulation (Delft3D in blue, D-
Flow FM in red).

(c) Timeseries of the water level at observation location
65 (see Figure 14.2a).

(d) Timeseries of the velocity magnitude at observation
location 65 (see Figure 14.2a).

Figure 14.2: Analysis of the realistic Frisian Inlet case.

FM after 31.5 hours of simulated time have appeared to be very close to each other. To keep
the analysis brief and concise, only the water level and velocity magnitude are plotted for
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only one location: Figure 14.2 shows that the water levels and the velocity magnitudes fairly
coincide at the observation point in the center of the domain, which is a representative result
for the other observation locations as well.

Conclusion

The test case for the realistic Frisian Inlet is suitable to serve as a test case for the joint
functionality of D-Flow FM with the external wave module.

Version

This test has been carried out with version dflow-fm-x64-1.1.116.36086.
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Practical cases

14.3 Californian coast

Purpose

For D-Flow FM, a coupling with an external wave module has been established. The quality
of the joint functionality is assessed in a distinct test engine (engine e26 for D-Flow FM, also
see engine e23 for the coupling with Delft3D) by means of a set of five separate test cases.
For all these five test cases, insight in the flow behavior itself, i.e. without waves, is required in
particular to see if the fundament of the wave test case is sound. For this purpose, the results
of these five test cases (without waves) are analyzed with the associated Delft3D results as a
backdrop. This particular test case examines one of these five test cases. In this test case, a
part of a coastal area along California is considered.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.1.2: D-Flow FM is suitable for the prediction of the tidal dynamics in estuaries or
coastal seas

Approach

The following actions have been deployed in order to come to a sound test case validation:

1 Working copies of the original Delft3D models have been created for the five test cases.
2 The Delft3D models are modified in order to:

� switch off the wave functionality,
� switch off any reference to sed/mor-type of functionality,
� switch off any reference to source/sink-functionality,
� switch off any reference to 3D-functionality (scope is restricted to 2D).

3 The five Delft3D test models are converted to D-Flow FM equivalents by means of the
Matlab tool dflowfmConverter, available within OpenEarth.

4 The way of dealing with the bathymetry is different in D-Flow FM compared to Delft3D. In
order to come closest to a methodology, the settings for the bathymetry are set to:

� Delft3D: Dryflp=NO, Dpsopt=MAX and Dpuopt=MEAN,
� D-Flow FM: BedLevType = 3 and Conveyance2D = -1.

5 In case astronomic or harmonic boundary conditions are imposed, one additional modifi-
cation is applied regarding the number of support points. Consider a boundary condition
prescribed through 2 support points, with different amplitude and phase for each support
point, then the approaches are as following:

� Delft3D: linearly interpolate the amplitudes and phases between the 2 support points,
and then construct the timeseries for the quantity under consideration,

� D-Flow FM: construct the timeseries at the 2 support points, and then linearly interpo-
late between the support points.

These two approaches can lead to differences if the distance between 2 support points
is relatively large. In order to circumvent differences due to this cause, additional sup-
port points are prescribed in the Delft3D model, yielding additional support points in the
converted D-Flow FM equivalents.

6 A dedicated Matlab script is written to visualize the entire flow field (velocity vectors) as
well as the water level and velocity magnitude at an arbitrary observation point of interest.
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Model description

The model consists of a curvilinear grid. This grid as well as the imposed bathymetry are
visualized Figure 14.3a. The model has directly been derived from the original Delft3D test
case found in this repository:

https://repos.deltares.nl/repos/DSCTestbench/cases/trunk/e23_d3dflow-wave/

as test case:

e23_f01_c07-wavewatch_file

For the central California test case, some additional modifications are applied to the original
Delft3D-model, namely:

� The .bnd-file contains reflection coefficients: initially, these values have been set 104.
However, D-Flow FM does not support reflection coefficients. Hence, these coefficients
are set to zero.

� The .bnd-file contains a piecewise setup of the boundary conditions locations; initially, at
the connection of the various pieces, the same boundary conditions values are specified
for the two adjacent cells, spoiling the strict linear interpolation of the boundary conditions.
In the original data outcomes, spurious flow patterns were observed at the connections
of the several pieces spanning the boundary conditions. As a remedy, the two adjacent
points, connecting two pieces of the boundary locations specification have been merged
into one cell.

� The option tlfsmo (Fourier smoothing) is set to zero, for the implementation of this
smoothing option is different in D-Flow FM compared to Delft3D. In Delft3D, the smoothing
operation is only applied to the equilibrium position of the imposed signal, whereas D-Flow
FM applies the smoothing to the entire signal: to either the equilibrium position as well to
the periodic components.

Results

Some selected results are highlighted in Figure 14.3. A remarkable observation from the
right panel of Figure 14.3 is that oscillations occur in the output signal of Delft3D. This kind
of oscillations is observed at every observation point. Some investigations have, however,
shown that these oscillations can circumvented through returning to the original setting: either
through setting the reflection coefficient to a high value, or through prescribing the original
boundary locations specifications.

However, the first option spoils the agreement of both data (Delft3D results do not show
oscillations anymore, by the output signals are flawed); the second option introduces spurious
flow patterns (it is remarkable though that the piecewise prescription makes the oscillations
disappear).

Conclusion

The test case for the California coast case is suitable to serve as a test case for the joint
functionality of D-Flow FM with the external wave module.

Version

This test has been carried out with version dflow-fm-x64-1.1.116.36086.
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Practical cases

(a) The grid, the bathymetry and the locations of the ob-
servation points (box highlighted in Figure 14.3b).

(b) Velocity vectors after 960 hours from the start of the
simulation (Delft3D in blue, D-Flow FM in red).

(c) Timeseries of the water level at observation location
9 (see Figure 14.3a).

(d) Timeseries of the velocity magnitude at observation
location 9 (see Figure 14.3a).

Figure 14.3: Analysis of the schematized Californian coast case.
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14.4 Wind over Lake Loosdrecht

Purpose

For D-Flow FM, a coupling with an external wave module has been established. The quality
of the joint functionality is assessed in a distinct test engine (engine e26 for D-Flow FM, also
see engine e23 for the coupling with Delft3D) by means of a set of five separate test cases.
For all these five test cases, insight in the flow behavior itself, i.e. without waves, is required in
particular to see if the fundament of the wave test case is sound. For this purpose, the results
of these five test cases (without waves) are analyzed with the associated Delft3D results as a
backdrop. This particular test case examines one of these five test cases. In this test case,
wind driven flow in Lake Loosdrecht is considered.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.1.2: D-Flow FM is suitable for the prediction of the tidal dynamics in estuaries or
coastal seas

Approach

The following actions have been deployed in order to come to a sound test case validation:

1 Working copies of the original Delft3D models have been created for the five test cases.
2 The Delft3D models are modified in order to:

� switch off the wave functionality,
� switch off any reference to sed/mor-type of functionality,
� switch off any reference to source/sink-functionality,
� switch off any reference to 3D-functionality (scope is restricted to 2D).

3 The five Delft3D test models are converted to D-Flow FM equivalents by means of the
Matlab tool dflowfmConverter, available within OpenEarth.

4 The way of dealing with the bathymetry is different in D-Flow FM compared to Delft3D. In
order to come closest to a methodology, the settings for the bathymetry are set to:

� Delft3D: Dryflp=NO, Dpsopt=MAX and Dpuopt=MEAN,
� D-Flow FM: BedLevType = 3 and Conveyance2D = -1.

5 In case astronomic or harmonic boundary conditions are imposed, one additional modifi-
cation is applied regarding the number of support points. Consider a boundary condition
prescribed through 2 support points, with different amplitude and phase for each support
point, then the approaches are as following:

� Delft3D: linearly interpolate the amplitudes and phases between the 2 support points,
and then construct the timeseries for the quantity under consideration,

� D-Flow FM: construct the timeseries at the 2 support points, and then linearly interpo-
late between the support points.

These two approaches can lead to differences if the distance between 2 support points
is relatively large. In order to circumvent differences due to this cause, additional sup-
port points are prescribed in the Delft3D model, yielding additional support points in the
converted D-Flow FM equivalents.

6 A dedicated Matlab script is written to visualize the entire flow field (velocity vectors) as
well as the water level and velocity magnitude at an arbitrary observation point of interest.
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Practical cases

Model description

The model consists of a curvilinear grid. This grid as well as the imposed bathymetry are
visualized Figure 14.4a. The model has directly been derived from the original Delft3D test
case found in this repository:

https://repos.deltares.nl/repos/DSCTestbench/cases/trunk/e23_d3dflow-wave/

as test case:

e23_f99_c99-of_loosdrecht_mean

The test case with wind driven flow in Lake Loosdrecht is a test case without specific boundary
conditions. Only a time-varying wind field is present, prescibed by a unimagdir-type ascii-
file. The computational grid is filled by a significant number of thin dams. Thus, eddy formation
due to topographical forcing is expected. The surface elevations and velocity magnitudes are
expected to be relatively small.

Results

The flow field after the specified simulated time is shown in Figure 14.4 for the northern part
of the geometry as well as the velocity magnitude time series at the observation point marked
by a black dot. Having considered the surface elevations and velocity magnitudes at several

(a) The grid, the bathymetry and the locations of the ob-
servation points (box highlighted in Figure 14.4b).

(b) Velocity vectors after 29.0 hours from the start of the
simulation (Delft3D in blue, D-Flow FM in red).

(c) Timeseries of the water level at observation location
4 (see Figure 14.4a).

(d) Timeseries of the velocity magnitude at observation
location 4 (see Figure 14.4a).

Figure 14.4: Analysis of the Lake Loosdrecht case.
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locations as well as having inspected the eddy pattern at several points in time, the differences
between Delft3D and D-Flow FM can be considered small, taking into account the subtlety of
the flow situation.

Conclusion

The test case for wind driven flow over Lake Loosdrecht is suitable to serve as a test case for
the joint functionality of D-Flow FM with the external wave module.

Version

This test has been carried out with version dflow-fm-x64-1.1.116.36086.
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14.5 Flow around an obstacle placed on an inclined bed

Purpose

For D-Flow FM, a coupling with an external wave module has been established. The quality
of the joint functionality is assessed in a distinct test engine (engine e26 for D-Flow FM, also
see engine e23 for the coupling with Delft3D) by means of a set of five separate test cases.
For all these five test cases, insight in the flow behavior itself, i.e. without waves, is required in
particular to see if the fundament of the wave test case is sound. For this purpose, the results
of these five test cases (without waves) are analyzed with the associated Delft3D results as a
backdrop. This particular test case examines one of these five test cases. In this test case,
the flow over an inclined bed and around an obstacle as well is considered.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.1.2: D-Flow FM is suitable for the prediction of the tidal dynamics in estuaries or
coastal seas

Approach

The following actions have been deployed in order to come to a sound test case validation:

1 Working copies of the original Delft3D models have been created for the five test cases.
2 The Delft3D models are modified in order to:

� switch off the wave functionality,
� switch off any reference to sed/mor-type of functionality,
� switch off any reference to source/sink-functionality,
� switch off any reference to 3D-functionality (scope is restricted to 2D).

3 The five Delft3D test models are converted to D-Flow FM equivalents by means of the
Matlab tool dflowfmConverter, available within OpenEarth.

4 The way of dealing with the bathymetry is different in D-Flow FM compared to Delft3D. In
order to come closest to a methodology, the settings for the bathymetry are set to:

� Delft3D: Dryflp=NO, Dpsopt=MAX and Dpuopt=MEAN,
� D-Flow FM: BedLevType = 3 and Conveyance2D = -1.

5 In case astronomic or harmonic boundary conditions are imposed, one additional modifi-
cation is applied regarding the number of support points. Consider a boundary condition
prescribed through 2 support points, with different amplitude and phase for each support
point, then the approaches are as following:

� Delft3D: linearly interpolate the amplitudes and phases between the 2 support points,
and then construct the timeseries for the quantity under consideration,

� D-Flow FM: construct the timeseries at the 2 support points, and then linearly interpo-
late between the support points.

These two approaches can lead to differences if the distance between 2 support points
is relatively large. In order to circumvent differences due to this cause, additional sup-
port points are prescribed in the Delft3D model, yielding additional support points in the
converted D-Flow FM equivalents.

6 A dedicated Matlab script is written to visualize the entire flow field (velocity vectors) as
well as the water level and velocity magnitude at an arbitrary observation point of interest.
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Model description

The model consists of a curvilinear grid. This grid as well as the imposed bathymetry are
visualized Figure 14.5a. The model has directly been derived from the original Delft3D test
case found in this repository:

https://repos.deltares.nl/repos/DSCTestbench/cases/trunk/e23_d3dflow-wave/

as test case:

e23_f01_c06-wavecon

The test case comprises the flow around an obstacle in a schematized coastal zone. The
coastal zone is represented as an inclined bed. Originally, the option tlfsmo (Fourier
smoothing) was switched on. Since the implementation of this Fourier smoothing procedure
for the boundary conditions is different in D-Flow FM compared to Delft3D (in Delft3D, the
smoothing operation is only applied to the equilibrium position of the imposed signal, whereas
D-Flow FM applies the smoothing to the entire signal), the key tlfsmo is set to zero.

In order to prevent shockwaves due to a initial mismatch between boundary conditions and
initial water level, the initial water level is set to 1.506 m+NAP, which is the initial value of the
(homogeneous) boundary conditions signal.

Results

Illustrative results for the water level and the velocity magnitude for an observation point in the
wake of the obstacle are shown in Figure 14.5 as an example.

For this testcase, it is seen that the water levels computed by Delft3D and D-Flow FM coin-
cide. The velocities, however, show different behavior as these develop in time: the trend fairly
coincides, but the fluctuations significantly differ. An assessment on the basis of more analyt-
ical considerations is desired in order to examine whether of the two packages represent the
soundest physical behavior.

Conclusion

The test case for flow around an obstacle placed on an inclined bed could be used as a test
case for the joint functionality of D-Flow FM with the external wave module. However, one
should be aware of the above described descrepancies.

Version

This test has been carried out with version dflow-fm-x64-1.1.116.36086.
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(a) The grid, the bathymetry and the locations of the ob-
servation points (box highlighted in Figure 14.5b).

(b) Velocity vectors after 31.5 hours from the start of the
simulation (Delft3D in blue, D-Flow FM in red).

(c) Timeseries of the water level at observation location
65 (see Figure 14.5a).

(d) Timeseries of the velocity magnitude at observation
location 65 (see Figure 14.5a).

Figure 14.5: Analysis of the realistic Frisian Inlet case.
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14.6 Spiderweb winds

Purpose

Hurricanes or cyclones can be represented in a hydraulic computation as an external force
by imposing a spiderweb wind field. This testcase considers the results of a D-Flow FM
computation with a spiderweb wind field.

Linked claims

Claims that are related to the current test case are:

� claim 2.3.1.2: D-Flow FM is suitable for the prediction of the tidal dynamics in estuaries or
coastal seas

� claim 2.3.5.3: D-Flow FM can be used for the prediction of storm surges due to cyclone
winds

� claim 2.3.5.4: D-Flow FM can accurately simulate the effects of space and time varying
wind stresses at the free water surface

Approach

A test model from the Delft3D testbench is converted to a D-Flow FM equivalent. This model
comprises a schematisation of the Mexican Gulf area, with the hurricane Katrina represented
through a spiderweb wind field file.

Model description

The Delft3D-model containing the model schematization contains 170× 127 grid cells. This
grid is converted to a D-Flow FM grid. This grid is shown in Figure 14.6. In addition, a sec-
ond grid is generated containing the domain discretization through triangles. The boundary
conditions are specified as water levels, by means of astronomic components. To benefit the
transparency of the computational results, the computations is started from an initial flow field
yielding zero velocities and a plane water level equal to 0 m with respect to the reference level.
For the same purpose, no salinity boundary conditions are imposed.

Relevant input settings are:

� the averaged pressure is 101325 N/m2, as is the average air pressure on the open bound-
aries,

� the density of the water and the density of the air are 1025.0 kg/m3 and 1.2 kg/m3 respec-
tively,

� the bottom friction is set equal to 0.024 (as Manning coefficient),
� the horizontal eddy viscosity is set equal to 0 m2/s,
� the wind drag coefficient is specified as a function of the wind speed through 2 breakpoints,

as is the default.

The cyclone is specified by means of the file katrina.spw. This file contains spatial infor-
mation of the wind speed magnitude (m/s), its direction (in degrees) and the pressure drop
as a function of time. Each 180 minutes, a spatial distribution is provided in a polar coor-
dinates reference system. The cyclone eye trajectory is visualized by means of red dots in
Figure 14.6.

A Delft3D computation is used to compare the D-Flow FM output with. The settings of the
Delft3D computation is chosen exactly the same as the D-Flow FM computation to ensure
sound comparison. Output data are evaluated at the observation points as shown in Fig-
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Figure 14.6: Spherical grid covering the Mexican Gulf area south of New Orleans. The
black dots denoted observation points; the red dots denote the cyclone eye
trajectory in time.

ure 14.6.

Results

In each grid cell an observation point is present. Observation point numbers 32 (shown in
blue in Figure 14.6), 25 and 11 are chosen for comparison of the D-Flow FM output with the
Delft3D output. The water level time series from both packages are shown in Figure 14.7.
The three observations are the most interesting, since these are located close to the path of
the eye of the cyclone.

Figure 14.7 shows the results of a computation without the cyclone wind imposed (left panels)
and the results of a computation with cyclone wind imposed (right panels). The first computa-
tion is used to be able to make distinction between the differences due to wind and differences
due to other causes.

The left panels of Figure 14.7 show that D-Flow FM slightly deviates from the Delft3D results:
the maximum water levels, computed by D-Flow, at the three locations considered are slightly
lower compared to Delft3D. A similar conclusion holds for the computation with the spiderweb
wind field, be it slightly more pronounced.

However, the more one tends to the coast, the differences between the Delft3D-results and
the D-Flow FM results increase (for instance at point 12, not shown here). This might be due
to the inactivation of advection terms in this area, in Delft3D. Otherwise, these differences
might have a common cause compared to the simple testcase of wind over a schematized
lake.
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Figure 14.7: Computed water level signals at three locations across the domain. Left
panels: results of the computation without the cyclone wind; right panels:
results of the computation with cyclone wind.

Conclusion

The spiderweb wind functionality appears to work properly. However, near the coast of the
domain, differences between D-Flow FM and Delft3D tend to increase.

Version

This test has been carried out with version dflow-fm-x64-1.1.116.36629.
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15 In depth considerations

15.1 Dam break over a wet bed: quantitative analysis on numerical accuracy

Purpose

In other sections, the accuracy of D-Flow FM has been verified for a one-dimensional model
of flooding over a wet bed resulting from a dam break. The verification of the accuracy was
done there in a highly qualitative form, through graphical comparison of the computed state
variables (water depth h and flow velocity u) and the analytical solution of the flow equations.
In this section this one-dimensional dam-break case study is revisited, but now the accuracy
with which the analytical solution is (re)produced by D-Flow FM is analysed quantitatively. In
particular it is verified how the accuracy of the model predictions responds to refinements of
the computational grid (∆x) and the time step (∆t), and thus obtain insight in the order of
accuracy of D-Flow FM’s numerical scheme.

Linked claims

Claims that are investigated in the current test case are:

� The accuracy of the time integration scheme in D-Flow FM appears to be of first order in
this application.

� The accuracy of the spatial discretisation scheme is of first order.

Approach

In the present validation tests the same model has been used as earlier in this document, with
in particular the same geometry, computational settings, and model parameters (initial and
boundary conditions, length L of the domain, location x0 of the dambreak, etc.). These and
other settings that have been used in the various D-Flow FM computations will be mentioned
below in a separate section.

For the present one-dimensional dambreak over a wet bed an analytical solution of the flow
equations is available. This analytical solution (also recapitulated below in a separate section)
forms the basis for our quantitative analysis of the numerical accuracy of D-Flow FM. In this
analysis the following approach is adopted.

D-Flow FM simulations have been carried out for various systematic variations of both the grid
size in the spatial discretisation, and the time step in the numerical time integration of the flow
equations.

In the variations of the spatial discretisations four uniform rectangular grids are used, i.e.
grids with cells of a constant size ∆x along the longitudinal (x) direction of the computational
domain. The cells of these grids are respectively of size ∆x = 500, 100, 50 and 25 m. With
a longitudinal length L = 60 km of the domain this means that in the x-direction these grids
consist of 120, 600, 1200, and 2400 cells. The four grids that are here considered therefore
provide stepwise (and mutually ’comparable’) refinements of the spatial resolution.

