Simulating Saltstraumen, the strongest tidal current in the world (?)

Gerard Dam

Dam Engineering Bergen, Norway gerard.dam@damengineering.no

www.damengineering.no

Saltstraumen

- Most famous tidal current in Norway (and outside?)
- Large tidal currents
- Located in northern Norway

• Gjevik (2009)

Saltstraumen

Located in northern Norway

Saltstraumen

Located in northern Norway near Bodø.

- Saltstraumen is 125m wide at narrowst.
- 235km² Skjerstadfjorden needs to be filled through Saltstraumen and Sundstaumen: ~470 million m³/tide at large springtide (Gjevik, 2009)

- Skjerstadfjorden does not get filled during a tide (Tidal choking)
- The tide inside is 61 % of the tide outside and has a time delay of 100 min (kartverket.no)

Ingoing flow

mælstrom

Last Saturday NRK broadcasted 12hrs life from Saltstraumen

 Saltstraumen claimed to be the strongest tidal velocity in the world!

Oct 22, 2009 - Uploaded by AuroraExplorer

Aurora Explorer specializes in packaging ...

http://www.auroraexplorer.com From our office at Saltstraumen,

Feedback

- Saltstraumen claimed to be the strongest tidal velocity in the world!
- Tourist brochure: 10 or 11 (up to 13) m/s!
- However: no current measurements (old German measurements)
- Pilot guide (den Norske Los): 8,5 knt (4.3 m/s) springtide
- Gjevik (2009): average 6m/s, but can get up to 10 m/s.

Modelling efforts (1/2)

• Eliassen et al., 2001 (CSR); no flow velocities

mentioded

Modelling efforts (2/2)

- Barentswatch.no/saltstraumen
- Operational model (Polytec): 100 m resolution
- Max 12 knots (6 m/s)

Strømvarsel for Saltstraumen

Conclusion so far:

- Uncertainty about these high velocites (>10 m/s)
- measurements not available
- -modelling efforts so far cannot reproduce these high velocities (resolution?)
- -> Buid high-resolution model of Saltstraumen and check these high velocities can be reached

FINEL model

- Finite element model
- Use in 2Dh now (works fine to predict velocities in Gimsøystraumen, Lofoten)
- Explicit solver
- Automatic time stepping (this case: 0.014 sec)
- Robust
- Fast (parallel on 16 CPU's)

FINEL grid: 10km resolution on boundary

FINEL grid: 3m resolution in Saltstraumen (5m in Sundstraumen)

1m bed level resolution (NGU/kartverket)

Test period:

- 8 october 2006:
- large springtide
- 3.15 m astronomical tidal difference Bodø (3.3 max possible astronomical (HAT-LAT))

Water level inside/outside

Water level inside/outside

Water level check

Tidal range (Tuv: 61% of Bodø)

Tidal phase (Tuv: 100 min behind Bodø (kartverket)) Gjevik (2009): observed 130 min behind Bodø

Up to 1m water level difference between in- and outside reported

Velocties:

- Animation over one tide (8 oct 2006)
- One minute interval
- Using a log-profile to calculate the surface velocity from depth averaged flow (~10% larger)

Surface tidal current Saltstraumen [m/s] 08-Oct-2006 03:06:00

Ingoing flow

• Source: Gjevik (2009): Flo og fjære

Ingoing flow comparison

Source: Gjevik (2009): Flo og fjære

Outgoing flow

Source: Gjevik (2009): Flo og fjære

Outgoing maximum flow comparison

Source: Gjevik (2009): Flo og fjære

Sensitivity checks, default run:

DAM engineering

Sensitivity: large river discharge: 1500 m³/s; ~1/30 year event; (Arctic-hype model - SMHI)

Sensitivity: increased roughness (default=1cm roughness; now 50cm)

Sensitivity: large storm surge: 62 cm extra tidal range in Bodø (in total 3.8m tidal range)

DAM engineering

Sensitivity: large storm surge: 62 cm extra tidal range in Bodø (in total 3.8m tidal range)

What now?

Still no velocities >10 m/s

Cross-channel

Velocities maximum outflow

Shallow area (~8m deep); Supercritical flow and hydraulic jump reported here by Gjevik (2009) with lots of turbulence!

Conclusions so far:

- You get a long way with this 2Dh approach
- In main channel velocities up to 8m/s can be reached by model during high springtides
- In storm conditions/ high river discharge this can be higher, but unlikely to be higher than 10 m/s
- In cross-channel super critical flow occurs in model with spots >10 m/s.
- Overall conclusion: do we get >10 m/s?
- Plausible

Future outlook:

 Extent the model in 3D to see if main channel velocities become higher

www.damengineering.no/saltstraumen.html

Gerard Dam

gerard.dam@damengineering.no www.damengineering.no

> Krohnåsvegen 56 5239 Rådal, Bergen Norway +47-91900591

> > DAM engineering