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1. Introduction

Sketch of undertow
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Buhr Hansen & Svendsen (1984)

Sketch of rip current
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Two major objectives of this study
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2. A coupled circulation-wave modelling system

Hurricane wind model
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Effects of ocean currents on waves:
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Effects of waves on the 3D circulation:

1. 3D wave forces based on the “Vortex force” formulism
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Material advection by Stokes drift

2. Breaking wave-induced mixing:
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3. Two idealized test cases

Test case 1: A plane beach with undertow
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Results (a):
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Results (b):
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Test case 2: A barred beach with rip current
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Results: DalCoast ROMS
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4. Realistic applications

#3 Winter storm

#2 Hurricane Bill (2009)

#1 Hurricane Juan (2003)

“White Juan” (2004)
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List of numerical experiments

SIX major wave-current interaction mechanisms

Experiment

Run_WaveCir v v v

Run_WaveOnly Wave-only model run

Run_CirOnly Circulation-only model run

Process-oriented experiments




4.1 Hurricane Juan
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The distribution of maximum wave heights (Juan)
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The roles of four WCI mechanisms on the distribution of
maximum wave heights (Juan)

46°N |

44°N {
42°N
40°N -

- - .
68"W 64"W 60°W Current-induced

Relative wind effect wave advection

[(©) '/.. .l J[C) =

_ jo— :
Current-induced Current-induced
wavenumber shift wave refraction




An explanation for the different roles of the WCI

mechanisms on maximum wave heights (Juan)
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Wind vector
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The wave field under a fast-moving hurricane is strongly affected by

remotely generated swells
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4.2 Hurricane Bill
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4.3 Winter storm “White Juan”
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The distribution of maximum wave heights (White Juan)
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The roles of four WCI mechanisms on the distribution of
maximum wave heights (White Juan)
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An explanation for the different roles of the WCI
mechanisms on maximum wave heights (White Juan)

Surface current vector Wave vector

Wind vector
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The wave field under a slow-moving winter storm is strongly

affected by locally generated waves
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The roles of two WCI mechanisms on the storm-induced
temperature changes (White Juan)
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5. S ummary

Development, validation and application of a coupled
wave-circulation model during three storm events.

Three major WCI mechanisms on waves are
identified during three storm events: the relative
wind effect, current-induced wave advection and
refraction.

The 3D wave forces can affect the vertical mixing and
temperature changes up to 200 m in all three storm
cases. The effect of the breaking wave-induced
mixing depends on the background stratification in
the upper ocean layer.