Compared to other, conciser tests a main extension within the validation study is that also
the effect of the time step ∆t on the accuracy is investigated by varying ∆t in the numerical
integration of the model equations. These variations of ∆t are within a range of 0.01 to 5
seconds.

The effect of grid-size and time-step refinements on the accuracy of D-Flow FM simulations
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will be quantified through statistical error measures derived from the errors ∆h(x, t) and
∆u(x, t) in the model’s prediction of the water depth h(x, t) and flow velocity u(x, t) at the
cell centres1. The errors are defined by ∆h(x, t) := hA(x, t)− hC(x, t) and ∆u(x, t) :=
uA(x, t)− uC(x, t), with subscript C indicating a variable computed by D-Flow FM and with
subscript A indicating the analytical solution. Apart from the water depth and the velocity, the
errors in the computed flow discharge ∆(h(x, t) · u(x, t)) will be analysed as well.

Three error measures L1, L2, and L∞ will be considered for the quantification and compari-
son of the accuracy of the D-Flow FM solutions for the various variations in grid size and time
step. These Lk (k = 1, 2,∞) are actually vector norms applied to the set of model errors
{∆h(x, t)}(x,t)∈A and {∆u(x, t)}(x,t)∈A on some sub-areaA of the computational domain.
They are defined by the following generic formula2:

Lk(∆ξ) = k

√
1

NA

∑
(x,t)∈A

|∆ξ(x, t)|k (15.1)

In these equations, NA denotes the number of cell centres (x, t) ∈ A. The ξ represents one
of the three considered flow quantities, i.e. water depth h, flow velocity u, or the discharge
h · u.

The error measures will be computed for several sub-areas A of the (spatial and temporal)
computational domain. The selection of the sub-areas is guided by the regions in the (x, t)
domain where the analytical solution of the flow variables h(x, t), u(x, t) and h(x, t)·u(x, t)
has specific properties. In one of the sections below this selection of adequate sub-areas is
adressed in detail. Next, the dependency of the error norms on the grid size ∆x and time
step ∆t will be evaluated for the various sub-areas, from which the order of accuracy of the
numerical solutions can be obtained.

Analytical solution for the one-dimensional dambreak over a wet bed

The spatial domain is assumed to range from from x = 0 to x = L, and the location of
the dambreak is at x = x0. The initial system state (at t = 0, denoting the begin of the
dambreak) is a stepwise water depth with h(x) = hl for 0 ≤ x ≤ x0 and h(x) = hr for
x0 < x < L. This longitudinal water depth profile thus includes a discontinuity at x = x0.

For the case of no bed friction, and no viscosity effects, an analytical solutiuon is available for
the flow equations (see Delestre et al., 2011) . For a convenient formulation of this analytical
solution three linear separators xA(t), xB(t), and xC(t) of the (x, t)-model domain are

1Ideally, the error across the entire domain should be considered. It is, however, not clear how the discrete
solution at cell centres should be extended in between the cell centres. Water depth h is assumed piecewise
constant per grid cell in the time derivative of the continuity equation (a central approximation), but its value at the
cell faces is obtained by (first-order) upwind. Velocity u at cell centers is obtained from averaging the values at the
faces of the cells, thereby introducing averaging errors. Although in 1D u at cell faces could be considered when
the grid is aligned with the flow (as is the case here), this is not possible in general, which is why we decided not
to exploit this possibility.

By only considering the value of h and u at cell centers, at most additional second-order errors are introduced
due to the use of the 1-point Gauss integration rule (h) and 2-point central averaging (u). If necessary, this should
be taken into account when interpreting the results.

Note that the discharges computed at the cell centers do not correspond with the discharges at the cell faces
used in the D-Flow FM simulations. Because of the use of a first-order upwind h in the latter, the deviation will in
general be first order. This is a discretization error, not an error in the interpretation of the results.

2Note that L1(·) is the mean absolute error over A, while L2(·) is the RMS (root mean square) of the model
error. It is readily verified that L∞(·) corresponds to the maximum of the pointwise absolute errors |∆ξ(x, t)| over
A.
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defined according to:
xA(t) = x0 − t ·

√
g · hl

xB(t) = x0 + 2t ·
√
g · hl − 3tcm

xC(t) = x0 + 2t ·
c2
m

(√
g · hl − cm

)
c2
m − g · hr

(15.2)

These separators induce four partitions of the model domain and on these sub-domains the
analytical solution for the water depth reads:

h(x, t) =



hl, if x < xA(t)

4

9g

(√
g · hl −

x − x0

2t

)2

if xA(t) ≤ x ≤ xB(t)

c2
m

g
if xB(t) ≤ x ≤ xC(t)

hr if x > xC(t).

(15.3)

The analytical solution for the velocity along the four sub-domains is provided by:

u(x, t) =



0 if x < xA(t),
2

3
·
(
x − x0

t
+
√
g · hl

)
if xA(t) ≤ x ≤ xB(t),

2 ·
(√

g · hl − cm
)

if xB(t) ≤ x ≤ xC(t),

0 if x > xC(t).

(15.4)

These analytical solutions involve a velocity cm that depends on the water depths hl and hr
at the left and right hand boundaries of the domain. This dependency of cm and hl and hr is
implicitly defined by the equation:

−8ghrc
2
m

(√
ghl − cm

)2

+
(
c2
m − ghr

)2 (
c2
m + ghr

)
= 0. (15.5)

See Section 4.1.1 in Delestre et al. (2011). For given hl and hr a numerical root finding
method must be used to derive cm.

Later in this chapter illustrations of these analytical solutions for h(x, t), u(x, t), and the
discharge h(x, t) · u(x, t) will be shown, together with corresponding numerical solutions
according to D-Flow FM.

Model description

In all computations the following values were adopted for the flow and geometric parameters
present in the analytical 1D dambreak model of Equation (15.9) and Equation (15.10).

� domain length: L = 60, 000 m (and thus 0 ≤ x ≤ 60, 000 m).
� Water depth boundary conditions: hl = 2 m and hr = 0.1 m.
� Location of the dam break: x0 = 30, 000 m.
� Gravity acceleration: g = 9.81 m/s2 .
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For these parameters the following value is found for the velocity cm implicitly defined by
Equation (15.7): cm = 2.4665507 m/s. This velocity corresponds to a water depth hm :=
cm

2/g = 0.6201705 m.

The same computational grids have been used as earlier in this document, although only the
uniform rectangular grids 5, 1, 2, 3 are now taken into account3. These four grids are all built
up of equally sized rectangular cells with ∆x = 500, 100, 50 and 25 m respectively. They
thus provide stepwise (and mutually ’comparable’) refinements of the spatial resolution.

In the assessment of the sensitivity and accuracy for the time step D-Flow FM simulations
have been carried out with eight variations of ∆t: ∆t ∈ {0.01, 0.05, 0.125, 0.25, 0.5, 1.0, 2.0, 5.0}
(all in seconds). In each case the simulation period T = 3600 sec.

The computational settings in the D-Flow FM simulations are as follows:

� No bed friction, no surface drag, no horizontal viscosity.
� Schematisation of advection: AdvecType= 3 (Perot q(uio-u)).
� Limiter type for cell center advection velocity: Limtypmom= 4 (Monotone Central).
� Time integration: TimeStepType= 2 (full implicit step reduce). θ = 0.55

Selection of the sub-areas in the model error analysis

The spatial and temporal evolution of the flow variables in the present case of a dam break
over a wet bed are depicted in Figure 15.11, Figure 15.12 and Figure 15.13. The blue curves

Figure 15.1: Velocity u(x, t) as function of the longitudinal coordinate x for 6 successive
time points t. The velocity uA(x, t) according to the analytical solution is
plotted in blue, while the solution uC(x, t) according to D-Flow FM using
Grid 5 is shown in red. The error in the computed velocity, ∆u(x, t), is
depicted in green.

in these figures represent the u(x, t), h(x, t) and h(x, t) ·u(x, t) according to the analytical
solution of the flow equations (see Equation (15.9) and Equation (15.10) ).

The red curves in the panels of the three figures show these flow variables as computed by

3The uniform triangular grid 4, the non-uniform rectangular grid 6, and the rectangular grid with local refine-
ments and irregular triangular connections 7 have been discarded. Results obtained on these grids are not suitable
for consideration in the present systematic study on accuracy as a function of grid resolution and time step.
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Figure 15.2: Water depth h(x, t) as function of the longitudinal coordinate x for 6 succes-
sive time points t. The water depth hA(x, t) according to the analytical solu-
tion is plotted in blue, while the solution hC(x, t) according to D-Flow FM us-
ing Grid 5 is shown in red. The error in the computed water depth, ∆h(x, t),
is presented in green.

Figure 15.3: Discharge h(x, t)u(x, t) as function of the longitudinal coordinate x for 6
successive time points t. The discharge according to the analytical solution
is plotted in blue, while the corresponding solution of D-Flow FM using Grid 5
is shown in red. The error in the computed discharge is presented in green.

D-Flow FM, using the coarsest grid 5 with ∆x = 500 m in combination with a very small
time step of ∆t = 0.01 sec to ensure negligibly small time integration errors. The difference
between the red curves and the blue curves in the figures are therefore uniquely due to the
spatial discretisation of D-Flow FM.

In the plotting procedure the computed solutions (red) were plotted before the analytical so-
lutions (blue). As a result, the red curves are masked by the blue curves where and when
the computed solution agrees well with the analytical solution. Loosely stated, it can thus be
noted that the less is seen of the red curves, the smaller the errors, the better the quality
of the numerical simulation. For a more comprehensive inspection of the quality of the nu-
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merically computed solution, the errors ∆u(x, t), ∆h(x, t) and ∆(h(x, t) · u(x, t)) have
also been plotted separately in Figure 15.11, Figure 15.12 and Figure 15.13. See the curves
presented in green.

To verify the effect of grid refinement on the error in the model predictions, the same plots, but
now for the finest Grid 3 with ∆x = 25 m, are presented in Figure 15.14, Figure 15.15 and
Figure 15.16. The time step is again ∆t = 0.01 sec and small enough for the time integration
errors to be negligible.

Figure 15.4: Velocity u(x, t) as function of the longitudinal coordinate x for 6 successive
time points t. The velocity uA(x, t) according to the analytical solution is
plotted in blue, while the solution uC(x, t) according to D-Flow FM using
Grid 3 is shown in red. The error in the computed velocity, ∆u(x, t), is
depicted in green.

Figure 15.5: Water depth h(x, t) as function of the longitudinal coordinate x for 6 succes-
sive time points t. The water depth hA(x, t) according to the analytical solu-
tion is plotted in blue, while the solution hC(x, t) according to D-Flow FM us-
ing Grid 3 is shown in red. The error in the computed water depth, ∆h(x, t),
is presented in green.
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Figure 15.6: Discharge h(x, t)u(x, t) as function of the longitudinal coordinate x for 6
successive time points t. The discharge according to the analytical solution
is plotted in blue, while the corresponding solution of D-Flow FM using Grid 3
is shown in red. The error in the computed discharge is presented in green.

From the formulas and the figures of the analytical solution four sub-areas of different flow
regimes can be recognised in the spatio-temporal domain Ω := {(x, t)|t ≥ 0}. These four
sub-areas are bounded by the three concurrent straight lines {(xA(t), t)}, {(xB(t), t)} and
{(xC(t), t)}. See Equation (15.8) for the expressions of these xA(t), xB(t) and xC(t). In
the lower panel of Figure 15.17 the location of these lines within Ω is shown (plotted in red),
together with the four sub-areas {Ω1,Ω2,Ω3,Ω4} that they determine. Through the graphs
of the water depth (red), velocity (blue) and discharge (green) depicted in the upper panel of
Figure 15.17 (with h, u, and h · u as function of x, for fixed time t = 3240 sec) the relation of
the sub-areas Ωi with the different flow regimes can be conveniently verified.

In the sub-areas Ω1 and Ω4 the solution of the flow equations is constant and equal to the
initially imposed conditions. In a validation of the model’s quality these sub-areas are thus of
minor or no interest.

In sub-area Ω3 the water depth and velocity are also constant but with values depending
on the (initial) water depth in the left (Ω1) and right (Ω4) part of the domain. The accuracy
with which these constants are reproduced by the numerical model is included in the present
validation study.

In sub-area Ω2 the water depth and velocity are not constant. Along the x-direction the
water depth follows a monotonically decreasing parobolic profile, while the velocity increases
linearly from 0 at x = xA(t) to its maximum at x = xB(t). The various panels in the figures
Figure 15.11, Figure 15.12 and Figure 15.13 show how these profiles of the flow variables
evolve in time. This temporal evolution consists of a gradual spatial stretching of the profiles
in both the downstream and upstream direction. Within this stretching the shape of the profiles
remains the same (self-similar solution). Because of the non-trivial variation, the solution in
this sub-area Ω2 is highly relevant in the present D-Flow FM validation.

From the figures of the analytical solutions presented above, it is recognised that the interface
between the sub-areas Ωi (formed by the lines {(xA(t), t)}, {(xB(t), t)} and {(xC(t), t)})
are of special interest. At these interfaces the flow variables are non-smooth (at {(xA(t), t)}
and {(xB(t), t)}) or even discontinuous (at {(xC(t), t)}). In an investigation of the accuracy
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Figure 15.7: Lower panel: Partition {Ω1,Ω2,Ω3,Ω4} of the model’s spatio temporal do-
main by the three lines {(xA(t), t)}, {(xB(t), t)} and {(xC(t), t)}, and the
sub-areas Ai where the error norms are evaluated. The symbols I mark
the times t for which in preceding figures the flow variables u, h, and h · u
have been shown as function of the spatial variable x. In the upper panel
these flow variables are once more illustrated for t = 3240 sec. In this way
the different characteristics of the flow for the different sub-areas can be
conveniently recognised. For this t = 3240 sec the various norms for the
D-Flow FM errors have been evaluated.

of numerical flow models such as D-Flow FM, the capability to deal with such non-smoothness
is an important issue. For the present case this importance is revealed by the errors plotted
in Figure 15.11 and Figure 15.12. It can be observed that the errors reach local maxima
at the interfaces between the sub-areas and that they are spread over quite a few grid cells
∆x = 500m. The same behaviour is present in Figure 15.14 and Figure 15.15, but not
clearly visible because of the use of the much smaller grid size ∆x = 25m.

On the basis of these considerations the assessment of the accuracy of the D-Flow FM simu-
lations is carried out for the two sub-areas Ω2 and Ω3, and for small neighbourhoods of their
boundaries xA, xB and xC . For the sub-area Ω2 another partition is made, consisting of the
part to the left and the part to the right of the original dam-break position x0. The reason for
this is the observation (cf. Figure 15.11 and Figure 15.12) that in sub-area Ω2 the errors in
the computed water depth and the velocity tend to be somewhat larger for x > x0 than for
x < x0.

A good impression of the simulation accuracy of D-Flow FM is obtained by computing and
presenting the error norms of ∆u(x, t) and ∆h(x, t) for a time level toward the end of the
simulation. This will exclude spurious effects due to any excessive errors in the start-up
phase of the computation that may have been caused by the discontinuous initial condition.
We have chosen the time level t = 3240sec, which in the previous figures corresponds with
the solutions shown in the lower-right panels.

Altogether this gives the following sub-areas Ai at t = 3240 sec for which results of the
accuracy assessment will be presented in the next section:
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1 Area A1 containing the grid points xn for which 13849m < xn < 17449m;
2 Area A2 containing the grid points xn for which 17449m < xn < 30000m;
3 Area A3 containing the grid points xn for which 30000m < xn < 32928m;
4 Area A4 containing the grid points xn for which 32928m < xn < 36528m;
5 Area A5 containing the grid points xn for which 36528m < xn < 43365m;
6 Area A6 containing the grid points xn for which 43365m < xn < 46965m.

The location of these sub-areas within the computational domain Ω, and the characteristics
of the flow variables on these sub-areas is shown in Figure 15.17.

Finally it is mentioned that the analytical solution has been used to construct plots of the
relevant components of the momentum equation: ∂(h·u)

∂t
(storage term), ∂(h·u2)

∂x
(convection

term), and gh · ∂h
∂x

(pressure term). All other components, related to bed friction, horizontal
viscosity, Coriolis, etc. are zero. The plots of the three relevant components (not presented
here) were used to verify the relative weight that these components contribute to the flow
propagation. With the present setting of the model parameters (hl and hr) is was oberved
that in magnitude these components are reasonably in balance. As a result they contribute
significantly, and more or less equally, to the results and conclusions of this validation study.
These results are summarised in the next section.

Results

For each of the four uniform grids (with the grid sizes ∆x = 500, 100, 50 and 25 m) D-
Flow FM simulations were carried out for the eight different time steps ∆t = 0.01, 0.05,
0.125, 0.25, 0.5, 1.0, 2.0 and 5.0 sec. For all these simulations, the three error norms
L1(·), L2(·) and L∞(·) (see Equation (15.6)) were evaluated. This was done for all the six
sub-areas Ai that were selected in the preceding paragraph.

To begin with, the effect of the time-step size has been verified using the spatial grid with
the finest resolution (∆x = 25 m). For this finest grid (and any other grid if larger time
steps would have been considered) we could have that with increasing ∆t the errors in the
D-Flow FM simulations gradually become mainly, or even fully, determined by the errors in
the applied time integration method. From the dependency of the error norms on ∆t the time
accuracy of D-Flow FM can be evaluated and quantified.

The result is shown in Figure 15.8. To limit the total number of figures, and also because
the behaviour of the other two error norms is similar, only the error behaviour in the L1 norm
is shown in Figure 15.8. For all variables, and in all sub-areas, we see roughly the same
error behaviour. For large ∆t an error behaviour close to first order (error proportional to
∆t) is observed, which is in agreement with the applied time integration scheme (first-order
explicit in the convection term u · ∂u

∂x
, and first-order implicit in the pressure term g · ∂h

∂x
of the

momentum equation).

We recall that the error behaviour is sensitive to the way that the error has been measured,
cf. Footnote 11. This may be the reason why the error in sub-area A6, where the hydraulic
jump is, seems to be higher order in ∆t (see again Figure 15.8). Unless special shock-
fitting techniques are used, steady discontinuities like hydraulic jumps by definition limit the
accuracy of any numerical scheme to O(∆x) in the L1 norm, to O(

√
∆x) in the L2 norm,

and to O(1) in the L∞ norm. The same applies in time for moving discontinuities, which is
the case that we are dealing with here. In other words, the seemingly higher-order behaviour
of the D-Flow FM time integration scheme in sub-area A6 must be a spurious effect. It is
probably due to the fact that the numerical solution and the exact solution are not compared
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Figure 15.8: Dependency of the error norm L1(·) on ∆t, for the water depth, velocity and
discharge on one hand, and on the other hand on the six sub-areas Ai that
were selected in the validation of the accuracy of the numerical scheme.
These L1(·) are as obtained with the presently finest grid size ∆x = 25 m.

everywhere in the domain4, but only at a limited number of points.

The error reaches a constant value for ∆t < 0.5sec, indicating that for time steps that
are that small the time integration error becomes (negligibly) small compared to the space
discretisation error.

In practical applications a suitable time step would be the one that ensures a balance between
time integration errors and space discretisation errors. The small increase in accuracy of using
a smaller time step would not outweigh the larger additional computational costs of a smaller
time step, while with a larger time step (and hence a dominating time integration error) one
would not fully exploit the accuracy provided by the spatial grid resolution. For the present
case, Figure 15.8 shows that the optimal time step is around 1 to 2 sec. Since the grid size in
this computation is 25m and the maximum flow velocity is 4m/sec, this means that the optimal
Courant number |u|∆t/∆x is about 0.2 to 0.3. It has been verified that this also applies to
the computation with a grid size of 100m, so this conclusion is grid-resolution invariant, at
least for this application.

A Courant number of 0.2 to 0.3 is significantly lower than the stability limit |u|∆t/∆x ≤ 1.
The conclusion is therefore that for this application (where we have used a uniform rectangular
grid) the quality of the D-Flow FM space discretisation is better than that of its time integration.
A consequency of this is that in highly unsteady applications (such as the one considered
here), the time step may have to be taken smaller than the one that follows from the stability
condition in order to ensure optimal performance of D-Flow FM.

