

Ocean self-attraction and loading (SAL) and internal tides dissipation implementation within an unstructured global tide-surge model

Maialen Irazoqui Apecechea, Martin Verlaan

10 mei 2016

Contents

- Context: BASE Platform project
- Introduction GTSM model
- SAL and Internal tides dissipation
 - Physical process
 - Parameterization
 - Numerical implementation in DELFT3D-FM
- Sensitivity tests
- Discussion
- Future work

BASE- Platform

- 2 year project funded by the European Union's Horizon 2020 research and innovation programme (No 687323)
- Objective: set up an online platform for up to date bathymetry data for the whole globe
- Deltares' role: Develop a global hydrodynamic model to correct depth data from different sources for dynamic variation of the sea level

GLOBAL TIDE SURGE MODEL (GTSM)

Concept of data flows and interaction. Synergy of techniques for retrieving bathymetric data

Model description

- Global unstructured, depth averaged model in spherical coordinates.
- Courant grid: Local grid refinement based on depth. Use of triangles and rectangles. Maximum resolution on coast down to 5 km; Most of the domain is around 50 km
- Bathymetry: GEBCO 1/60 degree resolution
- Periodic boundary conditions ("No boundaries" situation).
- Tidal motion induced by Tide Generating Forces (Including solid earth tide or Earth elasticity factor) on a 1 degree resolution grid.

From regional to global models

Tide generating potential equation added to the governing equations:

$$\frac{\partial \mathbf{u}}{\partial t} + \frac{1}{h} \left(\nabla \cdot (h\mathbf{u}\mathbf{u}) - \mathbf{u}\nabla \cdot (h\mathbf{u}) \right) = -g\nabla \left(\xi - \xi_{EQ} \right) + \nabla \cdot \left(\nu \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T \right) \right) + \frac{\tau}{h}$$

- Two physical processes that are not negligible at a global scale:
 - Self attraction and loading (SAL)
 - Tidal dissipation through generation of internal tides.

SAL – Physical explanation

SAL is the sum of **three** effects:

Deformation of the seafloor under the weight of the column of water (Earth is a elastic body)

Redistribution of Earth mass changes the gravitational field

LOADING

Gravitational attraction induced by the mass of the ocean on the ocean itself

SELF ATTRACTION

SAL POTENTIAL Φ_{SAL}

Literature values $\approx 10\%$ of Tide

SAL -Self Attraction

SAL tide:

$$\xi_{EQ}=rac{\Phi_{
m eff}}{g}$$
 with $\Phi_{
m eff}=\Phi(1+k_2-h_2)$
$$\xi_{SA}=rac{\Phi_{
m SA}}{g}$$
 Solid Earth tide

Newton's attraction law: The gravitational potential at a location p induced by a point mass m at a location q

$$V(\mathbf{p}) = \gamma \frac{m}{\overline{\mathbf{p}\mathbf{q}}} \qquad \text{Depth} << \text{Radius} \qquad V(\mathbf{p}) = \gamma \int \int_S \frac{\sigma(\mathbf{q})}{\overline{\mathbf{p}\mathbf{q}}} dS$$

 $\sigma(q)$: the surface mass density at location q and S the surface of the spherical shell.

Full 2D convolution computationally expensive →Spherical harmonic function series (Camille le Coz); accuracy depends on grid size.

SAL - Loading

Load tide in spherical harmonics function series, given by Love numbers (h_n', k_n') for bottom displacement and induced gravitational potential change.

n	$-h'_n$	$-k'_n$
1	0.295	0
2	1.007	0.309
3	1.065	0.199
4	1.069	0.136
5	1.103	0.103
6	1.164	0.093
8	1.313	0.079
10	1.460	0.074
18	1.952	0.057
30	2.411	0.043
50	2.777	0.030
100	3.127	0.016

Amplitude map in millimeters of the M2 load tide (Schrama, E., (2007))

SAL-Implementation in FM

SA + Loading in spherical harmonics:

$$\xi_{SAL} = \frac{\Phi_{SA}(1 + k_n' - h_n')}{g}$$

$$\frac{\partial \mathbf{u}}{\partial t} + \frac{1}{h} \left(\nabla \cdot (h\mathbf{u}\mathbf{u}) - \mathbf{u}\nabla \cdot (h\mathbf{u}) \right) = -g\nabla \left(\xi - \xi_{EQ} \right) + \Phi_{SAL} + \nabla \cdot \left(\nu \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T \right) \right) + \frac{\tau}{h}
\frac{\partial \mathbf{u}}{\partial t} + \frac{1}{h} \left(\nabla \cdot (h\mathbf{u}\mathbf{u}) - \mathbf{u}\nabla \cdot (h\mathbf{u}) \right) = -g\nabla \left(\xi - \xi_{EQ} - \xi_{SAL} \right) + \nabla \cdot \left(\nu \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T \right) \right) + \frac{\tau}{h}$$

