
Technology for a better society

GPU implementation of a linear shallow water model

for massive ensemble simulations

JONSMOD 2016 Conference, Oslo, Norway

André R. Brodtkorb1, Lars Petter Røed2

1 Department of Applied Mathematics, SINTEF ICT.

2 Norwegian Meteorological Institute.

Technology for a better society

Outline

• Motivation for GPU computing

• Implementation of shallow water system on the GPU

• Summary

Technology for a better society

History lesson: development of the microprocessor 1/2

1942: Digital Electric Computer
(Atanasoff and Berry)

1971: Microprocessor
(Hoff, Faggin, Mazor)

1947: Transistor
(Shockley, Bardeen, and Brattain)

1956

1958: Integrated Circuit
(Kilby)

2000

1971- Exponential growth
(Moore, 1965)

Technology for a better society

1971: 4004,
2300 trans, 740 KHz

1982: 80286,
134 thousand trans, 8 MHz

1993: Pentium P5,
1.18 mill. trans, 66 MHz

2000: Pentium 4,
42 mill. trans, 1.5 GHz

2010: Nehalem
2.3 bill. Trans, 8 cores, 2.66 GHz

History lesson: development of the microprocessor 2/2

Technology for a better society

Why Parallelism?

100%

100%

100%

85%

90% 90%

100%

Frequency

Performance

Power

Single-core Dual-core

The power density of microprocessors

is proportional to the clock frequency cubed:1

1 Brodtkorb et al. State-of-the-art in heterogeneous computing, 2010

Technology for a better society

• Up-to 5760 floating point

operations in parallel!

• 5-10 times as power

efficient as CPUs!

Massive Parallelism: The Graphics Processing Unit

0

50

100

150

200

250

300

350

400

2000 2005 2010 2015

B
a

n
d

w
id

th
 (

G
B

/s
)

0

1000

2000

3000

4000

5000

6000

2000 2005 2010 2015

G
ig

a
fl

o
p

s
 (

S
P

)

Technology for a better society

• The key to performance, is to

consider the full algorithm and

architecture interaction.

• A good knowledge of both the

algorithm and the computer

architecture is required.

Why care about computer hardware?

Graph from David Keyes, Scientific Discovery through Advanced Computing, Geilo Winter School, 2008

Technology for a better society

Work performed

• Numerical scheme implemented on the GPU

• Bathymetry source terms

• Wind source terms

• Semi implicit (backward) friction source terms

• Open and closed boundaries

• Implementation compared against reference FORTRAN implementation

• Assessment and comparison of performance

Technology for a better society

Mathematical Model

eta

H h
u

Coriolis Bottom

and wind

stress

Eddy

viscosity

parameter

Technology for a better society

Linearized model

eta

H h
u

Technology for a better society

Discretized Equations (Numerical scheme)

Technology for a better society

Implementation

• The numerical scheme computes U, V, and Eta after each other for each time step

• Computing U, V, and Eta is done with CUDA Kernels

• A kernel is a GPU program that executes in a data-parallel fashion:

All cells in the domain are computed simultaneously!

Compute U Compute V Compute Eta

Technology for a better society

Computational Stencils
• The computational stencils are compact

• The computational stencils make the computation of each grid cell independent of all other

cells

• This gives a numerical scheme that is highly suitable for implementation on the GPU

U

V

eta

Technology for a better society

Implementation

• Our CUDA kernel is a function that is executed for each cell in the domain in parallel

__global__ void computeUKernel(const ForwardBackwardLinearParameters params_,

const ForwardBackwardLinearCUDAData data_,

const float t_) {

//Data indexing variables

const unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

const unsigned int j = blockIdx.y*blockDim.y + threadIdx.y;

[…] //Read input data, compute stresses, etc.

//Store result to main GPU memory

data_.U[j][i] = B*(U_current + params_.dt*(params_.f*V_m + P + X));

}

Technology for a better society

Implementation

• In addition to U, V, and Eta, we need to compute "external" solutions for the open boundary

conditions

• To do this efficiently, we introduce task parallelism:

the external U for the next time step is calculated simultaneously as V

the external V for the next time step is calculated simultaneously as Eta

…

Compute U

Compute V

Compute Eta

Simulation cycle

Technology for a better society

Validation Cases

• Nine benchmark cases used to check if the implementation
can reproduce the results of the original FORTRAN code
• Three different types of wind forces (uniform, bell shaped, and a cyclone)

• Two types of boundaries (open and closed)

• Two types of bathymetries (flat, and with shelf)