The error behaviour for sub-area A5 shown in Figure 15.8 is remarkable. It continues to
decrease for time steps smaller than 0.5sec. This applies in particular to the error in the
water depth. Sub-area A5 is the only part of the domain where the solution is both non-
trivial and constant, and where the space discretisation therefore becomes exact. As this

4That would require the numerical solution to be defined as a (discrete) function in space, and not as values in
only a finite number of (grid) points as we do here.
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sub-area is free of space discretisation errors, any error for very small time step must be due
to the solution predicted in the sub-areas adjacent to A5. An explanation for the remarkable
error behaviour in A5 may lie in the conservation properties of the space discretisation. It
seems that this ensures that, regardless of any other errors, the water depth and flow velocity
in sub-area A5 are exact. However, the applied time integration scheme is not momentum
conserving. This would explain why in sub-area A5 the error is mainly determined by the
applied time integration.

The accuracy of D-Flow FM with respect to the spatial discretisation has been verified in a
similar way. To ensure that errors due to the time integration can safely be ignored, only
results from the simulations with the extremely small time step (∆t = 0.01sec) have been
considered. As before, we only show the error behaviour in the L1 norm. For all variables
and in all sub-areas we see in Figure 15.9 roughly the same error behaviour as a function of
the spatial grid resolution. It turns out to be close to first order. This was expected for sub-
area A6 because of the presence of the hydraulic jump, but not for the other sub-areas where
the solution is smoother. We expected in particular higher-order behaviour in the zones A2

and A3 where the solution is infinitely smooth, not to mention zone A5 where the solution is
even constant. The conclusion reads that somewhere in the D-Flow FM scheme a first-order
approximation is applied (first-order upwind of the water depth in the determination of the
mass flux through cell faces), which for this application has a dominant effect on the spatial
accuracy5. Since a full description of the numerical scheme applied in D-Flow FM is not
available, it is not possible to interprete the obtained validation results any further.

Figure 15.9: Dependency of the error norm L1(·) on ∆x, for the water depth, velocity and
discharge on one hand, and on the other hand on the six sub-areas Ai that
were selected in the validation of the accuracy of the numerical scheme.
These L1(·) are as obtained with the presently smallest time step ∆t =
0.01 sec.

5Note that the way the (total) water depth is approximated at cell faces may have less impact on the overall
accuracy in applications with little variation in the water level, such as tidal-flow and river-flow simulations. With
the bathymetry defined at grid points, the depth with respect to the model datum is approximated second-order
accurate at cell faces. With little variation in the water level, a first-order approximation error of taking the water
level at cell faces upwind may have only a minor effect on the computation of the (total) water depth at cell faces.
Additional validation studies are required to investigate this.
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For a proper quantitative assessment of the order of accuracy, the effective order of accuracy
as observed in the computations has been determined by means of linear regression analyses
(of the form log(Lk(∆x)) ∼ a · log(∆x) + b) of the logarithm of the errors as a function
of the logarithm of the grid size (i.e. the functions as shown in Figure 15.9). The error on the
coarsest grid has been discarded in this analysis. On this coarsest grid with ∆x = 500 m
each sub-area only contains half a dozen or so grid cells, which is not enough for a reliable
error analysis. This has been confirmed by looking at the correlation coefficients. They are
close to 1 with the error on the coarsest grid discarded, but when this error is included the
regression analyses give rather poor correlations.

The estimate for the slope parameter a in the regression log(Lk(∆x)) ∼ a · log(∆x) + b
provides the order of accuracy of the numerical scheme. The so obtained order-of-accuracy
results are graphically shown in Figure 15.10. This is done for all Lk error measures and also
all the sub-areas Ai that have been considered. We see indeed an error behaviour that is
close to order 1, although in sub-area A4 (where the solution is non-smooth but continuous)
the error behaviour tends to be closer to order 1/2. Rather surprising is the fact that the order
of accuracy of the L1 error of discharge hu in sub-area A4 (where the solution is continuous)
is noticeably lower than the one in sub-area A6 (where the solution is discontinuous!). We
have no explanation for this unexpected result.

The order of accuracy in sub-area A5 tends to be somewhat higher than one. This has
undoubtedly to do with the fact that the solution in this sub-area is constant and trivial to
compute.

The error behaviour in sub-area A6 with the hydraulic jump turns out to be (close to) first
order in the L1 norm (see again Figure 15.10), half order in the L2 norm, and zero order in
the L∞ norm. These orders of accuracy agree, as already explained above, with the theory
how discontinuities limit the accuracy of virtually any numerical scheme.

Conclusion

The main conclusions of the present D-Flow FM validation study can be summarised as fol-
lows.

� In agreement to what would be expected for the applied time integration scheme, the error
behaviour with regard to the time step ∆t is close to first order. This proportionality of
the errors to the time step was found in all three error norms, and in all sub-areas with
different flow characteristics.

� The accuracy with regard to the spatial discretisation is of first order in all norms, under
the condition of a smooth (or at least continuous) dependency of the flow variables on the
spatial and temporal coordinates. In sub-areas with discontinuities the order of accuracy
depends on the applied error norm. For the maximum norm L∞ this order is zero.

� For the present flow conditions (as briefly recapitulated below) a relatively small time step
∆t is required to obtain a proper balance between the errors from the spatial discretisation
on one hand and those of the time integration on other. In fact, for optimal performance
the Courant number should be about 0.2 to 0.3, and is thus significantly lower than the
stability limit of 1.

� Practically speaking D-Flow FM is well capable to reproduce the analytical solution: in
absolute value the model errors are quite small. This is at the cost, however, of a small
time step, in combination with a sufficiently fine grid.

It must be mentioned that these findings can partly (or even to a large extent) be induced
by the present flow conditions, consisting of a non-steady, highly dynamic evolution of the
flow, with non-smooth and discontinuous spatio/temporal variations (shock waves, jumps in
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Figure 15.10: Order of accuracies, O(∆x), found for the various error norms Lk(∆x).
Through the three sub-panels the dependency of O(∆x) on the flow quan-
tities h, u, and h · u is presented. Within the sub-panels the dependency
of O(∆x) on sub-areas Ai in the computational domain is shown. These
orders of accuracy are as obtained with the presently smallest time step
∆t = 0.01 sec.

the water depth and velocity profiles), and absence of friction and/or viscosity effects. At the
same time it must be emphasized that the present conclusions are derived for, and may be
limited to, uniform rectangular grids only.

Version

This test has been carried out with version dflow-fm-x64-1.1.111.34732M.
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15.2 Dam break over a dry bed: quantitative analysis on numerical accuracy

Purpose

In other test cases, the accuracy of D-Flow FM has been verified for a one-dimensional model
of flooding over a dry bed resulting from a dam break. The verification of the accuracy was
done there in a highly qualitative form, through graphical comparison of the computed state
variables (water depth h and flow velocity u) and the analytical solution of the flow equations.
In this section this one-dimensional dam-break case study is revisited, but now the accuracy
with which the analytical solution is (re)produced by D-Flow FM is analysed quantitatively. In
particular it is verified how the accuracy of the model predictions responds to refinements of
the computational grid (∆x) and the time step (∆t), and thus obtain insight in the order of
accuracy of D-Flow FM’s numerical scheme.

Linked claims

Claims that are investigated in the current test case are:

� The accuracy of the time integration scheme in D-Flow FM appears to be somehow less
than first order in this application.

� The accuracy of the spatial discretisation scheme is of almost of first order.

Approach

In the present validation tests the same model has been used as earlier in this document, with
in particular the same geometry, computational settings, and model parameters (initial and
boundary conditions, length L of the domain, location x0 of the dambreak, etc.). These and
other settings that have been used in the various D-Flow FM computations will be mentioned
below in a separate section.

It must be mentioned that in this chapter the D-Flow FM computations, and the associated
accuracy analysis, will actually deal with the modelling of a dambreak over an "almost" dry
bed, rather than the modelling of the flow over a dry bed in strict sense. An "almost" dry
bed means that the water depth at the downstrean water level boundary (here and in the
remainder of this chapter denoted by hR) has been set to a small positive value instead of
exactly zero as should be done for a dry bed in strict sense.

The reason for choosing an almost dry bed originates from D-Flow FM’s numerical treatment
of drying and flooding. In this treatment a threshold procedure is adopted involving a minimal
positive water depth in areas which are, practically speaking, dry.

In a separate section at the end of this chapter this issue is revisited, and particularly the effect
of hR ↓ 0 on the flow in the entire domain will be adressed.

For both the wet and the dry bed case analytical solutions of the dambreak 1D flow equations
are available. These analytical solutions (recapitulated below in a separate section) form the
basis for our quantitative analysis of the numerical accuracy of D-Flow FM. The approach
followed in the present accuracy analysis is described below.

D-Flow FM simulations have been carried out for various systematic variations of both the grid
size in the spatial discretisation, and the time step in the numerical time integration of the flow
equations.

In the variations of the spatial discretisations four uniform rectangular grids are used, i.e.
grids with cells of a constant size ∆x along the longitudinal (x) direction of the computational
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domain. The cells of these grids are respectively of size ∆x = 500, 100, 50 and 25 m.
With a longitudinal length L = 60 km of the domain this means that in the x-direction these
grids consist of 120, 600, 1200, and 2400 computational cells. The four grids that are here
considered therefore provide stepwise (and mutually ’comparable’) refinements of the spatial
resolution.

Compared to the conciser testcase on the dambreak over a dry bed, a main extension within
the validation study is that also the effect of the time step ∆t on the accuracy is investigated
through variations of ∆t in the numerical integration of the model equations. These variations
of ∆t are within a range of 0.01 to 3 seconds.

The effect of grid-size and time-step refinements on the accuracy of D-Flow FM simulations
will be quantified through statistical error measures derived from the errors ∆h(x, t) and
∆u(x, t) in the model’s prediction of the water depth h(x, t) and flow velocity u(x, t) at the
cell centres6. The errors are defined by ∆h(x, t) := hA(x, t)− hC(x, t) and ∆u(x, t) :=
uA(x, t)− uC(x, t), with subscript C indicating a variable computed by D-Flow FM and with
subscript A indicating the analytical solution. Apart from the water depth and the velocity, the
errors in the computed flow discharge ∆(h(x, t) · u(x, t)) (i.e. a discharge per unit length in
the transverse direction) will be analysed as well.

Three error measures L1, L2, and L∞ will be considered for the quantification and compari-
son of the accuracy of the D-Flow FM solutions for the various variations in the grid size and
the time step. These Lk (k = 1, 2,∞) are actually vector norms applied to the set of model
errors {∆h(x, t)}(x,t)∈A and {∆u(x, t)}(x,t)∈A on some sub-area A of the computational
domain. They are defined by the following generic formula7:

Lk(∆ξ) = k

√
1

NA

∑
(x,t)∈A

|∆ξ(x, t)|k (15.6)

In these equations, NA denotes the number of cell centres (x, t) ∈ A. The ξ represents one
of the three considered flow quantities, i.e. water depth h, flow velocity u, or the discharge
h · u.

The error measures will be computed for several sub-areas A of the (spatial and temporal)
computational domain. The selection of the sub-areas is guided by the regions in the (x, t)
domain where the analytical solution of the flow variables h(x, t), u(x, t) and h(x, t)·u(x, t)
has specific properties. In one of the sections below this selection of adequate sub-areas is
adressed in detail. Next, the dependency of the error norms on the grid size ∆x and time
step ∆t will be evaluated for the various sub-areas, from which the order of accuracy of the
numerical solutions can be obtained.

6Ideally, the error across the entire domain should be considered. It is, however, not clear how the discrete
solution at cell centres should be extended in between the cell centres. Water depth h is assumed piecewise
constant per grid cell in the time derivative of the continuity equation (a central approximation), but its value at the
cell faces is obtained by (first-order) upwind. Velocity u at cell centers is obtained from averaging the values at the
faces of the cells, thereby introducing averaging errors. Although in 1D u at cell faces could be considered when
the grid is aligned with the flow (as is the case here), this is not possible in general. For this reason we decided
not to exploit this possibility.

By only considering the value of h and u at cell centers, at most additional second-order errors are introduced
due to the use of the 1-point Gauss integration rule (h) and 2-point central averaging (u). If necessary, this should
be taken into account when interpreting the results.

Note that the discharges computed at the cell centers do not correspond with the discharges at the cell faces
used in the D-Flow FM simulations. Because of the use of a first-order upwind h in the latter, the deviation will in
general be first order. This is a discretization error, not an error in the interpretation of the results.

7Note that L1(·) is the mean absolute error over A, while L2(·) is the RMS (root mean square) of the model
error. It is readily verified that L∞(·) corresponds to the maximum of the pointwise absolute errors |∆ξ(x, t)| over
A.
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Analytical solutions for the one-dimensional dambreak models

The spatial domain is assumed to range from from x = 0 to x = L, and the location
of the dambreak is at x = x0. The initial system state (at t = 0, denoting the begin of
the dambreak) is a stepwise constant water depth with h(x) = hL for 0 ≤ x ≤ x0 and
h(x) = hR for x0 < x < L. This longitudinal water depth profile is thus discontinuous at
x = x0.

In case of no bed friction, and no viscosity effects, an analytical solutiuon is available for the
1D dambreak flow equations (see Delestre et al., 2011). This holds for both a wet and a dry
bed. First we present the general solution for the wet bed case. This solution will be used
in the accuracy analysis described in the remaining chapters. Though wet in strict sense, in
the computations a rather low water depth hR will be adopted for the downstream bounday
to obtain an "almost" dry bed. For comparison and later use the analytical solution for a ’true’
dry case (hR = 0) is given as well.

Analytical solution for wet bed, hR > 0

From the (prescribed) water depths hL and hR, at respectively the upstream and downstream
model boundaries, velocities cL and cR are defined by cL :=

√
g · hL and cR :=

√
g · hR (

g is, as usual, the acceleration of gravity). In the formula’s that follow below for the analytical
solutions of the water depth h(x, t) and u(x, t) also a velocity cM is present. This cM
depends on hL and hR, or equivalently on their corresponding velocities cL and cR. The
depencency of cM on cL and cR is governed by the following equation (Delestre and Lucas,
2011, but here with a correction of a typographical error):

c6
M − 9c2

R · cM 4 + 16cLc
2
R · c3

M −
(
c2
R + 8c2

L

)
c2
R · c2

M + c6
R = 0 (15.7)

As a result cM is the root of a polynomial of degree six. It can be demonstrated that Min
(cL, cR) ≤ cM ≤ Max (cL, cR), but for general cL and cR the exact value of cM cannot be
found analytically. For this reason some numerical root finding method will have to be applied
to derive cM from cL and cR.

For a convenient formulation of the analytical solution three linear separators xA(t), xB(t),
and xC(t) of the (x, t)-model domain are now defined according to:

xA(t) = x0 − cL · t
xB(t) = x0 + (2 · cL − 3 · cM) · t

xC(t) = x0 + 2 · c
2
M (cL − cM)

c2
M − c2

R

· t
(15.8)

These separators induce four partitions of the model domain and on these sub-domains the
analytical solution for the water depth reads:

h(x, t) =



hL, if x < xA(t)

4

9g

(
cL −

x − x0

2t

)2

if xA(t) ≤ x ≤ xB(t)

hM :=
c2
M

g
if xB(t) ≤ x ≤ xC(t)

hR if x > xC(t).

(15.9)
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The analytical solution for the velocity along the four sub-domains is provided by:

u(x, t) =



0 if x < xA(t),
2

3
·
(
x − x0

t
+ cL

)
if xA(t) ≤ x ≤ xB(t),

2 · (cL − cM) if xB(t) ≤ x ≤ xC(t),

0 if x > xC(t).

(15.10)

For the derivation of these equations one is referred to Section 4.1.1 in Delestre et al. (2013).

Later in this chapter illustrations of these analytical solutions for h(x, t), u(x, t), and the
discharge h(x, t) · u(x, t) will be shown, together with corresponding numerical solutions of
D-Flow FM.

Analytical solution for a dry bed, hR = 0

The solutions for the dry case can be obtained from those of the wet bed (as presented above)
by letting hR ↓ 0 or equivalently cR ↓ 0. This can be done conveniently by using that

cM =
4
√

8 ·
√
cL · cR (15.11)

for cR close to zero. This limit behaviour of cM can be derived from Equation (15.7). It is then
also readily verified that for every time t it holds that

lim
cM↓0

xC(t) = lim
cM↓0

xB(t) = x0 + 2cL · t (15.12)

. The ’remaining’ xA(t) and xB(t) then satisfy:{
xA(t) = x0 − cL · t
xB(t) = x0 + 2cL · t

(15.13)

These two separators induce three partitions of the model domain and now the analytical
solution for the water depth reads:

h(x, t) =


hL, if x < xA(t)

4

9g

(
cL −

x − x0

2t

)2

if xA(t) ≤ x ≤ xB(t)

0 if xB(t) ≤ x

(15.14)

For the velocity the following analytical solution is now found along the three partitions of the
domain:

u(x, t) =


0 if x < xA(t),
2

3
·
(
x − x0

t
+ cL

)
if xA(t) ≤ x ≤ xB(t),

0 if xB(t) ≤ x

(15.15)
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Model description

In all computations the following values were adopted for the flow and geometric parameters
present in the analytical 1D dambreak model of Equation (15.9) and Equation (15.10).

� domain length: L = 60, 000 m (and thus 0 ≤ x ≤ 60, 000 m).
� Water depth boundary conditions: hL = 2 m (upstream) and hR = 0.0001 m (down-

stream).
� Location of the dam break: x0 = 30, 000 m.
� Gravity acceleration: g = 9.81 m/s2 .

For these parameters the following value is found for the velocity cM implicitly defined by
Equation (15.7): cM = 0.5840798 m/s. This velocity corresponds to a water depth hM :=
cM

2/g = 0.03477566 m.

The same computational grids have been used as earlier in this document, although only the
uniform rectangular grids 5, 1, 2, 3 are now taken into account8. These four grids are all built
up of equally sized rectangular cells with ∆x = 500, 100, 50 and 25 m respectively. They
thus provide stepwise (and mutually ’comparable’) refinements of the spatial resolution.

In the assessment of the sensitivity and accuracy for the time step D-Flow FM simulations
have been carried out with eight variations of ∆t: ∆t ∈ {0.01, 0.05, 0.125, 0.25, 0.5, 1.0, 2.0, 3.0}
(all in seconds). In each case the simulation period T = 3600 sec.

The computational settings in the D-Flow FM simulations are as follows:

� No bed friction, no surface drag, no horizontal viscosity.
� Schematisation of advection: AdvecType= 3 (Perot q(uio-u)).
� Limiter type for cell center advection velocity: Limtypmom= 4 (Monotone Central).
� Time integration: TimeStepType= 2 (full implicit step reduce). θ = 0.55
� Drying/flooding: chkadvd= 0.0 (parameter in handling advection over almost dry bed)
� Drying/flooding: epshu= 0.001 (threshold determining wet or dry bed)

In D-Flow FM the numerical setting parameter chkadvd (’check advection depth’) is relevant
in simulations with frictionless flows over a fully or almost fully dry bed (as in the present
case). For (almost) dry cells it may then happen that within a time step ∆t the predicted
water level is below the cell’s depth. In that case the time step should be repeated with a
smaller ∆t. To prevent a substantial increase of computation time a correction procedure
is applied, however, rather than a recomputation with a smaller time step. In this correction
procedure explicitly discretised terms of the flow equations, and particularly the ones that are
extracting water from nearby dry cells, are reduced by a factor. This factor is governed by (the
ratio of) the current water depth and parameter chkadvd. In compuations with extremely low
water depths chkadvd should be set to zero. In all other situations its value is not or less
critical and the default value of 0.1 (m) can well be used.

The parameter epshu is a threshold in the D-Flow FM’s modelling of drying and flooding.
Cells where the water depth is greater than epshu are treated as wet, while for cells with
water depth less epshu a flooding/drying procedure is activated.

In D-Flow FM a default epshu= 0.0001 is set. This default is adopted in the present simula-
tions. For reasons of consistency the water level at downstream boundary was set equal to

8The uniform triangular grid 4, the non-uniform rectangular grid 6, and the rectangular grid with local refine-
ments and irregular triangular connections 7 have been discarded. Results obtained on these grids are not suitable
for consideration in the present systematic study on accuracy as a function of grid resolution and time step.
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this drying/flooding threshold: hR = epshu = 0.0001.