Other implementations (β approximation):

$$\xi_{SAL} = \beta \xi + Const \text{ with } \beta = 0.9 \rightarrow -g\beta \nabla (\xi - \xi_{EQ})$$

Sequence:

IT dissipation – Physical explanation

Barotropic tidal dissipation sources:

Bottom friction (dominant in shallow waters)

Generation of internal waves when flowing over rough topography in

stratified oceans (dominant in deep waters)

Internal tides (or *Baroclinic* tides) are generated as the barotropic tides move stratified water up and down a sloping topography, which induces buoyancy forces that generate oscillation of isopycnals.

 ρ of 2 surfaces at interface is similar \rightarrow Large displacements

Baroclinic energy:

- Dissipates locally (high order mode waves)
- Radiates out into the ocean (low order mode waves)

Internal tides signal of sea surface in the strait of Gibraltar

IT dissipation – Physical explanation

Dissipation =f (Stratification, bathymetry gradient, crossslope flow)

Internal tides generation locations:

- Mid-ocean ridges and trenches (e.g. Mid-Atlantic Ridge)
- Continental shelves (e.g. Bay of Biscay)
- Island chains (e.g. Hawaiian Ridge)

Literature values: $\approx 1TW$

Left: baroclinic amplitudes from altimetry in the Hawaiian Ridge. Right: Examples of sites with strong internal tides generation.

IT generation potential zones

IT dissipation- Implementation in DELFT3D FM

Formulation (C.Maraldi et. Al.(2011)):

$$\tau_{IT} = C\rho\kappa^{-1}N(\nabla h \cdot u)\nabla h$$

 $\frac{\partial \rho(s,T)}{\partial z} = \frac{\partial \rho}{\partial s} \frac{\partial s}{\partial z} + \frac{\partial \rho}{\partial T} \frac{\partial T}{\partial z}$

$$\tau_{IT} = C_{IT}(\nabla h \cdot u)\nabla h$$

N: Brunt-Väisälä frequency

 κ : Wavenumber characterizing

bathymetry

C: Tuning parameter

Brunt-Väisälä frequency (or *Buoyancy frequency*):

MyOcean model doesn't include tides→

$$N = \sqrt{-\frac{g}{\rho_0} \frac{\partial \rho}{\partial z}}$$

Remarks:

2DH model:

MyOcean monthly (T,S)maps

Depth averaged N

Brunt-Väisälä frequency

Tests overview

Model setup:

- Forcing only tidal potential to isolate effects of SAL and IT dissipation.
- Observation stations: UHSLC tide gauge data (297) and FES2012 for open ocean (347)

Simulation period	25-Dec-2006 / 01-Feb-2007
Spin-up time	7 days
Time step	150 seconds
Friction coefficient	Manning: 0.028 uniformChézy: 62.657 uniform
Gravity	Uniform $9.81 m/s^2$

We look at:

SAL testing:

- Simulation without SAL
- Simulation with $\beta = 90\%$ approximation
- Simulation with SAL

Effect on modeled water levels and computational times

IT dissipation testing:

- $C = 200 \cdot 10^{-5}$, $\kappa = 2\pi/10km$ uniform
- Simulation with τ_{IT} in full globe
- Simulation with τ_{IT} in d > 200 m

Effect on modeled water levels and dissipated energy values

SAL results - Water levels

Effect of $\beta = 90\%$ approximation :

No SAL:

