

On Meteorological Forcing in Ocean Modelling

Jesper Baasch-Larsen Bjarne Büchmann

Danish Defence Centre for Operational Oceanography

Outline

Meteorological forcing

Ocean model

Conclusions

Meteorological forcing in operational ocean modelling

Operational ocean modelling: Switch directly to a new meteorological forecast at the start of each forecast cycle.

Introduces discontinuities in the forcing fields.

Meteorological forcing DMI HIRLAM T15 and SKA

Study period 2010-2012 (4 forecast cycles per day)

Sea level pressure discontinuity magnitude

Mean absolute sea level pressure difference during 1 hour of forecast.

Mean absolute sea level pressure difference at same timestep for two subsequent forecasts.

Based on data from > 1000 forecast cycles

Sea level pressure discontinuity example

Sea level pressure during passage of Atlantic low pressure system.

Red arrows show discontinuity at analysis time.

Mitigation strategies

Get smooth meteorological forecasts

Smooth/ramp the meteorological forecasts

Mitigation strategies

Get smooth meteorological forecasts

Smooth/ramp the meteorological forecasts

Meteo Ramping

Operational ocean model setup

GETM (www.getm.eu)

NA₃

- Barotropic (2D) model
- Surge only
- 3 nm hor. resolution

NS₁C

- Baroclinic (3D) model
- 1 nm hor, resolution
- 60 vertical layers

DK600

- Baroclinic (3D) model
- 600 m hor. resolution
- 60 vertical layers

Ocean model experiments

- Only results from NA3 are used
- Study period: 2010-2012
- Rampings: none, 0h, 1h, 2h, 3h, 6h, 9h, 12h, 18h

Sea level timeseries example no ramping

Sea level timeseries example ramp 9h

Sea level power spectra – spatial distribution

Example sea level power spectra

Blue: no ramping; Red: ramp 12h

Conclusions

- Ramping effectively removes discontinuities in meteo forcing
- Ramping is easily implemented
- Use the same ramping for validation runs as for operational runs
- We use a ramping window of 9 hours

Email: jla@fcoo.dk