Selection of the sub-areas in the model error analysis

The spatial and temporal evolution of the flow variables in the present case of a dam break
over an "almost" dry bed (hR = 0.0001) are depicted in Figure 15.11, Figure 15.12 and
Figure 15.13. The blue curves in these figures represent the u(x, t), h(x, t) and h(x, t) ·

Figure 15.11: Velocity u(x, t) as function of the longitudinal coordinate x for 6 success
ve time points t. The velocity uA(x, t) according to the analytical solution
is plotted in blue, while the solution uC(x, t) according to D-Flow FM using
Grid 5 (∆x = 500 m, ∆t = 0.01 sec) is shown in red. The error in the
computed velocity, ∆u(x, t), is depicted in green.

Figure 15.12: Water depth h(x, t) as function of the longitudinal coordinate x for 6 suc-
cessive time points t. The water depth hA(x, t) according to the analyti-
cal solution is plotted in blue, while the solution hC(x, t) according to D-
Flow FM using Grid 5 (∆x = 500 m, ∆t = 0.01 sec) is shown in red. The
error in the computed water depth, ∆h(x, t), is presented in green.
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Figure 15.13: Discharge h(x, t)u(x, t) as function of the longitudinal coordinate x for 6
successive time points t. The discharge according to the analytical solution
is plotted in blue, while the corresponding solution of D-Flow FM using
Grid 5 (∆x= 500 m, ∆t= 0.01 sec) is shown in red. The error in the
computed discharge is presented in green.

u(x, t) according to the analytical solution of the flow equations (see Equation (15.9) and
Equation (15.10) ).

The red curves in the panels of the three figures show these flow variables as computed by
D-Flow FM, using the coarsest grid 5 with ∆x = 500 m in combination with a very small
time step of ∆t = 0.01 sec to ensure negligibly small time integration errors. The difference
between the red curves and the blue curves in the figures are therefore uniquely due to the
spatial discretisation of D-Flow FM.

In the plotting procedure the computed solutions (red) were plotted before the analytical so-
lutions (blue). As a result, the red curves are masked by the blue curves where and when
the computed solution agrees well with the analytical solution. Loosely stated, it can thus be
noted that the less is seen of the red curves, the smaller the errors, the better the quality
of the numerical simulation. For a more comprehensive inspection of the quality of the nu-
merically computed solution, the errors ∆u(x, t), ∆h(x, t) and ∆(h(x, t) · u(x, t)) have
also been plotted separately in Figure 15.11, Figure 15.12 and Figure 15.13. See the curves
presented in green.

From these figures it is readily recognised that with the present coarse grid (∆x = 500 m)
the analytical water depth is reasonably reproduced by D-Flow FM. For the discharges the
error is more substantial, particular in the vicinity of the separation lines xA(t), xB(t) and
xC(t).

For the velocities, however, the error is even quite large. The shape of the analytical velocity
profile is rather poorly reproduced. In particular the peak values are severely under estimated.
At the same time a remarkable phenomenon is also observed within the time propagation of
the downstream velocity front (i.e. near xB(t) and xC(t)). In the first half hour of the simu-
lation the (position of the) computed front is clearly beyond the one of the analytical solution.
However, as time evolves the downstream propagation of the computed front gradually delays
and in the end, at t = 3240 sec, the location of both fronts more or less coincide. We do not
have a pausible explanation for this behaviour.
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To verify the effect of grid refinement on the error in the model predictions, the same plots, but
now for the finest Grid 3 with ∆x = 25 m, are presented in Figure 15.14, Figure 15.15 and
Figure 15.16. The time step is again ∆t = 0.01 sec and small enough for the time integration
errors to be negligible.

Figure 15.14: Velocity u(x, t) as function of the longitudinal coordinate x for 6 succes-
sive time points t. The velocity uA(x, t) according to the analytical solution
is plotted in blue, while the solution uC(x, t) according to D-Flow FM us-
ing Grid 3 (∆x= 25 m, ∆t= 0.01 sec) is shown in red. The error in the
computed velocity, ∆u(x, t), is depicted in green.

Figure 15.15: Water depth h(x, t) as function of the longitudinal coordinate x for 6 suc-
cessive time points t. The water depth hA(x, t) according to the analyti-
cal solution is plotted in blue, while the solution hC(x, t) according to D-
Flow FM using Grid 3 (∆x= 25 m, ∆t= 0.01 sec) is shown in red. The
error in the computed water depth, ∆h(x, t), is presented in green.

Figure 15.14, Figure 15.15 and Figure 15.16 clearly reveal that the grid refinement from ∆x=
500 m to ∆x= 25 m has significantly improved the quality of the simulation. Most eminently
this is observed for the velocity profiles. Nevertheless a slight phase error in the prediction of
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Figure 15.16: Discharge h(x, t)u(x, t) as function of the longitudinal coordinate x for 6
successive time points t. The discharge according to the analytical solution
is plotted in blue, while the corresponding solution of D-Flow FM using Grid
3 (∆x= 25 m, ∆t= 0.01 sec) is shown in red. The error in the computed
discharge is presented in green.

the downstream front (in the vicinity of x = xC(t)) tends to persist. This is actually even better
noticable in the figure with the temporal evolution of the discharge profiles, see Figure 15.16.

From the formulas and the figures of the analytical solution four sub-areas of different flow
regimes can be recognised in the spatio-temporal domain Ω := {(x, t)|t ≥ 0}. These four
sub-areas are bounded by the three concurrent straight lines {(xA(t), t)}, {(xB(t), t)} and
{(xC(t), t)}. See Equation (15.8) for the expressions of these xA(t), xB(t) and xC(t). In
the lower panel of Figure 15.17 the location of these lines within Ω is shown (plotted in red),
together with the four sub-areas {Ω1,Ω2,Ω3,Ω4} that they determine. Through the graphs
of the water depth (red), velocity (blue) and discharge (green) depicted in the upper panel of
Figure 15.17 (with h, u, and h · u as function of x, for fixed time t = 3240 sec) the relation
of the sub-areas Ωi with the different flow regimes can be conveniently verified.

In the sub-areas Ω1 and Ω4 the solution of the flow equations is constant and equal to the
initially imposed conditions. In a validation of the model’s quality these sub-areas are thus of
minor or no interest.

In sub-area Ω3 the water depth and velocity are also constant but with values depending
on the (initial) water depth in the left (Ω1) and right (Ω4) part of the domain. The accuracy
with which these constants are reproduced by the numerical model is included in the present
validation study. It must yet be taken into account that the (x, t) area covered by Ω3 is rather
small since xB(t) is close to xC(t) for each time t. In its turn this is due to the ’very low’ water
depth prescribed at the downsteam boundary. Particularly for the coarse spatial and temporal
discretisations the number of gridpoints within sub-area Ω3 will then be too small for a solid
estimate of the error norms. In the evalution of these norms Ω3 will therefore be extended
with parts of the neighbouring other sub-areas.

In sub-area Ω2 the water depth and velocity are not constant. Along the x-direction the
water depth follows a monotonically decreasing parobolic profile, while the velocity increases
linearly from 0 at x = xA(t) to its maximum at x = xB(t). The various panels in the figures
Figure 15.11, Figure 15.12 and Figure 15.13 show how these profiles of the flow variables
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Figure 15.17: Lower panel: Partition {Ω1,Ω2,Ω3,Ω4} of the model’s spatio temporal do-
main by the three lines {(xA(t), t)}, {(xB(t), t)} and {(xC(t), t)}, and the
sub-areas Ai where the error norms are evaluated. The symbols I mark
the times t for which in preceding figures the flow variables u, h, and h · u
have been shown as function of the spatial variable x. In the upper panel
these flow variables are once more illustrated for t = 3240 sec. In this
way the different characteristics of the flow for the different sub-areas can
be conveniently recognised. For this t = 3240 sec the various norms for
the D-Flow FM errors have been evaluated.

evolve in time. This temporal evolution consists of a gradual spatial stretching of the profiles
in both the downstream and upstream direction. Within this stretching the shape of the profiles
remains the same (self-similar solution). Because of the non-trivial variation, the solution in
this sub-area Ω2 is highly relevant in the present D-Flow FM validation.

From the figures of the analytical solutions presented above, it is recognised that the interface
between the sub-areas Ωi (formed by the lines {(xA(t), t)}, {(xB(t), t)} and {(xC(t), t)})
are of special interest. At these interfaces the flow variables are non-smooth (at {(xA(t), t)}
and {(xB(t), t)}) or even discontinuous (at {(xC(t), t)}). In an investigation of the accuracy
of numerical flow models such as D-Flow FM, the capability to deal with such non-smoothness
is an important issue. For the present case this importance is revealed by the errors plotted in
Figure 15.11 and Figure 15.12. It can be observed that the errors reach local maxima at the
interfaces between the sub-areas and that they are spread over quite a few grid cells when
∆x = 500m. The same behaviour is present in Figure 15.14 and Figure 15.15, but not so
clearly visible because of the use of the much smaller grid size ∆x = 25m.

On the basis of these considerations the assessment of the accuracy of the D-Flow FM simu-
lations is carried out for the two sub-areas Ω2 and Ω3, and for small neighbourhoods of their
boundaries xA, xB and xC . As argued before the size of Ω3 is too small to cover a sufficiently
number of gridpoints in the error analysis for the coarsest grids. Therefore Ω3 is extended with
a part of the its boundary with Ω2 on the left, and with Ω4 on the right. On the other hand,
for the sub-area Ω2 a partition is made, and this area is split up in two sub-areas consisting
of its part to the left and its part to the right of the original dam-break position x0. The reason
for this splitting of Ω4 is the observation (cf. Figure 15.11 and Figure 15.12) that in sub-area
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Ω2 the errors in the computed water depth and the velocity turn out to be significant larger for
x > x0 than for x < x0.

A good impression of the simulation accuracy of D-Flow FM is obtained by computing and
presenting the error norms of ∆u(x, t) and ∆h(x, t) for a time level toward the end of the
simulation. This will exclude spurious effects due to any excessive errors in the start-up
phase of the computation that may have been caused by the discontinuous initial condition.
We have chosen the time level t = 3240 sec, which in the previous figures corresponds with
the solutions shown in the lower-right panels.

Altogether this gives the following four sub-areas Ai at t = 3240 sec for which results of the
accuracy assessment will be presented in the next section:

1 Area A1 containing the grid points xn for which 13849m < xn < 17449m;
2 Area A2 containing the grid points xn for which 17449m < xn < 30000m;
3 Area A3 containing the grid points xn for which 30000m < xn < 51226m;
4 Area A4 containing the grid points xn for which 51226m < xn < 56790m;

The location of these four sub-areas Ai within the computational domain Ω, and the charac-
teristics of the flow variables on these sub-areas is shown in Figure 15.17.

Finally it is mentioned that the analytical solution has been used to construct plots of the
relevant components of the momentum equation: ∂(h·u)

∂t
(storage term), ∂(h·u2)

∂x
(convection

term), and gh · ∂h
∂x

(pressure term). All other components, related to bed friction, horizontal
viscosity, Coriolis, etc. are zero. The plots of the three relevant components (not presented
here) were used to verify the relative weight that these components contribute to the flow
propagation. With the present setting of the model parameters (i.e. the water depth boundary
conditions hL and hR) it was oberved that in magnitude these components are reasonably in
balance. As a result they contribute significantly, and more or less equally, to the results and
conclusions of this validation study. These results are summarised in the next section.

Results

For each of the four uniform grids (with the grid sizes ∆x = 500, 100, 50 and 25 m) D-
Flow FM simulations were carried out for the eight different time steps ∆t = 0.01, 0.05,
0.125, 0.25, 0.5, 1.0, 2.0 and 3.0 sec. It must be noted that larger time steps than the present
maximum ∆t = 3.0 sec did not provide meaningful results. For the finest grids instabilities
were found in the D-Flow FM solutions in the form of (non-physical) large oscillating variations
in both the velocity and the water level. Actually, such a behaviour was also to some extend
already observed in the simulations with ∆t = 3.0 sec.

For all these simulations, the three error norms L1(·), L2(·) and L∞(·) (see Equation (15.6))
were evaluated. This was done for all the four sub-areas Ai that were selected in the preced-
ing paragraph.

Results of time step variations

To begin with, the effect of the time-step size has been verified using the spatial grid with
the finest resolution (∆x = 25 m). For this finest grid (and any other grid if larger time
steps would have been considered) we may expect that with increasing ∆t the errors in the
D-Flow FM simulations gradually become mainly, or even fully, determined by the errors in
the applied time integration method. From the dependency of the error norms on ∆t the time
accuracy of D-Flow FM can be evaluated and quantified.
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In the (graphical) inspection of the effect of the time step on the error norms a non-regular
behaviour was observed for the largest ∆t values (larger than 1 sec). Likely this is due to
(small) numerical instabilities that may occur when these time steps are combined with the
present smallest grid size of 25 m.

It must yet be noted that within the error norms such irregularities were observed ’only’ for
the down strean situated sub-areas A3 and A4. For A3 this would not have been expected
beforehand given the smooth dependency in this area of the (analytical) flow variables on the
spatial and temporal coordinates. Probably the solutions in this sub-area are affected through
by those in sub-area A4 through back propagation.

To maintain the full range of ∆t variations the time step analysis was repeated for the sim-
ulations on the finest grid but one (i.e. Grid 2 with ∆x = 50 m). The result is graphically
shown in Figure 15.18. To limit the total number of figures, and also because of simular char-
acteristics of the other two error norms, only the error behaviour in the L1 norm is shown in
Figure 15.18. For all variables we see roughly the same error behaviour. Such a similar be-
haviour is not found for the different sub-areas, however. For area A1 (around the separator
xA(t), in the upstream part of the domain) the expected behaviour is produced in the sense
that the L1-errors monotonically decrease when reducing the time step ∆t. This also tends
to hold for L1(∆h) on sub-area A3. For all other L1(·;Ai), however, a response opposite
to as expected is found: an increase of the errors for decreasing ∆t. The authors have no
plausible explanation at hand for this quite remarkable behaviour.

It must yet be noted that despite this ’discrepancy’ the errors do not grow significantly when
∆t ↓ 0. In fact, (except for the velocity on area A4) they then converge to a reasonably small
value. This limiting value tends to be found for all ∆t ≤ 0.25 sec and this suggests that the
limiting value fully represents the error of the spatial discretisation in D-Flow FM’s numerical
scheme. Due to a limited sensivity for a wide range of the applied time steps, we may also
conclude that (in this case) the errors originating for the spatial discretisation by far dominate
those of the temporal discretisation.

As a matter of the here found non-uniform behaviour of the error norms no unequivocal con-
clusion can be formulated about the numerical scheme’s order of accuracy with respect to the
time integration. Formally a first order would be expected (error proportional to ∆t) because
of first-order explicit discretisation of the convection term u · ∂u

∂x
, and first-order implicit in the

pressure term g · ∂h
∂x

of the momentum equation. Figure 15.18 suggests that even for sub-area
A1 this first order accuracy is not achieved.

We recall that the error behaviour is sensitive to the way that the error has been measured,
cf. Footnote 11. This may be the reason why the error in sub-area A6, where the hydraulic
jump is, seems to be higher order in ∆t (see again Figure 15.18). Unless special shock-
fitting techniques are used, steady discontinuities like hydraulic jumps by definition limit the
accuracy of any numerical scheme to O(∆x) in the L1 norm, to O(

√
∆x) in the L2 norm,

and to O(1) in the L∞ norm. The same applies in time for moving discontinuities, which is
the case that we are dealing with here. In other words, the seemingly higher-order behaviour
of the D-Flow FM time integration scheme in sub-area A6 must be a spurious effect. It is
probably due to the fact that the numerical solution and the exact solution are not compared
everywhere in the domain9, but only at a limited number of points.

The error reaches a constant value for ∆t < 0.5sec, indicating that for time steps that
are that small the time integration error becomes (negligibly) small compared to the space

9That would require the numerical solution to be defined as a (discrete) function in space, and not as values in
only a finite number of (grid) points as we do here.

Deltares 205 of 246



D-Flow Flexible Mesh, Validation Document

Figure 15.18: Dependency of the error norm L1(·) on ∆t, for the water depth, velocity
and discharge on one hand, and on the other hand on the six sub-areas
Ai that were selected in the validation of the accuracy of the numerical
scheme. These L1(·) are as obtained with the presently finest grid size but
one, with ∆x = 50 m.

discretisation error.

In practical applications a suitable time step would be the one that ensures a balance between
time integration errors and space discretisation errors. The small increase in accuracy of using
a smaller time step would not outweigh the larger additional computational costs of a smaller
time step, while with a larger time step (and hence a dominating time integration error) one
would not fully exploit the accuracy provided by the spatial grid resolution. For the present
case, Figure 15.18 shows that the optimal time step is around 1 to 2 sec. Since the grid
size in this computation is 25m and the maximum flow velocity is 4m/sec, this means that
the optimal Courant number |u|∆t/∆x is about 0.2 to 0.3. It has been verified that this
also applies to the computation with a grid size of 100m, so this conclusion is grid-resolution
invariant, at least for this application.

A Courant number of 0.2 to 0.3 is significantly lower than the stability limit |u|∆t/∆x ≤ 1.
The conclusion is therefore that for this application (where we have used a uniform rectangular
grid) the quality of the D-Flow FM space discretisation is better than that of its time integration.
A consequency of this is that in highly unsteady applications (such as the one considered
here), the time step may have to be taken smaller than the one that follows from the stability
condition in order to ensure optimal performance of D-Flow FM.

The error behaviour for sub-area A5 shown in Figure 15.18 is remarkable. It continues to
decrease for time steps smaller than 0.5sec. This applies in particular to the error in the
water depth. Sub-area A5 is the only part of the domain where the solution is both non-
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trivial and constant, and where the space discretisation therefore becomes exact. As this
sub-area is free of space discretisation errors, any error for very small time step must be due
to the solution predicted in the sub-areas adjacent to A5. An explanation for the remarkable
error behaviour in A5 may lie in the conservation properties of the space discretisation. It
seems that this ensures that, regardless of any other errors, the water depth and flow velocity
in sub-area A5 are exact. However, the applied time integration scheme is not momentum
conserving. This would explain why in sub-area A5 the error is mainly determined by the
applied time integration.

Results of grid size variations The accuracy of D-Flow FM with respect to the spatial discreti-
sation has been verified in a similar way as described above for the time step. To ensure that
errors due to the time integration can safely be ignored, only results from the simulations with
the extremely small time step (∆t = 0.01sec) have been considered. The error behaviour in
the L1 and the L∞ norm is shown in Figure 15.19. The L2 norm showed a similar behaviour
as L1 and is therefore not further considered.

For all variables (h, u, and h · u) and in all sub-areas Ai we see in Figure 15.19 roughly the
same error behaviour of L1 as a function of the spatial grid resolution. This also holds for the
L∞ norm. A main difference that is found when comparing these two norms is that for sub-
areaA4 the L∞ norm is virtually constant for all three flow variables, while the corresponding
L1 norm monotonically decreases with increasing spatial resolution.

From the slopes in the logL(∆x) vs. log(∆x) plots of Figure 15.19 is can be seen that in
some cases the order of accuracy of the numerical scheme is close to one, but in most case
noticeably less. On sub-area A4 the order is even zero, when using the L∞ norm.

An accuracy order close to, but not larger than one could be expected for sub-area A4 be-
cause of discontinuous and non-smooth dependencies of the flow variables on the spatial
coordinate (near xB(t) and xC(t)). For the other sub-areas, with particularly A2 and A3

where the (analytical) solution is infinitely smooth, a higher-order of accuracy would have
been expected.

The conclusion reads that somewhere in the D-Flow FM scheme a first-order approximation is
applied (first-order upwind of the water depth in the determination of the mass flux through cell
faces), which for this application has a dominant effect on the spatial accuracy10. Since a full
description of the numerical scheme applied in D-Flow FM is not available, it is not possible
to interprete the obtained validation results any further.

For a proper quantitative assessment of the order of accuracy, the effective order of accuracy
as observed in the computations has been determined by means of linear regression analyses
(of the form log(Lk(∆x)) ∼ a · log(∆x) + b) of the logarithm of the errors as a function of
the logarithm of the grid size (i.e. the functions as shown in Figure 15.19). The error on the
coarsest grid has been discarded in this analysis. On this coarsest grid with ∆x = 500 m
each sub-area only contains half a dozen or so grid cells, which is not enough for a reliable
error analysis. This has been confirmed by looking at the correlation coefficients. They are
close to 1 with the error on the coarsest grid discarded, but when the error on this grid is
included the regression analyses give less strong correlations.