group name	#stations	#ualues	avg(res)	std(res)	relstd(res)	relrange	obsrance	correlation	time-error
group name						·			
tide-gage	297	1326105	-0.103	0.565	123.6%	153.7%	0.49	0.59	-31.85
arctic_ocean	40	178560	0.014	0.107	139.4%	152.2%	0.08	0.46	-10.66
north_atlantic	30	133920	-0.000	0.328	106.6%	135.0%	0.31	0.61	-44.91
south_atlantic	31	138384	-0.017	0.324	162.9%	212.7%	0.25	0.70	-25.55
indian_ocean	43	191952	-0.082	0.333	119.5%	157.8%	0.30	0.66	-55.97
southern_ocean	68	303552	0.001	0.426	171.6%	212.3%	0.25	0.60	-42.52
north_pacific	65	290160	0.038	0.374	102.8%	127.9%	0.35	0.63	-41.73
south_pacific	70	312480	0.024	0.390	160.4%	177.4%	0.26	0.43	-43.82
total	347	1549008	0.002	0.343	139.9%	169.1%	0.26	0.57	-39.32
group name	#stations	#values	avg(res)	std(res)	relstd(res)	relrange	obsrange	correlation	time-error
tide-gage	297	1326105	-0.102	0.420	89.2%	153.9%	0.49	0.83	-3.83
arctic_ocean	40	178560	0.010	0.104	135.8%	172.3%	0.08	0.62	28.73
north_atlantic	30	133920	0.000	0.243	81.5%	162.4%	0.31	0.93	-5.50
south_atlantic	31	138384	-0.019	0.237	104.8%	183.2%	0.25	0.87	-6.00
indian_ocean	43	191952	-0.093	0.173	66.1%	144.3%	0.30	0.92	13.55
southern_ocean	68	303552	-0.002	0.290	116.4%	194.6%	0.25	0.88	0.34
north_pacific	65	290160	0.044	0.198	58.3%	134.8%	0.35	0.93	-9.61
		200100	0.011	0.100	00.00			0.00	3.01
south_pacific	70	312480	0.028	0.209	90.5%	169.6%	0.26	0.91	-17.61

Substantial improvement in both amplitudes and phases

SAL results – Water levels

SAL implementation $vs \beta$ approximation:

G approximation: Group name #s	stations	#values	aug(res)	std(res)	relstd(res)	relrange	obsrange	correlation	time-error
tide-gage	297	1326105	-0.102	0.420	89.2%	153.9%	0.49	0.83	-3.83
arctic_ocean	40	178560	0.010	0.104	135.8%	172.3%	0.08	0.62	28.73
north_atlantic	30	133920	0.000	0.243	81.5%	162.4%	0.31	0.93	-5.50
south_atlantic	31	138384	-0.019	0.237	104.8%	183.2%	0.25	0.87	-6.00
indian_ocean	43	191952	-0.093	0.173	66.1%	144.3%	0.30	0.92	13.55
southern_ocean	68	303552	-0.002	0.290	116.4%	194.6%	0.25	0.88	0.34
north_pacific	65	290160	0.044	0.198	58.3%	134.8%	0.35	0.93	-9.61
south_pacific	70	312480	0.028	0.209	90.5%	169.6%	0.26	0.91	-17.61
total	347	1549008	0 001	0 212	രായ	165.7%	0.26	0.87	-1.31
			0.001 	0.212	92.2% 		0.26		1.31
AL (spherical harn	nonics)	:	aug(res)		relstd(res)	relrange			:ime-error
AL (spherical harn group name #s	nonics)	:							
AL (spherical harn group name #s tide-gage	nonics):	#values	aug(res)	std(res)	relstd(res)	relrange	obsrange	correlation	:ime-error
AL (spherical harn group name #s tide-gage arctic_ocean	nonics): tations	#values 1326105	aug(res) -0.100	std(res) 0.279	relstd(res) 	relrange 125.1%	obsrange 	correlation 0.87	:ime-error 0.07
AL (spherical harn group name #s tide-gage	nonics): tations 297 40	#values 1326105 178560	aug(res) -0.100 0.009	std(res) 0.279 0.078	relstd(res) 60.4% 104.2%	relrange 125.1% 156.9%	obsrange 0.49 0.08	correlation 0.87 0.75	:ime-error 0.07 22.17
AL (spherical harn group name #s tide-gage arctic_ocean north_atlantic	nonics): tations 297 40 30	#values 1326105 178560 133920	aug(res) -0.100 0.009 -0.002	std(res) 0.279 0.078 0.166	relstd(res) 60.4% 104.2% 58.6%	relrange 125.1% 156.9% 135.2%	obsrange 0.49 0.08 0.31	correlation 0.87 0.75 0.93	:ime-error 0.07 22.17 3.27
AL (spherical harn group name #s tide-gage arctic_ocean north_atlantic south_atlantic	nonics): tations 297 40 30 31	#values 1326105 178560 133920 138384	aug(res) -0.100 0.009 -0.002 -0.020	std(res) 0.279 0.078 0.166 0.144	relstd(res) 60.4% 104.2% 58.6% 63.4%	relrange 125.1% 156.9% 135.2% 147.3%	obsrange 0.49 0.08 0.31 0.25	correlation 0.87 0.75 0.93 0.93	:ime-error 0.07 22.17 3.27 1.89
AL (spherical harn group name #s tide-gage arctic_ocean north_atlantic south_atlantic indian_ocean	nonics): tations 297 40 30 31 43	#values 1326105 178560 133920 138384 191952	avg(res) -0.100 0.009 -0.002 -0.020 -0.103	std(res) 0.279 0.078 0.166 0.144 0.129	relstd(res)	relrange 125.1% 156.9% 135.2% 147.3% 131.4%	obsrange 0.49 0.08 0.31 0.25 0.30	correlation 0.87 0.75 0.93 0.93 0.95	ime-error 0.07 22.17 3.27 1.89 13.78
AL (spherical harn group name #s tide-gage arctic_ocean north_atlantic south_atlantic indian_ocean southern_ocean	nonics): tations 297 40 30 31 43 68	#values 1326105 178560 133920 138384 191952 303552	avg(res) -0.100 0.009 -0.002 -0.020 -0.103 -0.005	std(res) 0.279 0.078 0.166 0.144 0.129 0.180	relstd(res)	relrange 125.1% 156.9% 135.2% 147.3% 131.4% 156.6%	obsrange 0.49 0.08 0.31 0.25 0.30	0.87 0.75 0.93 0.93 0.95 0.93	ime-error 0.07 22.17 3.27 1.89 13.78 2.77