• Difference measured for time series for each case

• Results are visually identical, and show the same dynamics

Closed boundary Open boundary Open boundary

with shelf

Uniform Along Shore 1A 1B 1C

Bell Shaped Along Shore 2A 2B 2C

Moving Cyclone 3A 3B 3C

Technology for a better society

Uniform Along Shore Wind Stress

• Maximum absolute difference throughout the simulation was 1e-6

• This is to be expected for single precision simulations

-0.01

-0.005

0

0.005

0.01

0.015

0 100000 200000 300000 400000

Case 1B

Fortran Cuda Difference

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0 100000 200000 300000 400000

Case 1A

Fortran Cuda Difference

-0.0005

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0 100000 200000 300000 400000

Case 1C

Fortran Cuda Difference

Technology for a better society

Bell Shaped Along Shore Wind Stress

• Maximum difference for the different cases is 0.0, 1e-5 and 4e-6, respectively

• Cases B and C run 1920 time steps, which gives a very small error per time step, but still too

large.

• The most probable cause for the discrepancy is differences in the implementation of the open

boundaries (closed boundaries give no difference)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 50000 100000 150000 200000

Case 2A

Fortran Cuda Difference

-0.005

-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0 50000 100000 150000 200000

Case 2B

Fortran Cuda Difference

-0.0016

-0.0014

-0.0012

-0.001

-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002

0 50000 100000 150000 200000

Case 2C

Fortran Cuda Difference

Technology for a better society

Moving Cyclone Wind Stress

• Maximum difference is 1e-2, 4e-2 and 5e-3.

• Most probable cause for discrepancy is different handling of open boundaries

• The physics is still captured in all models

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 50000 100000 150000 200000

Case 3A

Fortran Cuda Difference

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 50000 100000 150000 200000

Case 3B

Fortran Cuda Difference

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 50000 100000 150000 200000

Case 3C

Fortran Cuda Difference

Technology for a better society

Summary accuracy

• Results are identical closed boundaries for all wind stress types

• Negligible discrepancies that are well within the errors imposed by floating point (1e-6)

• Differences in implementation of open boundaries gives rise to discrepancies

• Is highly probable that identical handling of open boundaries will give results within single

precision errors

• Uniform along-shore wind with open boundaries gives identical results to within single precision

Technology for a better society

Performance Assessment

• The GPU implementation is efficient but not optimized

• The right choices have been made (such as accessing memory by rows and not columns, etc.)

• No further hand optimizations performed

• FORTRAN code compiled with g95 on Ubuntu with "-O3" optimization flag

• CUDA code compiled with CUDA 4.1 and Visual Studio 2010 using standard "release" build

settings

• Benchmark run on

• Intel Core i7-2600k @ 3.7 GHz

• 8 GiB RAM

• NVIDIA GeForce 480 GTX GPU @ 1.4 GHz (price today ~2000 NOK)

Technology for a better society

Performance Assessment

• Benchmark run for different (square) domain sizes, and wall clock time measured

• FORTRAN could not go above ~40 million cells

• GPU implementation is roughly 213 times faster than FORTRAN

• Please note: Fortran code is not optimized, whilst GPU code is optimized

y = 0.2561x

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

0 10 20 30 40 50 60 70

Se
co

n
d

s
p

e
r

it
e

ra
ti

o
n

Millions of cells

Wall time FORTRAN

y = 0.0012x

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 10 20 30 40 50 60 70

Se
co

n
d

s
p

e
r

it
e

ra
ti

o
n

Millions of cells

Wall time GPU

Technology for a better society

Performance Assessment

Technology for a better society

Suitability for Ensemble Methods

• The GPU implementation is O(100) times faster than the FORTRAN

implementation

• This enables running large domains, or running many domains

simultaneously

• This suits simulation of massive ensembles very well

Technology for a better society

References and acknowledgements

• Project team consisting of Lars Petter Røed, Kai Christiansen, Göran Boström, Trond

Hagen, Yvonne Gusdal.

• Main references:

• Documentation of simple ocean models for use in ensemble predictions

Part I: Theory, L. P. Røed, 2012

• Documentation of simple ocean models for use in ensemble predictions

Part II: Benchmark cases, L. P. Røed, 2012

• One-Layer Shallow Water Models on the GPU, A. R. Brodtkorb, T. R. Hagen, L. P. Røed, 2013

• State-of-the-Art in Heterogeneous Computing, A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M.

Hjelmervik and O. O. Storaasli, 2010