10Note that the way the (total) water depth is approximated at cell faces may have less impact on the overall
accuracy in applications with little variation in the water level, such as tidal-flow and river-flow simulations. With
the bathymetry defined at grid points, the depth with respect to the model datum is approximated second-order
accurate at cell faces. With little variation in the water level, a first-order approximation error of taking the water
level at cell faces upwind may have only a minor effect on the computation of the (total) water depth at cell faces.
Additional validation studies are required to investigate this.
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Figure 15.19: Dependency of the error norms L1(·) and L∞(·) on ∆x, for the water
depth, velocity and discharge on one hand, and on the other hand on the
four sub-areasAi that were selected in the validation of the accuracy of the
numerical scheme. TheL1(·) andL∞(·) are as obtained with the presently
smallest time step ∆t = 0.01 sec.

The estimate for the slope parameter a in the regression log(Lk(∆x)) ∼ a · log(∆x) + b
provides the order of accuracy of the numerical scheme. The so obtained order-of-accuracy
results are graphically shown in Figure 15.20. This is done for all Lk error measures and also
all the four sub-areas Ai that have been considered.

In the sub-areasA2 andA3, where the solution of the flow equations is smooth, Figure 15.20
shows an error behaviour that is less than, but still reasonably close to, order 1. In sub-area
A1, where the solution is not smooth but still continuous, the order of accuracy measured in
the L∞ norm decreases to about 0.6.

In sub-areaA4, where due to the hydraulic jump the solution is neither smooth nor continuous,
the error behaviour is of order 1/2 for the L1 norm, 1/4 for the L2 norm, and even zero for
the L∞ norm. This does not agree with the theory how discontinuities limit the accuracy of
virtually any numerical scheme. In fact, as already explained above, orders 1, 1/2, and 1/4
would have been expected. The reason for this discrepancy is not known.
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Figure 15.20: Order of accuracies, O(∆x), found for the various error norms Lk(∆x).
Through the three sub-panels the dependency of O(∆x) on the flow quan-
tities h, u, and h · u is presented. Within the sub-panels the dependency
of O(∆x) on sub-areas Ai in the computational domain is shown. These
orders of accuracy are as obtained with the presently smallest time step
∆t = 0.01 sec.

Discussion: almost dry bed compared to fully dry bed

In all preceding simulations of D-Flow FM a 1D dambreak flow over an "almost" dry bed
was computed and compared to the corresponding analytical solutions. This is more or less
under the assumption that the applied downstream water depth boundary condition of hR =
0.0001 (in combination with the upstream boundary condition of hL = 2) provides a close
approximation of a dry bed in strict sense. The latter would require that hR = 0 (and hL as
before). In this paragraph the "assumption" that hR = 0.0001 indeed represents an almost
dry bed is verified in some more detail. In this analysis we restict to the velocities since this
quantity was found to depend most sensitively on the setting of hR. Moreover, and similar as
before, the longitudinal velocity profile for t = 3240 sec is considered in particular.

The analytical solutions presented in Equation (15.10) and Equation (15.15) can conveniently
be used to show the dependency of the velocity u(x, t = 3240) sec on the water depth hR
at the downstream ("dry") boundary. In Figure 15.21 these velocity profiles are shown for the
following six variations of hR: 0.1, 0.01, 0.001, 10−4, 10−6, and 10−9. The curve plotted in
cyan represents the profile for the in this validation study used hR= 0.0001. From the figure
an (unexpected) high sensitivity can be observed for hR. This sensivity is in twofold: both with
respect to the maximum velocity along the domain, but also with respect to the propagation
speed of the upstream front (and thus also its longitudinal position) along the channel. While
practically speaking an hR of 0.1 mm could be considered as virtually dry, the figure shows
that in "theoretical" sense this is not really the case. In fact, for hR = 10−9 (i.e. 1 µ·mm) the
peak velocity is still considerably larger than for hR = 10−4, and so is the front’s propagation
speed.

Deltares 209 of 246



D-Flow Flexible Mesh, Validation Document

This raises the question whether for such considerably smaller values of hR the analytical so-
lutions can still reasonably be reproduced by D-Flow FM. In analogy to Figure 15.14 analytical
and D-Flow FM computed velocity profiles are mutually compared in Figure 15.22 for the case
that hR was set to 10−9 m (and with ∆t = 0.01 sec , ∆x = 25 m, and epshu set equal to
hR). From Figure 15.22 it is observed that now the velocity profile is not reproduced with very
high accuarcy. Deficiencies concentrate exactly on the two aspects for which on the basis of
the analytical solutions the highest sensitivity was found for hR ↓ 0: the peak value (under
estimated by the simulation) and the propagation speed of the downstream front (also under
estimated). Such errors were also found in a D-Flow FM computation with hR = 10−6.

Probably this reduction of the computation’s quality for very small hR originates from the
drying and flooding mechanism in D-Flow FM. In absence of documentation this could not
be verified in sufficient detail, and remains an important issue for clarification and further
validation.

Figure 15.21: Dependency of the velocity u(x, t = 3240) sec on the downstream water
depth boundary condition hR

Figure 15.22: Velocity u(x, t) as function of the longitudinal coordinate x for 6 successive
time points t. The velocity uA(x, t) according to the analytical solution is
plotted in blue, while the solution uC(x, t) according to D-Flow FM using
Grid 3 (∆x= 25 m, ∆t= 0.01 sec, hR = 10−9 m) is shown in red. The
error in the computed velocity, ∆u(x, t), is depicted in green.
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Conclusion

The main conclusions of the present D-Flow FM validation study can be summarised as fol-
lows.

� The aim of the present study was to validate D-Flow FM for the modelling of a 1D dambreak
flow over a dry bed. In the simulations, however, this situation was approximated by an
"almost dry bed". In this approximation a small water depth hR was prescribed at the
model’s downstream boundary: hR = 0.0001 m in combination with an hL = 2 m at
the upstream boundary. A detailed analysis of the analytical solutions revealed that the
water depth and velocities for this (practically speaking) small value of hR are still signifi-
cantly different from those for a dry bed in strict sense, i.e. when hR is set to exactly 0 m.
D-Flow FM simulations with an hR significantly smaller than 0.0001 (together with corre-
sponding reductions of the D-Flow FM’s drying/flooding control parameter epshu) resulted
in considerably less accurate predictions of the analytical solutions. This degradation of
the quality is presumably related to the drying and flooding procedure in D-Flow FM. In
this study it was then decided to limit the downstream boundary hR to D-Flow FM’s default
value of the flooding/drying threshold parameter epshu.

� From the applied time integration scheme, a first order error behaviour would be expected
with regard to the time step ∆t. For the present case, simulating a 1D dambreak flow
over an almost dry bed, this behaviour is not well (re)produced. In fact, in downstream
sub-areas of the computational domain (and in particular the sub-area with the heavy
discontinuity in the velocity) errors were found to increase (slightly, but monotonically)
when reducing the time step. In the most upstream sub-area the expected response to
time step reduction was found, but with an accuracy order noticeably less than 1.

� In the present flow simulations the errors in the modelling are virtually completely due to
the spatial discretisation.

� In all norms the accuracy with regard to the spatial discretisation is less than, but reason-
ably close to, first order. This is under the condition of a smooth (or at least continuous)
dependency of the flow variables on the spatial and temporal coordinates. In sub-areas
with discontinuities the order of accuracy depends on the applied error norm. For the L1

norm this order is 1/2 where an higher order 1 would be expected.
� Practically speaking D-Flow FM is well capable to reproduce the analytical solution of the

almost dry bed dambreak flow equations: in absolute value the model errors are quite
small. This is at the cost, however, of a considerably fine grid, and through the Courant
number, combined with a suitably small time step.

It must be mentioned that these findings can partly (or even to a large extent) be induced
by the present flow conditions, consisting of a non-steady, highly dynamic evolution of the
flow, with non-smooth and discontinuous spatio/temporal variations (shock waves, jumps in
the water depth and velocity profiles), and absence of friction and/or viscosity effects. At the
same time it must be emphasized that the present conclusions are derived for, and may be
limited to, uniform rectangular grids only.

Version

This test has been carried out with version dflow-fm-x64-1.1.111.34732M.
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15.3 Wave run-up and run-down on a beach with constant slope

Purpose

Many practical applications of hydrodynamic models have to deal with the simulation of flows
in seas or estuaries with shallow shore boundaries. Within the propagation of these flows
the run-up and run-down of (long) waves and associated wetting and drying of shallow re-
gions must then carefully be taken into account. This drying and flooding, involving moving
boundaries (dry/wet interfaces), is difficult to resolve with a high spatial and temporal reso-
lution, and with high accuracy as well. (Quasi) analytical solutions of the non-linear shallow
water equations are available for special cases only. These can then be used for testing nu-
merical model solutions. A particular example of an analytical solution is provided by Carrier
and Greenspan [1958] for wave run-up and run-down on a beach with constant slope. In this
section this quasi-analytical solution is used for a validation of D-Flow FM. For this purpose
various D-Flow FM simulations have been carried out and its predictions are quantitatively
compared to the corresponding analytical solutions. In particular it is verified how the accu-
racy of D-Flow FM responds to refinements of the spatial grid (∆x) and the time step (∆t),
to obtain insight in the order of accuracy of D-Flow FM’s numerical scheme for this kind of
applications.

Linked claims

Claims that are investigated in the current validation case are:

� The accuracy of the time integration scheme in D-Flow FM is of first order.
� The accuracy of the spatial discretisation scheme is of order 0.4.
� The accuracy for predicting the time-varying shoreline position is of order 0.6 to 0.8 with

respect to the spatial discretisation.

Approach

As already mentioned, analytical solutions of the non-linear shallow water equations for wave
run-up and run-down on a beach are available for special cases only. The original approach
of Greenspan and Carrier (which we will closely follow) is restricted to flows in one direction
(i.e. dependent on one spatial coordinate, denoted by x). It is assumed that the flow evolves
without friction and that viscosity effects are absent. Another essential assumption to allow
an analytical solution is a linear bottom profile, i.e. a depth that depends linearly on the spatial
coordinate x. Carrier and Greenspan’s approach to construct the general analytical solution
and the specific analytical solution used in the validation (including the parameter setting)
are described below in separate sections. These analytical solutions form the basis for our
quantitative analysis of the numerical accuracy of D-Flow FM. The approach in this accuracy
analysis is as follows.

D-Flow FM simulations have been carried out for various systematic variations of both the grid
size and the time step in the discretisation of the flow equations. In the variations of the spatial
discretisation four one-dimensional uniform rectangular grids have been used, i.e. grids with
cells of constant size ∆x in the longitudinal direction of the computational domain. These
grids will be described later, but here we already mention that they are constructed such that
they provide stepwise (and mutually comparable) refinements of the spatial discretisation of
the D-Flow FM model. The effect of time step ∆t on the accuracy of the numerical simulation
is investigated through variations of ∆t.

The effect of grid-size and time-step refinements on the accuracy of D-Flow FM simulations
will be quantified through statistical error measures derived from the errors ∆ζ(x, t) and
∆u(x, t) in the model’s prediction of water level ζ(x, t) and flow velocity u(x, t) at the cell
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centres11.

The errors are defined by ∆ζ(x, t) := ζA(x, t) − ζC(x, t) and ∆u(x, t) := uA(x, t) −
uC(x, t), with subscript C indicating a variable computed by D-Flow FM and with subscript
A indicating the corresponding analytical solution.

Three error measures L1, L2, and L∞ have been considered for the quantification and com-
parison of the accuracy of the D-Flow FM solutions for the various variations in the grid size
and the time step. These Lk (k = 1, 2,∞) are actually vector norms applied to the set of
model errors {∆ζ(x, t)}(x,t)∈A and {∆u(x, t)}(x,t)∈A on some subarea A of the computa-
tional domain. They are defined by the following generic formula12:

Lk(∆ξ) =
k

√
1

NA

∑
(x,t)∈A

|∆ξ(x, t)|k (15.16)

In these equations, NA denotes the number of cell centres (x, t) ∈ A. The ξ represents one
of the two considered flow quantities, i.e. water depth ζ or flow velocity u.

The error measures will be computed for several sub-areasA of the full (spatial and temporal)
computational domain. In one of the sections below these sub-areas are defined in further
detail. Next, the dependency of the error norms on the grid size ∆x and time step ∆t will
be evaluated for the various sub-areas, from which the order of accuracy of the numerical
solutions can be obtained.

Carrier and Greenspan’s analytical solutions

Flow equations in dimensional form

In this section the main steps of Carrier and Greenspan’s approach are described that lead to
a quasi-analytical solution of the one-dimensional (non-linear) shallow water equations. This
is for the special case of no friction and no viscosity effects, and also with a bottom of constant
slope. The one-dimensional flow equations are then as follows:

∂ζ

∂t
+

∂

∂x

(
u · (ζ +D)

)
= 0

∂u

∂t
+ u · ∂u

∂x
+ g · ∂ζ

∂x
= 0

(15.17)

In this equation x and t are respectively the spatial and time coordinate, ζ is the surface
elevation with respect to a reference level, u is the horizontal flow velocity, D is the water
depth with respect to the reference level, and g is the gravitational acceleration. The quantity
ζ +D is thus the total water depth.

11Ideally, the error across the entire domain should be considered. It is, however, not clear how the discrete
solution at cell centres should be extended in between the cell centres. Water depth h is assumed piecewise
constant per grid cell in the time derivative of the continuity equation (a central approximation), but its value at the
cell faces is obtained by (first-order) upwind. Velocity u at cell centers is obtained from averaging the values at the
faces of the cells, thereby introducing averaging errors. Although in 1D u at cell faces could be considered when
the grid is aligned with the flow (as is the case here), this is not possible in general. For this reason we decided
not to exploit this possibility.

By only considering the value of ζ and u at cell centers, at most additional second-order errors are introduced
due to the use of the 1-point Gauss integration rule (ζ) and 2-point central averaging (u). If necessary, this should
be taken into account when interpreting the results.

12Note that L1(·) is the mean absolute error over A, while L2(·) is the RMS (root mean square) of the model
error. It is readily verified that L∞(·) corresponds to the maximum of the pointwise absolute errors |∆ξ(x, t)| over
A.
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The uniform slope of the bottom is represented by D(x) := −α · x for some α > 0. As a
result the bottom’s vertical position increases with the spatial coordinate x, and at x = 0 the
bottom crosses the reference level. For a regular water-level profile ζ(x) there will be some
xDW for which ζ(x) + D(x) = 0 for all x > xDW . This xDW can vary in time, however.
In the model, the beach where the wave run-up and run-down takes place is thus at the right
hand side.

Flow equations in non-dimensional form

The first step in Carrier and Greenspan’s approach is to convert the flow equations into a
representation with dimensionless variables. This is done through the following scaling of the
involved quantities:

x′ = x/L0

t′ = t/

√
L0

α · g
ζ ′ = ζ/(α · L0)

u′ = u/
√
g · L0 · α

(15.18)

This scaling is governed by the parameter L0 which represents some characteristic length. A
proper choice for L0 must be derived from the physical flow conditions in the study where the
model is applied.

After substitution of the transformed variables of Equation (15.18) into Equation (15.17), the
flow equations become:

∂ζ

∂t
+

∂

∂x

(
u · (ζ − x)

)
= 0

∂u

∂t
+ u · ∂u

∂x
+
∂ζ

∂x
= 0

(15.19)

Formally speaking the variables x, t, ζ and u in this equation should have been written as x′,
t′, ζ ′ and u′ but for ease of of notation the primes have been omitted.

Hodograph transformation of the non-dimensional flow equations

In a second step the hyperbolic equations of Equation (15.19) are rewritten in a form where
the characteristic variables are the independent variables. Next another (so called hodo-
graph) coordinate transformation is applied such that the instantaneous shoreline position in
the physical space (which varies in time) is mapped onto a fixed point σ in the transformed
time-space coordinate system (σ, λ). The transformation is such that the non-linear problem
can be reformulated into a linear partial differential equation for the potential function φ(σ, λ):

∂

∂σ

(
σ · ∂φ(σ, λ)

∂σ

)
− σ · ∂

2φ(σ, λ)

∂λ2
= 0 (15.20)

with coordinate σ ≤ 0. The fixed line σ = 0 corresponds to the free boundary at the beach.
Since this free boundary moves up and down the bottom slope as a wave runs up and down
the beach, σ, but also λ, depend in a complex way on both the physical coordinates (x, t)
(and vice versa) and the flow variables (ζ, u).
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From some solution φ(σ, λ) of Equation (15.20), the velocity u can be obtained through:

u =
1

σ
· ∂φ(σ, λ)

∂σ
(15.21)

Next, from φ(σ, λ) and u, the water level ζ can be computed according to:

ζ =
1

4
· ∂φ(σ, λ)

∂λ
− 1

2
· u2 (15.22)

As a result the water level and velocity are available for the independent, but transformed,
coordinates (σ, λ). The corresponding spatial and temporal coordinates in the physical space
(dimensionless x and t as defined by scaling Equation (15.18)) are provided by:

x =
1

4
· ∂φ(σ, λ)

∂λ
− 1

16
· σ2 − 1

2
· u2 (15.23)

and

t =
1

2
· λ− u (15.24)

Inverse of the hodograph transformation

The choice of the function φ(σ, λ) satisfying Equation (15.20) thus determines the coordi-
nates (x, t) and the flow variables (ζ, u) at those coordinates. These are still expressed in
terms of the transformed independent variables (σ, λ), however. The issue is therefore how
to determine reversely for a given pair (x, t) the corresponding (σ, λ), so that they can be
substituted into Equation (15.21) and Equation (15.22) to get the flow variables ζ and u as a
function of (x, t). The mutual dependency of (x, t) and (σ, λ) is rather complex. No analyt-
ical recipe is available to get (σ, λ) directly for some arbitrary (x, t) combination. Therefore
a numerical approach was followed for this inversion. A quasi-Newton method was used to
minimise the following cost function with respect to σ and λ given the physical coordinates
(x∗, t∗):

J(σ, λ) =

(
x∗ −

(1

4
· ∂φ(σ, λ)

∂λ
− 1

16
· σ2 − 1

2
· u2
))2

+

(
t∗ −

(1

2
· λ− u

))2

(15.25)

The u in the right-hand side of this equation is as defined in Equation (15.21). In case the
Jacobian matrix ∂(x, t)/∂(σ, λ) (with the x and t of Equation (15.23) and Equation (15.24))
never vanishes in the half plane σ < 0 (and waves do not break as pointed out by Carrier
and Greenspan [1958]), there is a unique minimum of this cost function. When the minimi-
sation yields a pair (σ, λ) for which |J(σ, λ)| ≤ ε, with ε a sufficiently small convergence
tolerance, the inversion procedure has provided the desired transformed coordinates (σ, λ)
corresponding to the given (x∗, t∗). By means of Equation (15.22) and Equation (15.21) the
values of the water level and velocity can then be computed.

If Jacobian matrix ∂(x, t)/∂(σ, λ) vanishes, or when the σ that is found is larger than zero,
no proper solution (σ, λ) is available for (x∗, t∗). This will typically be for locations x where
the beach is dry at time t and no well-defined water level and velocity exist. In this way the
inversion procedure also provides a diagnostic for the dry/wet status of a location at a given
time.

Choice of the potential φ(σ, λ)
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In the present D-Flow FM validation study the following potential φ(σ, λ) satisfying differential
equation (15.20) has been adopted:

φ(σ, λ) = A · J0(ωσ) · cos(ωλ− ψ) (15.26)

with J0 the 0th-order Bessel function of the first kind.

Carrier and Greenspan [1958] explain that for this choice of φ(σ, λ) we have the physical
situation of a wave travelling shoreward from the deep region. It is reflected in the shallow
region with the reflected wave travelling back out to sea. The reflection coefficient is unity and
no breaking will occur as long as (dimensionless) amplitude A ≤ 1.

The solution is periodic in time at every location x. While the period is 2π/ω with respect
to λ, the period is π/ω in time t of the non-dimensional flow model (15.19) because of the
factor 1/2 in Equation (15.24). The periodicity in time is not fully harmonic; particularly at
locations near the shore large overtones are present. From Equation (15.23) we obtain the
approximation x ≈ 1/16 · σ2 for σ � −1, so far at sea (x� −1) the spatial shape of the
wave is of the form J0(4 ·

√
x). The wave is significantly distorted near the shore, however.