Further considerable improvement in both amplitudes and phases

SAL results – SAL tide spatial distribution

Uniform $\beta = 90\%$ approximation too simplistic

SAL results – Computational times

Run	Numbe r of cores	Computational period	Computational time (Wallclock)
Without SAL	8 (2x4)	38 days	4.18 h
With SAL	8 (2x4)	38days	4.29 h

- No clear increase of computational time relative to no SAL case.
- Considerable improvement (~ 60 %) on predicted tide relative to no SAL case

IT dissipation results –Water levels

No IT dissipation (SAL included):

group name	#stations	#values	avg(res)	std(res	relstd(res)	relrange	obsrange	correlation	time-error
tide-gage	297	1326105	-0.100	0.279	60.4%	125.1%	0.49	0.87	0.07
arctic_ocean	40	178560	0.009	0.078	104.2%	156.9%	0.08	0.75	22.17
north_atlantic	30	133920	-0.002	0.166	58.6%	135.2%	0.31	0.93	3.27
south_atlantic	31	138384	-0.020	0.144	63.4%	147.3%	0.25	0.93	1.89
indian_ocean	43	191952	-0.103	0.129	48.6%	131.4%	0.30	0.95	13.78
southern_ocean	68	303552	-0.005	0.180	72.5%	156.6%	0.25	0.93	2.77
north_pacific	65	290160	0.049	0.115	34.8%	113.6%	0.35	0.96	-4.73
south_pacific	70	312480	0.034	0.116	51 . 7%	133.1%	0.26	0.94	-3.23
total	347	1549008	0.001	0.133	59.9%	138.0%	0.26	0.92	3.72
Γ dissipation (SA	L include								
		d):	avg(res)		relstd(res)	relrange		correlation	time-error
Γ dissipation (SA	stations	d):						correlation	time-error 0.54
Γ dissipation (SA group name #:	stations	d): #values	avg(res)	std(res)	relstd(res)	relrange	obsrange		
Γ dissipation (SA group name #: tide-gage	stations 297	d): #values 1326105	avg(res) -0.104	std(res) 0.270	relstd(res) 58.1%	relrange	obsrange 0.49	0.87	0.54
Γ dissipation (SA group name #: tide-gage arctic_ocean	stations 297 40	d): #values 1326105 178560	avg(res) -0.104 0.004	std(res) 0.270 0.076	relstd(res) 58.1% 101.8%	relrange 123.5% 153.2%	obsrange 0 . 49 0 . 08	0.87 0.75	0.54 24.57
Γ dissipation (SA group name #: tide-gage arctic_ocean orth_atlantic	297 40 30	d): #values 1326105 178560 133920	avg(res) -0.104 0.004 -0.005	std(res) 0.270 0.076 0.163	relstd(res) 58.1% 101.8% 57.2%	relrange 123.5% 153.2% 134.1%	obsrange 0.49 0.08 0.31	0.87 0.75 0.93	0.54 24.57 2.88
T dissipation (SA group name #: tide-gage arctic_ocean orth_atlantic	297 40 30 31	d): #values 1326105 178560 133920 138384	aug(res) -0.104 0.004 -0.005 -0.003	std(res) 0.270 0.076 0.163 0.143	relstd(res) 58.1% 101.8% 57.2% 62.0%	relrange 	obsrange 0 . 49 0 . 08 0 . 31 0 . 25	0.87 0.75 0.93 0.93	0.54 24.57 2.88 2.94
T dissipation (SA group name #: tide-gage arctic_ocean orth_atlantic indian_ocean	297 40 30 31 43	d): #values 1326105 178560 133920 138384 191952	aug(res) -0.104 0.004 -0.005 -0.003 -0.003	std(res) 0.270 0.076 0.163 0.143 0.124	relstd(res) 58.1% 101.8% 57.2% 62.0% 46.0%	relrange 	obsrange 0.49 0.08 0.31 0.25 0.30	0.87 0.75 0.93 0.93 0.96	0.54 24.57 2.88 2.94 12.61
T dissipation (SA group name # tide-gage arctic_ocean orth_atlantic outh_atlantic indian_ocean	297 40 30 31 43 68	d): #values 1326105 178560 133920 138384 191952 303552	avg(res) -0.104 0.004 -0.005 -0.003 -0.003 0.007	std(res) 0.270 0.076 0.163 0.143 0.124 0.172	relstd(res)	relrange 123.5% 153.2% 134.1% 146.7% 130.8% 153.7%	obsrange 0.49 0.08 0.31 0.25 0.30 0.25	0.87 0.75 0.93 0.93 0.96 0.94	0.54 24.57 2.88 2.94 12.61 5.78

Water levels prediction improved

IT dissipation results –Dissipation rates

IT dissipation results- Dissipation rates

An Antilles

G:Galapagos

K:Kyushu/Palu Ridge

MAR:Mid-Atlantic ocean ridge

W: Walvis Ridge Kg: Kerguelan

Bottom Friction - Dissipation rates

Overview of modeled dissipation rates

Dissipation type	Value (TeraWatts)
IT dissipation (Full Globe)	1.1171
IT dissipation $(d > 200m)$	0.8783
Bottom friction dissipation (Manning)	3.0727
Bottom friction dissipation (Chézy)	3.6076

- IT dissipation close to literature values ($\approx 1TW$)
- Manning (depth dependent) << Chézy; Slightly better water levels for Chézy (damped overpredicted amplitudes).
- Preliminary tests; study needed with tuning of C and bottom friction coefficients, some features not represented in bathymetry.

Conclusions - Overall trends of the model

group name	#stations	#values	avg(res)	std(res)	relstd(res)	relrange	obsrange	correlation	time-error
tide-gage	297	1326105	-0.100	0.279	60.4%	125.1%	0.49	0.87	0.07
arctic ocean	40	178560	0.009	0.078	104.2%	156.9%	0.08	0.75	22.17
north_atlantic	30	133920	-0.002	0.166	58.6%	135.2%	0.31	0.93	3.27
south atlantic	31	138384	-0.020	0.144	63.4%	147.3%	0.25	0.93	1.89
indian_ocean	43	191952	-0.103	0.129	48.6%	131.4%	0.30	0.95	13.78
soutnern_ocean	68	303552	-0.005	0.180	(Z.5%	156.6%	⊍.25	0.93	2.11
north_pacific	65	290160	0.049	0.115	34.8%	113.6%	0.35	0.96	-4.73
south_pacific	70	312480	0.034	0.116	51 . 7%	133.1%	0.26	0.94	-3.23
- total	347	1549008	0.001	0.133	59.9%	138.0%	0.26	0.92	3.72
						·} -			

- Both SAL and IT dissipation implementations seem to improve the model response.
- IT dissipation rates seem realistic; further sensitivity tests with tuning parameter.
- Overall trend: Overprediction of tide. Chézy slightly better.
- Big time errors:
 - Artic Ocean: Ice drag not included ;seasonal variability.
 - Indian Ocean: Complex tide, complex topography, tidal resonance. Also high dissipation in this area.

Future work –BASE Project context

- Grid improvement: local refinement for capturing steep topography in deep waters (e.g. Mid-Atlantic Ocean Ridge)
- Recalibration of the model
- Validation including wind-forcing. Wind forcing: ERA-Interim 0.75 degree resolution grid.
- Include IOC(International Oceanographic Committee) tide gauges (real time data)
- Model improvements: baroclinic pressure gradients, ice induced drag near the poles.