This can be recognised from the water level shown in Figure 15.23. This figure is further
introduced and discussed in another paragraph below.

Extremes of the water level, velocity, and the wave run-up/run-down excursions

Substitution of Equation (15.26) in Equation (15.21), using dJ0(x)/dx = −J1(x), yields the
expression for the velocity:

u(σ, λ) = −A · ω · J1(ωσ)

σ
· cos(ωλ− ψ) (15.27)

From this equation it can be derived that the extremes of u are assumed for σ = 0 and
λ = (nπ + ψ)/ω, n = 0, 1, . . .. These velocity extremes, of value ±½·A · ω2, thus occur
at the dry/wet interface on the beach. Similarly it can readily be verified that the extremes of
ζ also occur at the dry/wet interface and amount to a value of ±¼·A · ω. On the basis of
Equation (15.23) the extremes of the wave run-up and run-down excursions on the beach can
be derived. These extremes are identical to those found for the water level, i.e.±¼·A · ω.

Note that all these values are still for the scaled dimensionless model. Extremes of the flow
variables of the original dimensional model are considered below in another paragraph.

Remaining free parameters in Carrier and Greenspan’s analytical solution

With the φ(σ, λ) of Equation (15.26) we are left with three free parameters in the solution
of the dimensionless model: amplitude A, radial frequency ω, and phase lag ψ. For a given
choice of these parameters the manipulations covered by Equation (15.21) to Equation (15.26)
provide a (quasi-)analytical solution for the flow equations of Equation (15.19). Here the spa-
tial and temporal coordinates and flow variables are in a physical representation, but still in
a scaled and dimensionless form. To obtain a solution for the flow equations in the original
physical, and fully dimensional, representation the inverse of scaling (15.18) must be applied.
In this rescaling the characteristic length L0 and the slope α of the bottom provide two ad-
ditional free parameters. Formally the gravitational acceleration g is also adjustable in the
modelling but this will not be considered; g is set equal to 9.81m/s2.

In summary the list of free parameters is:

Θ := (A, ω, ψ;L0, α) (15.28)

216 of 246 Deltares



In depth considerations

The settings of the free parameters that have been used in the D-Flow FM simulations of the
present validation study are presented in the next paragraph.

D-Flow FM model description

Initial condition

For running D-Flow FM an initial condition for the water level must be prescribed. For the
velocity an initial condition is adopted that is uniformly zero all over the spatial domain. From
Equation (15.20) and Equation (15.24) it can readily be verified that for t = 0 the velocity
u(x, t) = 0 for all x if the phase lag is set to ψ = −½π. With this choice we thus obtain
an initial condition for D-Flow FM that for both ζ and u is fully consistent with the analytical
solution of the model equations. Because of this consistency, initial perturbations due to the
mismatch between the analytical solution and the numerical solution should be small. In fact,
it should be possible to make the initial perturbations arbitrarily small by taking a sufficiently
high resolution in the spatial and temporal discretisation.

Besides the phase lag ψ, the generation of the initial condition requires a proper choice of the
other two parameters: amplitude A and angular frequency ω in the potential function φ(σ, λ)
of Equation (15.26). With the phase ψ as specified above the following values were assigned
to the parameters in the potential:

A =½ , ω = 1 , ψ = −½π (15.29)

With these values of the parameters in φ(σ, λ) the initial condition of ζ for the still dimension-
less flow equations (15.19) is computed; it is shown in Figure 15.23. The velocity is uniformly
set equal to zero at t = 0, as already mentioned. For D-Flow FM computations this initial
condition must still be rescaled to the one for the dimensional model (15.17), i.e. with the coor-
dinates (x, t) and flow variables (ζ, u) in their original physical representation. This rescaling
is considered in a later paragraph.

Boundary condition

Another issue is to obtain proper boundary conditions. At the right side of the model the
boundary is positioned at a location on the beach that is always dry. No water level or velocity
needs to be prescribed there. At the left side a boundary condition is imposed at a location xL
at sea that is always wet and sufficiently far away from the part of the beach that is subjected
to drying and flooding. At this location xL a water level is prescribed13. The velocity at that
location is generated by the numerical model within the time integration of the flow equations.

For optimal consistency with the analytical solution it is favorable to prescribe the water-level
boundary condition at an xL where for all times t the velocity is constantly zero. In strict sense
no such location exists for Carrier and Greenspan’s analytical solution. It is possible, however,
to find locations x where the amplitude of u has a local minimum. From Equation (15.27)
we obtain that u(σ, λ) = 0 for all σ = σk := zk/ω, with zk the k-th root of the first-
order ordinary Bessel function J1(z). The physical coordinate xk corresponding with σk is
obtained from Equation (15.23). This value is not constant in time but varies around a mean
value of −σ2

k/16. They correspond with the x–locations in Figure 15.23 where the red curve
assumes an (upper or lower) extreme (nodes in the u–signal correspond with anti-nodes in
the ζ–signal).

13In the present computations the seaward boundary is thus dealt with in standard form, i.e. treated as an open
boundary with a prescribed water level. Alternative boundary conditions (e.g. a weakly reflecting condition that
require a combination of water level and velocity) have not been considered in the present study.
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Figure 15.23: Initial water-level profile ζ(x, t = 0) in Carrier and Greenspan’s analytical
solution of the scaled and dimensionless flow model (15.19). In this so-
lution the potential function φ(σ, λ) of Equation (15.26) has been adopted
with the set of parameters A =½ , ω = 1, and ψ = −½π. For these pa-
rameters, and still t = 0, the velocity profile is uniformly equal to zero. The
vertical dashed blue line denotes the x location where in the D-Flow FM
simulations (after re-transformation to the dimensional flow model of Equa-
tion (15.17)) the seaward water-level boundary condition is imposed.

The 6th root of J1(z) was selected to define the seaside boundary location xL of the D-
Flow FM model. This 6th root of J1(z) reads z6 = 19.61586 leading to xL = −σ2

6/16 =
−24.04887. In Figure 15.23 this xL is marked by the vertical dashed blue line. The analyti-
cally computed water-level time series prescribed at xL is shown in Figure 15.24. Evaluation
of the velocity time series at xL = −24.04887 showed that the extremes of this series turn
out to be 2.256 ·10−5, which is indeed very small compared to the velocity’s overall extremes
of 0.25. We recall that all these numbers are still for the scaled non-dimensional model. Be-
low it will be specified which value XL in the physical domain (where the actual D-Flow FM
computations are carried out) is assigned to the xL = −24.04887 in the non-dimensional
domain.

With regard to this XL, and the way a water-level boundary condition is specified in D-
Flow FM, the following must be mentioned. In the construction of the spatial grids (for the
various choices of grid size ∆x), the two faces of the cell at the seaward boundary have
each time been set exactly at x = XL and at x = XL + ∆x. However, in D-Flow FM
a prescribed water-level time series is imposed at the ’virtual’ cell centre left of this cell, i.e.
at x = XL−½ ∆x. To obtain optimal consistency between numerical and analytical solu-
tions, the water-level time series to be imposed have therefore be computed at the locations
x = XL−½ ∆x, i.e. a different time series has been used for each different ∆x.

Figure 15.24: Time series of the water-level boundary condition ζ(x = xL, t) in Car-
rier and Greenspan’s analytical solution of the scaled and dimensionless
flow model (15.19). In this solution the potential function φ(σ, λ) of Equa-
tion (15.26) has been adopted with the set of parameters A = ½ , ω = 1,
and ψ = −½π. The boundary is located at xL = −24.04887, as marked
by the vertical blue dashed line in Figure 15.23.
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Setting of the physical domain parameters

So far the setting of the free parameters and the resulting initial and boundary condition have
been presented for the scaled, non-dimensional flow model (15.19). For the determination of
the solution of the model in the dimensional/physical domain the remaining parameters α and
L0 must yet be specified. In the physical domain the x-coordinate where the linear bottom
profile D(x) crosses the reference level is, just as for the non-dimensional model, set to
x = 0 [m]. The wave run-up and run-down induced drying and flooding of the beach is thus
centered around this location. A choice must be made for the dimensional coordinate that
corresponds to the dimensionless xL = −24.04887 where for the non-dimensional model
the boundary is positioned. In the D-Flow FM computations this boundary has been set to
XL = −30, 000 [m]. At this boundary depth D is set to 300 [m]. This then leads to a bed
slope parameter α = 0.01.

Rescaling of the analytical solution of the non-dimensional model

All parameters in the non-dimensional Carrier and Greenspan model have now been initialised
(see Equation (15.28)). From the correspondence

xL = −24.04887 (non-dimensional)↔ XL = −30000m (dimensional) (15.30)

the characteristic length (i.e. the L0 in Equation (15.18)) is obtained: L0 = 1247.45995m.
With this L0, and with the bed slope α = 0.01, all scaling parameters listed in Equa-
tion (15.18) can be evaluated. On the basis of (the reciprocal of) this scaling a Carrier and
Greenspan’s analytical solution of the non-dimensional model (15.19) can be translated into
an analytical solution of the corresponding dimensional model (15.17) solved in D-Flow FM
simulations. This rescaling from non-dimensional variables (marked with a prime) to the di-
mensional variables is as follows:

L0 = 1247.45995m , α = 0.01 , g = 9.81m/s2 →
x = L0 · x′ = 1247.45995 · x′

t =

√
L0

αg
· t′ = 112.766163 · t′

ζ = αL0 · ζ ′ = 12.4745995 · ζ ′

u =
√
gL0α · u′ = 11.0623606 · u′

(15.31)

From this scaling we obtain the extremes of the flow variables in the analytical solution of the
dimensional model:

extremes of water level ζ : ±¼AωαL0 = ±1.55932494m

extremes of velocity u : ±½Aω2
√
gL0α = ±2.76559014m/s

extremes of dry/wet interface position : ±¼AωL0 = ±155.932494m

(15.32)

In the non-dimensional model the water level and velocity are periodic in time with period
π/ω. In the dimensional model the period is then (with substitution of the numerical values of
the various quantities)

Period P :

√
L0

αg
· π
ω

= 354.265348153s = 5.904422469minutes (15.33)

Illustrations of the analytical solution of the dimensional model
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With the parameter settings described above analytical solutions of the flow equations of the
dimensional model were computed. The spatial and temporal characteristics of water level
and velocity are shown in Figure 15.25, Figure 15.26, Figure 15.27, and Figure 15.28. The
dimensions and magnitudes of these ζ and u are now as in the actual D-Flow FM simulations.

Figure 15.25: Analytical water-level solution of dimensional flow model (15.17). The spa-
tial variation of ζ is shown here for a set of selected times t expressed as
a fraction of period P (5.9044 minutes). Further explanations in the main
text.

The spatial variation of the water level at a set of selected time points t is illustrated in the
two panels of Figure 15.25. In the left panel for the whole computational domain, in the
right panel for the part of the beach where the wave run-up and run-down takes place. The
times for which the spatial profiles have been plotted are expressed in the period P of the
periodic solution (P = 5.9044 minutes). The red curve is for t = 0 and represents the initial
condition for the water level in the D-Flow FM computations (see also the corresponding non-
dimensional form shown in Figure 15.23). This initial condition is at a time where the wave
run-up is minimal. The curve plotted in magenta, for t = ½P , represents the situation where
the wave run-up is at its maximum excursion. The black and the green curves are for times
in between, where the wave run-up is halfway its extremes. The blue curve is for a time that
at the beach the wave run-up is at its equilibrium elevation ζ = 0. Note that this equilibrium
is not (as possibly expected) for time t = ¼P , and neither is ζ uniformly equal to zero at
this time. From the ζ = 0 level crossings near x = −500m it can also be observed that the
x–coordinate of these crossings varies slightly in time. To a lesser extent this also holds for
the crossings further seaward; the ‘spread’ in the x-coordinates becomes gradually negligible.
This confirms an earlier statement that there is no spatial location where in time the surface
elevation is constantly zero.

In the same way, but for different times t, the spatial variation of the velocity is shown in the
two panels of Figure 15.26. The curves in red and magenta are for times where the velocity at
the dry/wet interface on the beach is at its lower and upper extreme. Like with the water level
there is no spatial location where the velocity is constantly zero. It can be observed that the
amplitude of the velocity variations decreases much more rapidly in seaward direction than for
the water level. The dashed black closed trajectory in the right panel provides a kind of phase
space plot of the system’s state at the dry/wet interface on the beach. In fact, the trajectory
consists of the points (xWD(t), u(xWD(t))) with xWD(t) the front of the wave such that the
beach is wet for x < xWD(t) and dry for x > xWD(t). The u(xWD(t)) is the velocity of the
wave’s front at time t. In time the dashed trajectory is circulated in clockwise direction.

An alternative view on the analytical solution of the dimensional flow model is given in Fig-
ure 15.27 and Figure 15.28. It consists of plots of time series of water level and velocity
at different locations, mainly in the vicinity of the beach and in the drying-and-flooding area
(whence the interruptions in the curves, indicating dry-bed conditions). The time series are
presented from t = 0 to t = 2P , i.e. over two cycles of the temporal periodicity.
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Figure 15.26: Analytical velocity solution of the dimensional flow model (15.17). The spa-
tial variation of u is shown here for a set of selected times t expressed as
a fraction of period P (5.9044 minutes). Further explanations in the main
text.

Figure 15.27: Analytical water-level solution of dimensional flow model (15.17). Time
series of ζ are shown for a selected set of locations x. Further explanations
in the main text.

The water-level time series are shown in Figure 15.27. The red curve is the water level at
the left boundary of the D-Flow FM model and thus represents the left boundary condition (cf.
the corresponding non-dimensional form shown in Figure 15.24). The gaps in the curves for
x > −155.93m reflect time intervals where the beach is dry. For x ≤ −155.93m the beach
is always wet. The time series at these locations are thus ‘complete’ but clearly not harmonic,
especially in the vicinity of the beach where the non-linear components in the flow equations
produce significant overtones.

Figure 15.28: Analytical velocity solution of dimensional flow model (15.17). Time series
of u are shown for a selected set of locations x. Further explanations in the
main text.

The velocity time series are shown in Figure 15.28, in and near the drying-and-flooding area
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at the same x-locations as the water-level time series in Figure 15.27. At sea, however, other
locations have been chosen, in particular those where the velocity amplitude is not too small.
Notice that the velocity is always exactly zero for times t that are an integer multiple of ½P .
Such behaviour is not found for the water levels: the times at which the equilibrium level ζ = 0
is crossed depends on the location x, which implies a spatially varying phase.

Computational settings in the D-Flow FM simulations

The computational settings in the D-Flow FM simulations are as follows:

� No bed friction, no surface drag, no horizontal viscosity.
� Schematisation of advection: AdvecType = 33 (Perot q(uio-u)).
� Limiter type for cell-center advection velocity: Limtypmom = 4 (Monotone Central).
� Time integration: TimeStepType = 2 (full implicit step reduce); teta0 = 0.55

(θ = 0.55).
� Bed level handling: BedlevType = 3 (bottom levels at velocity points, using the mean

cell depth).
� Drying/flooding: chkadvd = 0.0 (parameter in handling advection over almost dry

bed).
� Drying/flooding: epshu = 0.0001 (threshold determining wet or dry bed).

In D-Flow FM the numerical setting parameter chkadvd (‘check advection depth’) is relevant
in simulations with frictionless flows over a fully or almost fully dry bed (as in the present case).
For (almost) dry cells it may then happen that within a time step ∆t the predicted water level
gets below the cell depth. In that case the time step should be repeated with a smaller ∆t. To
prevent a substantial increase of computation time, an ad-hoc correction procedure is applied
instead. In this correction procedure explicitly discretised terms of the flow equations, and
particularly those that are extracting water from nearby dry cells, are reduced by a factor. This
factor is determined by the ratio of the current water depth and parameter chkadvd, which
represents a sort of threshold depth in meters. To avoid an excessive effect on the results,
chkadvd = 0.0 should be set in computations with extremely low water depths. In other
situations its value is less critical and the default value of 0.1 (m) can be used.

The parameter epshu is a threshold in the D-FLOW FM’s modelling of drying and flooding.
Cells with a water depth larger than epshu are treated as wet, while for cells with a water
depth less that epshu a flooding/drying procedure is activated. In D-Flow FM the default
value epshu = 0.0001 (m) is set. This default is adopted in the present simulations.

Grid and time step variations in the D-Flow FM simulations

In the present D-Flow FM computations four different grid sizes have been considered to dis-
cretize the domain that runs from the left boundary at xL = −30, 000m to the right boundary
that was set at xR=300m14. xR was chosen about twice as large as the maximum excur-
sion of the wave run-up on the beach (cf. (15.32)) to ensure a sufficiently large stretch of dry
beach. It guarantees a number of cells near the right boundary to remain dry in all simulations,

14The boundaries xL and xR were slightly modified in the actual computations to xL=-30000.001 m and
xR=299.999 m. The reason for this tiny shift of 1mm to the left is a problem that was encountered with the uniform
grid size ∆x = 1m. With the boundaries set at xL=-30000 and xR=300, a grid size of ∆x = 1m means that
there is a cell face exactly located at x = −999m. In D-Flow FM, however, external inputs with a value of −999
are treated as missing values. Reading the depth D(x) from the input file, the sample (x,D) = (−999,−9.99)
was thus not accepted. The problem could only be circumvented by a small shift of the boundary locations and
hence of the grid points.

In the computation of the analytical solution (initial condition, boundary condition, flow solution inside the do-
main) this shift has been taken into account. In other words, the results of the accuracy analyses are not affected
by the applied shift.
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making specification of a condition at that boundary irrelevant.

All four grids are equidistant with a constant cell size ∆x. The coarsest grid that has been
considered has a size of ∆x = 10m. With a constant bed slope of α = 0.01 a bed level
variation of 10cm is then present across each cell. The other three grids are ‘gradual’ refine-
ments of the coarse grid and have cell sizes of ∆x = 5, 2, and 1m respectively. These four
variations of ∆x thus provide stepwise (and mutually ‘comparable’) refinements of the spatial
resolution. With the boundaries at the xL and xR listed above, the number of grid cells varies
from to 3030 to 30300.

To assess the effect of the time step on the accuracy, D-Flow FM simulations have been
carried out for ∆t in the range of 0.05 to 1.5s. The upper bound of 1.5s is the largest time
step possible on the coarsest grid within the D-Flow FM stability restriction. On the finer grids
the stability limit sets a smaller maximum ∆t.

Besides the time step also the simulation time has been varied. With these variations spin-up
effects were analysed, to assess after which simulation time transient effects have disap-
peared and a steady periodic regime is reached. A periodic behaviour in time is expected be-
cause of the application of a periodic boundary condition and the periodic analytical solution.
The periodicity of the D-Flow FM solutions, however, may be affected by the discretisation of
the flow equations. For the simulation period time intervals from 30P to 3000P have been
considered. We recall that P = 5.9044[minutes] is the length of the temporal periodicity of
the analytical solution and the boundary signal.

Selection of the sub-areas in the model error analysis

In the model error analysis the three error norms of Equation (15.16) have been evaluated for
7 sub-domains Ai of the (spatial and temporal) computational domain.

In space the sub-domains Ai consist of 7 consecutive intervals that together cover the entire
spatial domain. For their boundaries we have used the zero crossings ζ(x, t = 0) = 0 of
the initial distribution of the water level. The 7 sub-domains are shown in Figure 15.29. We
recall that the zero crossings of the water level vary in time, but with a magnitude that is very
small compared to the width of the Ai, i.e. the boundaries of the Ai are roughly formed by
the nodes of the standing wave pattern of the water level. By considering several intervals,
the quality of the D-Flow FM’s solutions can be established all over the computational domain,
and also for different flow conditions. Notice that, because of the increasing surface-elevation-
to-depth ratio and the strongly increasing velocity-to-wave-celerity ratio (the Froude number),
non-linear effects increase significantly in the direction from A1 to A7. Non-linear effects will
in particular be significant in domain A7 where the beach is repeatedly subjected to drying
and flooding.

In time each sub-domain Ai uses the same interval. It consists of a number of periods P
taken at the end of a simulation time.

As for the numerical solution considered per sub-domain Ai: the solution at all cell centres
xn within a sub-domain Ai is considered, but in time only the solution at the time levels
tm = t0 + m · δt that lie inside the time interval of the Ai are considered, with m a non-
negative integer and δt := P/8. With these 8 "snapshots" of the flow variables per time
cycle P , the variability of the flow variables within a temporal cycle is reasonably covered. t0
was set such that only the spatial solution of the last 30 periods of a D-Flow FM computation
was written to output, giving M = 240 time levels {tm}Mm=1 with flow maps for each of the
4 spatial grids that have been considered. This gives a total of 240 × 3030 = 727200 to
240× 30300 = 7272000 values of computed water level and velocity.
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Figure 15.29: Spatial boundaries of the 7 sub-domains Ai where the error norms of
Equation (15.16) have been evaluated. The boundaries (vertical blue lines)
are defined by the zero crossings of the initial water level (red line, cf. the
part of the dimensionless initial water-level profile after the vertical dashed
blue line shown in Figure 15.23).

Notice that storing and processing the numerical solution at all numerical time levels within
the Ai is not feasible. Because of the small time steps ∆t that are used (as a result of
the stability restriction), that would have led to huge output files and very large numbers of
solution values to be processed, even for this ‘small’ 1D validation test. Recall that, because
an iterative solution procedure is required to determine the exact value of ζ and u at some
coordinates (x, t) (which variables are all a function of the transformed coordinates (σ, λ), cf.
Equation (15.21) to Equation (15.24)), it is especially the computation of the analytical solution
at the output locations that is time consuming.

The space-time solution values computed by D-Flow FM on the grids of (xn, tm) points
of the sub-domains Ai have been saved in (mapped to) output files using the functionality
"MapInterval". In such a map the water level and velocity is available for every cell of the
model’s spatial discretisation at every output time level.

In the evaluation of the error norms the analytical solution is computed in all (xn, tm) points
of the 7 sub-domains Ai, with the (xn, tm) strictly as read from the map files produced by
D-Flow FM. For A1 to A6 the analytical and computed water level and velocities can straight-
forwardly be obtained and so can the error norms for these regions. For sub-domain A7 the
drying and flooding complicates the comparison of the flow variables and the evaluation of the
error norms. The reason of this complication is twofold:

� For the analytical solution it can unambiguously be determined whether or not a (xn, tm)
is dry or wet. For an output location of D-Flow FM this status is less straightforward to
establish. In the present application the following criterion was applied to decide on the
dry/wet status of a location in sub-region A7: the cell with cell centre xn is dry at time tm
if the total water depth ζ(xn, tm) + D(xn) returned by D-Flow FM (i.e. the elevation of
the free surface with respect to the bed) is less than 0.001m (i.e. less than 1mm).

� We also have to deal with the situation that a (xn, tm) ∈ A7 can be dry according to
the analytical solution, while it is wet according to D-Flow FM (and vice versa). Here the
approach was followed that in dry cells, whether according to the analytical solution or to
the numerical D-Flow FM solution, the analytical or numerical water depth and velocity
were set to zero. Cells that are dry in both the analytical and the D-Flow FM solution
are discarded in the evaluation of the errors norms, meaning that these cells are not
included15 in the error sum of Equation (15.16). On the other hand, all cells that are
wet, also those that are only wet in either the analytical or the numerical solution, are

15Including these cells, where by definition the error is zero, over the (in principle) arbitrarily large dry part of the
beach would otherwise have blurred the error measurement in sub-domain A7.
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included in the error sum of Equation (15.16). In this way the effect of mismatches in the
numerical prediction of the position of the dry/wet front are taken into account in the error
measurement for sub-domain A7.

Results

For each of the four uniform grids (with grid sizes ∆x = 10, 5, 2 and 1m) D-Flow FM
computations were carried out for various time steps ∆t and simulation times T . We will
frequently express T as K · P , with P the period of the solution in time (5.9044 minutes for
the analytical solution) and K the computed number of ’P -cycles’. Depending on the actual
spatial grid and associated computation time, K has been varied from 30 to even 3000. In
the next paragraphs the results of the computations are reported and discussed.

Length of the simulation time

In first instance D-Flow FM computations with the coarsest spatial discretisation (∆x = 10m)
were carried out to assess the dependency of the errors (∆ζ , ∆u) on the time step ∆t. At
the same time, however, the effects of spin up were verified, by means of visual inspection
of time series of the ‘residuals’ ∆ζ and ∆u. This was done to determine the simulation time
T required to attain a state where the D-Flow FM prediction of the flow variables shows a
reasonably periodic behaviour.

The first experiments with T of length 30P revealed that this simulation time was by far not
long enough to reach a satisfactorily periodic regime of the numerical solution. This was
despite the fact that the initial condition used in D-Flow FM was set equal to the analytical
solution, indicating that the numerical solution is ‘significantly’ different from the analytical
solution. This was also found in later experiments with finer grid.

With ∆x still equal to 10m the simulation time was increased to T = 1000P . As is shown
in Figure 15.30 and Figure 15.31 this appears to be sufficient to achieve a stationary regime.
In the analysis of the model’s spin up time, possible effects of errors due to the D-Flow FM
temporal discretisation were minimised by setting the time step to a very small value: ∆t =
0.05s. The adequacy of this value of ∆t will be clarified later when the results of time-step
variations are presented.

Figure 15.30 shows the temporal evolution of the water-level error ∆ζ at the location x =
−175m. This location is always wet, but very close to the region of the beach that is re-
peatedly subjected to wave run-up and run-down, cf. the right panel of Figure 15.25 and
Figure 15.27. The time series of the velocity error ∆u shown in Figure 15.31 are for the lo-
cation x = −300m, which is also in the vicinity of the drying and flooding region, cf. the right
panel of Figure 15.26.

From the three panels in both figures the following can be remarked:

� From the time series in the top panels it is readily observed that transient effects are
present up to, say, t ≈ 500P .

� The middle panels show that, apart from the periodicity P induced by the boundary con-
dition, in the beginning of the simulation a period of about 12P to 13P is present as well.
A spectral analysis of the first 30 periods has revealed that this long-period perturbation
seems to be mainly a beating in the time signal due to the interaction of several compo-
nents with periods close to P , rather than a persistent long-term periodic component. The
periodograms of ∆ζ and ∆u show that the energy is concentrated in a rather small band
around P , while hardly any energy is present for periods larger than P . This would imply
that non-linear numerical errors in D-Flow FM apparently generate additional components
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Figure 15.30: Time series of the water-level residual ∆ζ(x, t) at x = −175m for D-
Flow FM results computed on the coarsest spatial grid ∆x = 10m with
time step ∆t = 0.05s. In the upper panel the time series of ∆ζ(x, t) is
shown for the entire simulation time T = 1000P . In the middle and lower
panel the time series is shown for the first 30 periods P and the last 30
periods P .

Figure 15.31: Time series of the velocity residual ∆u(x, t) at x = −300m for D-Flow FM
results computed on the coarsest spatial grid ∆x = 10m with time step
∆t = 0.05s. In the upper panel the time series of ∆v(x, t) is shown for the
entire simulation time T = 1000P . In the middle and lower panel the time
series is shown for the first 30 periods P and the last 30 periods P .

with periods slightly different from P that damp out very slowly.
However, the slow variation of ∆ζ and ∆u averaged over P , which variation is super-
imposed on the variation within the periods P , indicate the presence of a long-period
component. A simple linear analysis shows that the longest wave that can oscillate be-
tween the boundaries has a period of 12.487843P . The next possible standing waves
have periods that are 3, 5, 7, . . . times smaller. This agrees very well with what is observed
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in the figures.
� The last 30 periods depicted in the lower panels reflect a steady and periodic temporal

behaviour, indicating that indeed a stationary regime has been reached.

Important : since the boundary conditions of the model (water level imposed at the left open
boundary; velocity equal to zero ‘imposed’ at the right closed boundary) are fully reflecting and
since no physical dissipation is present in the model (bottom friction and horizontal viscosity
have both been set to zero), initial perturbations are damped out by numerical dissipation
only, which, because of the fine to very fine grids that have been used, is very small. This
is why it takes many periods to attain a steady periodic regime. Results presented below will
show that the number of periods required is roughly inversely proportional to the grid size: the
smaller the grid size, the more periods are required to attain a steady periodic regime. This is
in agreement with the dissipation introduced by the applied first-order upwind discretisation,
which scales with the grid size.

Notice that the amount of dissipation inside the domain could have been increased by using a
larger value of the time discretisation parameter θ. This would have made the time integration
more dissipative, but also less accurate, so this was not an option. A viable option would
have been to use a dissipative Riemann-type condition at the open left boundary. Since the
implementation of that boundary condition in D-Flow FM is less accurate than the water-
level boundary condition, this was not an option either. We expect, however, a significantly
faster attenuation of initial perturbations with a Riemann-type condition. This remains to be
investigated.

Figure 15.32: Time series of the water-level residual ∆ζ(x, t) at x = 0m for D-Flow FM
results computed on the coarsest spatial grid ∆x = 10m with time step
∆t = 0.05s. In the upper panel the time series of ∆ζ(x, t) is shown for the
entire simulation time T = 1000P . In the middle and lower panel the time
series is shown for the first 30 periods P and the last 30 periods P .

Also in the region with drying and flooding the residuals become reasonably stationary after
a simulation time of 500 periods, although at t = 1000P a small long-period perturbation of
about 8P is still present. This is illustrated in Figure 15.32 where the water level residuals at
x = 0m are shown. This location is at the drying and flooding’s equilibrium position at the
beach, cf. the right panel of Figure 15.25 and Figure 15.27.
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Comparing the results for the water-level residual at the end of the simulation time 1000P
at x = −175m (lower panel of Figure 15.30) and at x = 0m (lower panel of Figure 15.32)
it becomes clear that the largest errors in the D-Flow FM results occur on the beach in the
run-up/run-down area. This is as was to be expected.

So far spin up effects have been presented for the coarsest computational grid. The spin up
has also been examined for the other three grids. For an impression of the results one is
referred to Figure 15.33. Like in Figure 15.30, this figure shows the water-level residuals at
x = −175m, but now for the D-Flow FM computation on the finest grid ∆x = 1m. In the
top panel a very slow oscillation of hundreds of periods can be observed in (in particular) the
upper extremes of the ∆ζ series that at T = 1000P has still not vanished, i.e. a stationary
regime has not yet been reached. This can be observed in more detail from the last 30 periods
depicted in the lower panel of Figure 15.33. Similar results were found for the time series of
the water-level and velocity residual at other locations. The very slow oscillation is likely to be
the result of a beating between initial perturbations with periods very close to P . This has not
been investigated any further.

A comparison of ∆ζ shown in Figure 15.33 with the time series of Figure 15.30 reveals that
the decrease of the cell size from 10 to 1m leads to a reduction of the errors in the water
level, as expected. The reduction is, however, considerably less than a factor 10, which is the
reduction that one would expect from the use of an (at least) first-order accurate discretisation
scheme. For this application the order of accuracy of D-Flow FM is apparently considerably
less than first order.

Figure 15.33: Time series of the water-level residual ∆ζ(x, t) at x = −175m for D-
Flow FM results computed on the finest spatial grid ∆x = 1m with time
step ∆t = 0.05s. In the upper panel the time series of ∆ζ(x, t) is shown
for the entire simulation period T = 1000P . In the middle and lower panel
the time series is shown for the first 30 periods P and the last 30 periods P .

Just as for the grid with ∆x = 1m a stationary regime was not reached either at T = 1000P
for the two grids with cell size ∆x = 5m and ∆x = 2m. Further experiments with these two
grids revealed that a considerably longer simulation time than 1000P is required to achieve
that transient effects sufficiently disappear. For the present one but finest grid (∆x = 2m)
this is illustrated by means of Figure 15.34. In the same way as before, the time evolution of
the error ∆ζ is shown, but now for a considerably longer simulation length of T = 3000P .
The ∆ζ is here for the location x = −8035m and provides a typical example of the temporal
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behaviour of ∆ζ and ∆u in this simulation.

Figure 15.34: Time series of the water-level residual ∆ζ(x, t) at x = −8035m for D-
Flow FM results computed on the one but finest spatial grid ∆x = 2m with
time step ∆t = 0.05s. In the upper panel the time series of ∆ζ(x, t) is
shown for the entire simulation period T = 3000P . In the middle and lower
panel the time series is shown for the first 30 periods P and the last 30
periods P .

The top panel of Figure 15.34 shows a mix of variations at different time scales. At t = 1000P
the time series for the grid size ∆x = 2m has clearly not yet convergenced to a stationary
behaviour. In fact, only for times t larger than about 2000P the largest fluctuations seem to
have disappeared. From a similar inspection of the time series computed with ∆x = 5m it
was deduced that the simulation time should at least be about 1400P . Extrapolating these
estimates we find that a simulation time of at least 4000P will be required to reach a stationary
regime on the grid ∆x = 1m. Such a long simulation time would require an excessive amount
of computational time16. It is for this reason that simulations on the fine grid with ∆x = 1m
have been limited to a time of T = 1000P .

As mentioned before, the only dissipation present in the computational D-Flow FM model is
numerical: a small dissipation in time by setting time-integration parameter θ to a value slightly
larger than 1/2 (θ = 0.55 has been used), and a small dissipation in space due to the use of
upwind on fine to very fine grids. Because of the use of a very small time step, the temporal
numerical dissipation is negligible compared to the spatial numerical dissipation, which scales
with the grid size. This explains why on finer grids a larger simulation time is necessary for
the solution to reach a steady periodic behaviour. The time that is required turns out to be
roughly inversely proportional to the applied ∆x. This is consistent with the use of first-order
upwind.

Altogether the following simulation times T have been chosen in the analysis of the accuracy
of D-Flow FM simulations for the Carrier-Greenspan validation case as a function of time step
∆t and grid-cell size ∆x:

� The analysis of the effect of the time step is carried out for the coarsest grid with cell
size ∆x = 10m with the simulation time T set to 1000P . For comparison, the time-

16This computational time is estimated to be about 4 days on a HP personal computer with an Intel Core(TM)i7
processor, and CPU@2.40 GHz.
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step analysis has also been carried out for the finest grid with ∆x = 1m, also with
T = 1000P . Formally the simulation time should have been much longer for this grid
but this was not done for the reason mentioned above (prohibitively long computational
times).

� The analysis of the effect of the grid size is carried out with time step ∆t = 0.05s. The
D-Flow FM models with cell size ∆x ∈ {2, 5, 10}[m] have been run for a simulation time
of T = 3000P . The model with the smallest grid size ∆x = 1m is also included in the
analysis, but this model has only run for a simulation time of 1000P .

As mentioned before, each time the ∆ζ and ∆u of the last 30 periods are used in the evalu-
ation of the error norms.

Results of time-step variations

To begin with, the effect of the time-step size on the accuracy of the computed resultst has
been verified using the coarsest spatial grid with ∆x = 10m. On the basis of the Courant
stability condition and an expected maximum velocity of about 3m/s (according to the ana-
lytical model, cf. Equation (15.32)), the time step must be less than about 3s on this grid.
For this time step the D-Flow FM simulations turned out to be unstable. Due to the large
overprediction of the velocity at and near the dry-wet interface, ∆t had to be 1.5s or less.
Hence D-Flow FM computations were carried out for ∆t ∈ {0.05, 0.1, 0.2, 0.5, 1.0, 1.5}s.
As explained before a simulation time of T = 1000P was adopted in all simulations.

Next the error norms were computed for the 7 sub-domains Ai of the computational domain.
The result is graphically shown in Figure 15.35. From this figure it is seen that for all norms and
for all sub-domains (and for both water level and velocity) the errors hardly, if at all, decrease
with the time step as soon as ∆t is less than 1s. Clearly, the maximum time step for which
stable solutions are still obtained is already small enough for the time integration error to be
(close to) negligibly small compared to the space discretisation error. The conclusion reads
that for this application, the stability constraint on the time step is larger than the accuracy
constraint.

The variation of the error over the sub-domains, and thus over the spatial region, is quite large.
This variation is monotone; the errors increase towards the beach. At the beach (sub-domain
A7) the errors are about 10 times larger than near the seaward boundary (sub-domain A1)
for the water level, and even much larger for the velocity. This points at considerable errors in
the computed velocities at and near the dry/wet interface. This is likely to be caused by the
very low water depth at these locations, as a result of which the velocity is not well defined
(notice that the depth-integrated velocity or mass flux q := (ζ + D) · u must converge to
zero at the shoreline position). In other words, errors in a small water depth tend to lead to
large errors in the velocity. Through back propagation of these errors the solution in the other
sub-domains is affected. Because of the larger depth, and the prescribed exact condition at
the left boundary, the magnitude of these errors decreases in seaward direction. This explains
the observed Ai–dependency of the error norms.

The same error behavior has been observed in a similar time-step study for the finest grid with
∆x = 1m. Again D-Flow FM simulations over a time of T = 1000P were carried out. As
shown before, formally this length should have been longer since the numerical solution is not
yet fully stationary after 1000P on such a fine grid. The required much longer computations
are practically not feasible, however.

For the grid with ∆x = 1m no stable predictions were obtained for time steps larger than
0.2s. D-Flow FM simulations were therefore performed for ∆t ∈ {0.05, 0.1, 0.15, 0.2}s.
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Figure 15.35: Dependency of the error norms L1(·), L2(·) and L∞(·) on ∆t for water
depth and velocity in the 7 sub-domains Ai that were selected to validate
the accuracy of the numerical scheme. These norms are as obtained for
the presently coarsest grid with ∆x = 10m. The simulation time T con-
sisted of 1000 temporal periods P of 5.9044minutes. The ∆ζ and ∆u of
the last 30 periods were used in the computation of the various error norms.

The error norms that were obtained for these time steps are shown in Figure 15.36 for the 7
sub-domains Ai considered.

This time a very weak sensitivity of the norms on the time step was found, confirming the
conclusion that for this application the stability constraint on the time step is larger than the
accuracy constraint. The velocity error norms are virtually constant over the time steps, and
different for the different sub-domains of course. As for the water depth we find that the error
norms tend to increase somewhat for decreasing time steps. It seems that in this application
and with this grid size, time integration errors and space discretisation errors partially can-
cel against each other, whence a larger overall error for smaller time steps when the time
integration error and hence the cancelling effect becomes smaller.

Like for the case with ∆x = 10m a monotone increase of the error norms over the sub-
domains Ai is found. A comparison between the results for ∆x = 1m with those for ∆x =
10m shows that the magnitude of the error norms have decreased uniformly. Comparing
Figure 15.36 with Figure 15.35 it is readily seen that this decrease is much less than the
factor 10 of the grid refinement.

Because the choice of the time step is dominated by the stability constraint, no conclusion
can be drawn as to the accuracy in time of the numerical scheme. Formally a first-order error
behaviour would have been expected (error proportional to ∆t), because of the first-order
explicit discretisation of the convection terms and the use of a θ–value larger than 1/2 (→
first-order accurate implicit time integration of the pressure term of the momentum equation).

To conclude we mention that the results of this accuracy analysis justify the use of the time
step ∆t = 0.05s in the simulations of the previous paragraph where we investigated the
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Figure 15.36: Dependency of the error norms L1(·), L2(·) and L∞(·) on ∆t for water
depth and velocity in the 7 sub-domains Ai that were selected to validate
the accuracy of the numerical scheme. These norms are as obtained for
the presently finest grid with ∆x = 1m. The simulation time T consisted of
1000 temporal periods P of 5.9044minutes. The ∆ζ and ∆u of the last 30
periods were used in the computation of the various error norms.

effect of the length of the simulation time.

Results of grid size variations

The accuracy of D-Flow FM with respect to the spatial discretisation has been verified in a sim-
ilar way as described above for the time step. To ensure that errors due to the time integration
can safely be ignored, only results from simulations with the smallest time step ∆t = 0.05s
have been considered. For the grids with ∆x ∈ {2, 5, 10}m the length of the simulation time
has been taken equal to T = 3000P . To avoid exceptionally long computational times (as
explained above) this length was limited to T = 1000P for the grid with a cell size of 1m.

The error behaviour in the various norms is shown in Figure 15.37. For the sub-domains A1

to A6 we see roughly the same behaviour of the error norms as a function of the spatial grid
resolution: a gradually decrease when the cell size ∆x becomes smaller. The largest error
decrease is in the step where ∆x is reduced from 10 to 5m. The relative error decrease is
less when the cell size is reduced further. The decrease is larger for the L1 and L2 norms
than for theL∞ norm (in fact, theL1– andL2–norm errors have very comparable magnitude).
For sub-domain A7 the dependency on the cell size ∆x is less clear. For example, for the
water depth the steepness in the reduction of the error when ∆x decreases is less on A7

than on the other sub-domains. For the velocity, however, this reduction tends to be more in
line or is even slightly higher on A7 than on the other 6 sub-domains.

Just as in the sensitivity analysis for the time step, it is found that (in all norms, and for both
water depth and velocity) the magnitude of the errors increases monotonously in the direction
of the beach. In A7, i.e. the sub-domain containing the region with drying and flooding, the
magnitude of the errors is about 5 (water depth) to over a 100 (velocity) times larger than in
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Figure 15.37: Dependency of the error norms L1(·), L2(·) and L∞(·) on ∆x for water
depth and velocity in the 7 sub-areas Ai that were selected to validate
the accuracy of the numerical scheme. These norms are as obtained for
the presently smallest time step ∆t = 0.05s. For the grid sizes ∆x ∈
{2, 5, 10}m the D-Flow FM simulation time T consisted of 3000 temporal
periods P of 5.9044minutes. For the grid with ∆x = 1m the D-Flow FM
computation was limited to T = 1000P . The ∆ζ and ∆u of the last 30
periods were used in the computation of the various error norms.

the other sub-domains. Due to the very small water depths in A7, the computation of the
velocity is very sensitive to errors in that sub-domain. As a result, velocity errors are always
quite large in A7; they reach values up to 5m/s (which is more than the analytical maximum
velocity, cf. Equation (15.32)) while they are less than 5cm/s in the other areas.

For a proper quantitative assessment of the order of accuracy, the effective order of accuracy
of the computational results has been determined by means of linear regression analyses, i.e.
by fitting functions linear in the logarithm of the grid size to the logarithms of the errors. Those
linear functions, of the form ak · log(∆x) + bk with ak the order of accuracy (and bk the
error level), approximate the error plots on log-log scale shown in Figure 15.37. The errors on
the coarsest grid have been discarded in this analysis because of the systematically different
slope between the errors on the grids ∆x = 5m and ∆x = 5m (cf. Figure 15.37), for which
we have no explanation. Apparently, a grid size of ∆x = 10m (which in this application gives
a high spatial resolution) is not fine enough to have a consistent order-of-accuracy behaviour.
NB, the results on the finest grid ∆x = 1m have been included, despite the fact that these
are based on a simulation time T = 1000P that is actually too short.

The slopes ak determined in the regression analyses provide an estimate of the effective
order of accuracy of D-Flow FM’s spatial discretisation for this application. For both water
depth and velocity they have been computed for all 3 times 7 combinations of error norm
(L1, L2 and L∞) and sub-domain (A1 to A7). The obtained order-of-accuracy results are
graphically shown in Figure 15.38.

From this figure it is seen that the order of accuracy is virtually constant over the sub-domains
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Figure 15.38: The spatial order of accuracy (coefficient ak in the error behaviorO(∆xak))
of water level (upper panel) and velocity (lower panel) for the various error
norms Lk(·) in the 7 sub-domains Ai. The orders of accuracy have been
derived from D-Flow FM computational results using the presently smallest
time step ∆t = 0.05s and ∆x ∈ {1, 2, 5}m. In the computation with
∆x = 1m the simulation time was T = 1000P ; in the other computations
T = 3000P has been used.

A1 to A6. In view of the continuity and smoothness of the solution in these areas this was
to be expected. In these areas both the water-depth error and the velocity error show a 0.4
to 0.5 order-of-accuracy behaviour in the average norms L1 and L2. This is much less than
the order of (at least) 1 that would have been expected from D-Flow FM’s spatial discretisa-
tion. The reason for this large discrepancy is not known. It is not known either why, given
the smoothness of the solution in the sub-domains A1 to A6, the order of accuracy in the
maximum norm L∞ is lower than in the average norms, especially for the velocity where the
order of accuracy in the L∞–norm is only 0.3 to 0.2.

In sub-domainA7 the water-level order of accuracy is lower than in the other sub-domains. In
the L∞ norm it is even less than 0.2. This very low order of accuracy may be due to relatively
large grid-independent errors in the prediction of the position of the dry-wet interface moving
back and forth, also leading to significant error levels in water level and velocity. In contrast
to the water level, for the velocity in A7 a higher order of accuracy is found than in the other
sub-domains. In the L1 norm this order is even more than 0.7. It must be realized however,
that this gain in order of accuracy comes with much larger error levels in A7, cf. the orange
curves in the right panels of Figure 15.37.

We have not investigated to what extent the errors in drying-and-flooding zone A7 depend
on the parameters chkadvd and epshu of the drying-and-flooding procedure. We have
not investigated either if these errors would diminish in the presence of a physical dissipation
mechanism, in particular bottom friction (in which case an analytical solution for comparison
is no longer available).

Accuracy of the prediction of the shoreline position

In this paragraph the results are presented of an analysis on the accuracy of D-Flow FM’s
prediction of the dry/wet interface. The reported error behaviour provides an indication of the
quality of D-Flow FM’s drying and flooding procedure. The approach that has been followed
is virtually the same as the one used above in the assessment of the effect of the grid size on
the errors in the flow solution (water level and velocity). The error ∆xDW (·) in the prediction
of the shoreline position has been computed in the same error norms L1, L2 and L∞ as used
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before.

The shoreline prediction error is defined by ∆xDW (tm) := xDW,A(tm)− xDW,C(tm), with
xDW (tm) the horizontal position of the dry/wet interface at time tm. Subscript A refers to the
analytically derived xDW , while subscript C indicates the shoreline location as predicted by
D-Flow FM. In the computation of the error norms the results of the same 4 simulations have
been used as in the preceding error analysis where the effect of the grid size was studied. We
recapitulate that these are the simulations with time step ∆t = 0.05s and the spatial grids
with ∆x ∈ {1, 2, 5, 10}m. The simulation time is 1000P for the finest grid, and 3000P for
the other coarser grids. Again the 240 time points tm := m · P/8 in the last 30 periods P of
5.9044 minutes of a simulation were used in the evaluation of the error norms Lk(∆xDW ).

The analytical solution xDW,A(t) for a given t can be derived from Equation (15.21) to
Equation (15.24) with a similar inversion of the hodograph transformation as described be-
fore. Again this inversion has been carried out by minimisation of a cost function (cf. Equa-
tion (15.25), but now with the constraint that σ = 0). For the determination of the shoreline
position xDW,C(t) computed by D-Flow FM the following procedure was used. Given the flow
variables ζ and u in all grid cells at some time t, the dry-wet interface at time t, xDW,C(t),
is considered to be the right face of the first wet cell encountered when moving from the right
model boundary on the beach (which is always dry) to the left boundary at sea (which is al-
ways wet). In other words, xDW,C(t) is considered to be the interface between a wet cell and
a dry cell that is highest up the slope.

Since this procedure determines the shoreline position up to a deviation of ∆x, the accuracy
of this estimate for xDW,C is first order in the grid size. In consequence the order of accuracy
of ∆xDW cannot be higher than first order in ∆x. On the other hand, the criterion that is
applied in D-Flow FM to decide on the dry/wet status of a cell is of similar accuracy: a cell
face xn is considered to be dry at time tm if the total water depth ζ(xn, tm) +D(xn) at that
face is less than epshu, in which case it is set to zero, thereby closing the face and the flow
access to an entire grid cell. Because of the latter, the accuracy of the D-Flow FM drying and
flooding procedure cannot be higher than first order in ∆x.

The effect of grid size ∆x on the quality of the D-FLOW FM prediction of the shoreline will be
illustrated by means of a few figures. In Figure 15.39 time series of xDW (t) are presented,
both for the analytical solution and as determined from the D-Flow FM computational results.
For a proper view on the quality of the D-Flow FM results only the last three periods P of
the simulations are shown. For the finest grid with ∆x = 1m this is thus the time interval
t = 997P to t = 1000P . For the other, coarser grids this is the time interval 2997P to
3000P . To enable a comparison of the results, the data points of the finest grid have been
plotted with a time shift of 2000P to the right.

From Figure 15.39 it is readily recognised that, as expected, the largest mismatch between
the computed and the analytical shoreline occurs on the coarsest grid with ∆x = 10m.
There is a clear temporal structure in this mismatch, in the sense that the largest errors are
found immediately after the point of time where xDW,A is at its maximum. This is thus at the
moment that, after its maximum excursion on the beach, the wave retreats back to sea. For
the computation with ∆x = 10m the drying of the beach is then highly retarded compared to
the analytical solution. To a lesser extent this also occurs for ∆x = 5m. Further reduction of
the grid size gives correspondingly better predictions of xDW in the drying phase. In all cases
the flooding of the beach is reasonably well reproduced, even on the coarsest grid.

The quality of the D-Flow FM simulation of the run-up/run-down process can visually be sum-
marized by presenting the results shown in Figure 15.39 in a different way, namely by plotting,
for the 8 moments in time of the last period considered, the computed location of the shoreline
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Figure 15.39: Time series of the location xDW of the dry/wet interface according to the
analytical solution (solid curve in blue), and as computed by D-Flow FM
(coloured dots) for various spatial grid sizes ∆x. They are shown here
for the last three periods P of the simulation time. This simulation time is
T = 3000P , except for the finest grid with ∆x = 1m where T = 1000P .

xDW,C against the analytical value xDW,A. The result is shown in Figure 15.40 for the four
grids considered.

Figure 15.40: Computed locations xDW,C of the dry/wet interface plotted against the
corresponding analytical values xDW,A, for various spatial grid sizes ∆x
and for the last period P of the simulation time. This simulation time is
T = 3000P , except for the finest grid with ∆x = 1m where T = 1000P .
The run-up/run-down process is counterclockwise along the smooth closed
fit through the data points.
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To facilitate the interpretation of the results, a smooth closed fit through the data points has
been added. The drying-and-flooding process as predicted by D-Flow FM is counterclockwise
along these curves. From the fact that the curves in upward direction from the lower-left corner
to the upper-right corner closely follow the diagonal, it becomes immediately clear that the
run-up is accurately predicted. This confirms the conclusion that the flooding of the beach
is reasonably well reproduced by D-FLOW-FM. In the other direction there is, for the coarser
grids, a strong mismatch between the computational results and the analytical solution that
takes the form of a delay of the run-down. The mismatch vanishes on the finer grids. Notice
that with a grid size of ∆x = 1 or 2m, the drying-and-flooding area of 300m is very well
resolved. In practice such high resolutions will seldomly be possible. In fact, one would
normally consider the drying-and-flooding area to be well resolved with a few dozen grid cells
in that area. The present validation case indicates that that may not be sufficient.

The results show that in particular the run-down speed tends to be underestimated by D-
Flow FM. This may be a consequence of the drying procedure applied in D-Flow FM, where
water is taken out of the computation when the total water depth gets below threshold value
epshu. With less water running down a slope, the run-down acceleration is likely to be
underpredicted. We see this also from the velocity error in the lower panel of Figure 15.31.
In the first half of each period (the run-up phase), the error is mainly negative, indicating an
overprediction of the velocity by D-Flow FM. In the second half of each period, the twice larger
positive error indicates a stronger underprediction of the run-down velocity. The maximum
errors of about −0.06m/s and 0.10m/s are at this location x = −300m respectively 3.5%
and 5.9% of the analytical maximum velocity u = ∓1.7m/s, cf. Figure 15.26. Another, more
likely candidate for the cause of the underprediction of the run-down acceleration is the D-
Flow FM upwind discretisation of the convection terms. The upstream velocity values that
it uses are in the case of run-down located in the dry area and hence not well defined. It
is not clear which approximation procedure/extrapolation is followed here in D-Flow FM. It
could be that it leads to a rather inaccurate D-Flow FM convection discretisation in the case
of drying/run-down.

Notice that because of the absence of a physical dissipation mechanism, the simulation of
run-up and run-down in the present test is very sensitive to discretisation errors. It is to be
expected that the presence of some bottom friction (in practice always the case), which due
to the very small water depths has a large effect in run-up/run-down areas, will considerably
reduce the effect of errors in the convection terms. We have not investigated if an exact run-
up/run-down solution may be constructed for the shallow-water equations with friction term to
study this in more detail. It may be possible to do so if the bottom friction term is kept linear in
the velocity.

Figure 15.41 gives a close view on the magnitude and temporal structure of the errors ∆xDW .
In particular it is seen that on the finest grids the errors are considerably smaller than on the
coarsest grids, and also tend to evolve more randomly in time rather than systematic.

The error norms that were derived from the errors depicted in Figure 15.41 are shown in
Figure 15.42. In addition to the three norms L1, L2 and L∞ (in the upper three pan-
els), a fourth quality indicator is shown in the lower panel. This fourth indicator is the (ab-
solute value of the) standard mean of the error ∆xDW , i.e. | 1

M

∑M
m=1 ∆xDW (tm)| =

| 1
M

∑M
m=1{xDW,A(tm)−xDW,C(tm)}|. This quantity provides a measure for the systematic

error (or bias) in D-Flow FM’s prediction of the time-varying shoreline.

The plots of all threeL-norms show a similar behaviour: a somewhat stronger decrease of the
error in the first refinement step where the grid size is reduced from ∆x = 10m to ∆x = 5m
than in the next steps where the spatial grid is further refined. In that first step the errors seem
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Figure 15.41: Time series of the error ∆xDW (tm) := xDW,A(tm) − xDW,C(tm) in D-
Flow FM’s prediction of the location xDW of the dry/wet interface for various
spatial grid sizes ∆x. They are shown here for the last three periods P of
the simulation time. This simulation time is T = 3000P , except for the
finest grid with ∆x = 1m where T = 1000P .

to have been reduced with a factor of at least 2, suggesting a first-order dependency on ∆x.
In the other steps the factor of error reduction is notably smaller than the factor of grid-size
reduction, and the order of accuracy with respect to ∆x is less than one.

To verify this more quantitatively a linear regression log(Lk(∆xDW )) ∼ ak · log(∆x) + bk
has been carried out. The slopes ak represent the order of accuracy in the prediction of
the shoreline position with respect to the grid size. The data points for the coarsest grid were
again excluded in this regression analysis because of the difference in ∆x-sensitivity between
the errors around ∆x = 10m and around the ∆x of the finer grids.

The estimates that were found for the orders of accuracy are listed for each norm in the upper-
left corner of the corresponding panel in Figure 15.42. They vary from 0.572 for the average
norm L1 to 0.808 for the maximum norm L∞, and are thus considerably less than one. While
for L∞ the largest order of accuracy is found, it must be noted that even on the finest grids
the magnitude of that error is quite large. As can be seen from the blue curve in the bottom
panel, the error in the prediction of the shoreline position does not show a clear sensitivity to
grid refinements.

The bottom panel of Figure 15.42 shows that on the two finest grids the position of the dry/wet
interface is well predicted by D-Flow FM; the mean of ∆xDW turns out to be less than 1m on
these grids. On the coarsest grid the systematic error is considerable: about twice the grid
size. A large error on the coarsest grid in the prediction of the shoreline position was already
observed in Figure 15.39, Figure 15.40, and Figure 15.41.

Finally it is noted that for the coarsest grids the presently identified errors in the shoreline
prediction are also quite large in relative sense. That is, when compared to the length of the
beach section that is repeatedly subjected to drying and flooding. This length is about 300m
and corresponds to 30 grid cells of the coarsest grid. With the present constant and mild
slope of the bed (1/100), and not excessively high water levels and velocities in the coastal
region, the drying and flooding region is then reasonably densely covered by the grid. An
absolute mean error of about 50m (according to L1 and L2), and a maximum error of about
100m (according to L∞) are then as large as 20 to 30% of the drying and flooding section.
To increase the accuracy, the grid density on the beach has to be increased considerably.
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Figure 15.42: Dependency of the error norms L1(·), L2(·) and L∞(·) on ∆x for D-
Flow FM’s prediction of the temporally varying position xDW (t) of the
dry/wet interface at the beach. These norms are as obtained for the
presently smallest time step ∆t = 0.05s. For the grid sizes ∆x ∈
{2, 5, 10}m the D-Flow FM simulation time T consisted of 3000 tempo-
ral periods P of 5.9044minutes. For the grid with ∆x = 1m the D-Flow FM
computation was limited to T = 1000P . The ∆xDW of the last 30 periods
were used in the computation of the various error norms.

Conclusion

The main conclusions of the present D-Flow FM validation study can be summarized as fol-
lows.

� In agreement with Carrier and Greenspan’s analytical solution the D-Flow FM computa-
tions were carried out without friction and horizontal viscosity, and with a periodic boundary
condition for the water level. The simulation time required to reach a periodic-stationary
regime of the numerical solution turned out to be extremely long. This allows the conclu-
sion that the numerical dissipation in D-Flow FM is limited. From the computations with
the different grids it was found that the smaller the cell size ∆x the longer a simulation
is required to reach stationary conditions. This is consistent with the fact that the numer-
ical dissipation is proportional to the grid size and hence must be due to the numerical
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viscosity introduced by the upwind discretisation of the convection terms.
� In view of the applied time integration scheme, a first-order error behaviour with regard to

the time step ∆t would be expected. For the present case this behaviour could not be
verified. Only a very small sensitivity of the accuracy of the computed solution on the time
step was found. The explanation for this observation must be that, because of the rather
large time scale of the problem, the time-step restriction due to the stability constraint is
much larger than the one due to the accuracy constraint.
On the finest grid, and for all sub-domains of the computational domain, the errors were
found to increase (slightly, and monotonously) when reducing the time step. This could
be due to the fact that space discretisation errors and time discretisation cancel to some
extent, as a result of which the overall error increases as the time step (and hence the
time discretisation error) decreases. Why this would only happen on the finest grid is not
clear.

� In the present flow simulations the D-Flow FM modelling errors are virtually completely
due to the spatial discretisation.

� In all norms the accuracy with regard to the spatial discretisation was found to be merely
of order 0.4, even on sub-domains of the computational domain where the (analytical)
solution depend very smoothly on the temporal and spatial coordinates. For the present
application D-Flow FM’s spatial accuracy is thus considerably less than first order. In the
sub-domain containing the drying and flooding (as induced by the repeated wave run-up
and run-down) the order of accuracy is somewhat lower for the water level, and somewhat
higher for the velocity. In absolute sense, however, the water-level errors and velocity
errors in the run-up/run-down sub-domain are considerably higher than elsewhere.

� The accuracy of D-FLOW FM’s implementation of drying and flooding has been verified
on the basis of the error in D-Flow FM’s prediction of the (time-dependent) spatial position
of the shoreline, i.e. the dry/wet interface at the beach. Depending on the applied error
norm, the accuracy with respect to the spatial discretisation turned out to be of order 0.6
to 0.8. In the L1 norm and for the grids considered (not in general), the error is roughly
three times the cell size ∆x, while in the L∞ norm it is about 10 times ∆x. The errors in
D-Flow FM’s prediction of the position of the dry/wet interface are largest at the beginning
of the drying phase, i.e. immediately after the moment of maximum wave run-up, when
the water starts retreating from the beach again. The error in this phase is systematic, in
the sense that D-FLOW FM’s drying of the beach is retarded compared to the analytical
solution. A very high spatial resolution is needed to reduce this systematic error to a fairly
small level.

� Practically speaking (and apart from the flow in the direct vicinity of the dry/wet interface)
D-Flow FM is well capable to reproduce the Carrier and Greenspan analytical solution
for the wave run-up and run-down on a beach with constant slope: in absolute value the
model errors are reasonably small, at the condition (and at the cost), however, of a very
fine spatial grid.

It is important to notice that, due to the absence of in particular bottom friction, the Carrier
and Greenspan test case is not fully representative of the simulation of drying and flooding in
practice. It is to be expected that the presence of bottom friction may facilitate the simulation
of drying and flooding in practical applications. In the present frictionless application we have
to deal in the very shallow drying-and-flooding area with repeated run-up and run-down, with
the undamped simulation of significant non-linear dynamics. On the other hand, although
the presence of bottom friction may reduce the errors in the run-up/run-down sub-domain, it
remains to be investigated if this will improve the rather poor (order of) accuracy in the other
sub-domains.

It must be emphasized that the present results and conclusions have been obtained with
uniform rectangular spatial grids. It is fair to assume that the use of less uniform grids, and
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especially the use of irregular unstructured grids, will lead to larger errors.

Version

This test has been carried out with D-Flow FM version 1.1.137.39598MS.
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