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RTC-Tools: Scope

RTC-Tools is the Deltares toolbox for 
control and optimization of 
environmental systems.

Delft-FEWS is an open data handling 
platform, used for the aggregation of 
(real-time) environmental data flows.

Together, they provide a platform for the 
development of decision support 
systems.



History

- 2005: Reservoir module for Delft-FEWS.
- 2012: Dirk Schwanenberg releases first version of RTC-Tools 

source code to the public. RTC-Tools 1.x connected non-linear 
hydraulic and reservoir models to the IPOPT optimizer.
- Promising results, many scientific publications
- High interest from reservoir operators
- But challenging to operationalize, and hard to extend

- 2015: Work starts on new mathematically rigorous foundation, 
initially as an experiment of Jorn Baayen and Matthijs den Toom.

- 2016: First pilot project on new foundation. Peter Gijsbers
develops water allocation tool for Rijkswaterstaat using new 
framework.

- 2016: RTC-Tools 2.0 released.



Reliability axioms

A decision support system that is used day in, day out needs to be 
reliable. This need can be made precise with six axioms:

• Robustness: The solutions are robust in the sense that system 
constraints are satisfied regardless of the differences between model 
and reality. 

• Feasibility: A feasible solution always exists. 
• Quality: Any solution is a “good” solution. 
• Stability: The solutions are stable in the sense that small perturbations 

in the configuration result in small changes in the solution. 
• Determinism: Given the same initial solution guess and configuration, 

the solution is always identical. 
• Bounded solution time: A solution is found within a predetermined 

amount of time. 



Local and global optima

Source: Wikipedia. GFDL 1.2.



From axioms to convexity

Suppose we had an optimization problem that would only have 
globally optimal solutions.

That would give us:

• Quality: Every solution is a globally optimal solution.
• Stability: Changing seed solutions or optimizer settings won’t 

change the quality of the end solution. 

So-called convex optimization problems only admit globally optimal 
solutions. Convex problems can be solved efficiently using 
deterministic methods.



Convex sets



Convex functions

𝑓 𝜆𝑥$ + 1 − 𝜆 𝑥( ≤ 𝜆𝑓 𝑥$ + 1 − 𝜆 𝑓(𝑥()



Convex optimization

min 𝑓(𝑥) subject to
𝑔 𝑥 ≤ 0
ℎ 𝑥 = 0

Problem is called convex when:
• 𝑓 is a convex function
• 𝑔 is a convex function
• ℎ is an affine function:

• ℎ 𝑥 = 0	 ⇔ ℎ 𝑥 ≤ 0 and −ℎ 𝑥 ≤ 0	.
• ℎ must be both convex and concave, i.e., affine: ℎ 𝑥 = 𝑎𝑥 + 𝑏.
• This is quite restrictive

Convex problems only admit global optima.



Hydraulic modelling

- Highly nonlinear friction term in diffusive 
wave equation:

𝜕𝐻
𝜕𝑥 +

𝐶
𝑅 𝑄

( = 0

- When using many diffusive wave 
branches, large numbers of local minima 
are created. What to do?

- Linearization results in large errors; 
piecewise linearization results in large 
numbers of integer variables.



Homotopy

Idea: Interpolate between linearized and non-linear model.

𝑀 = 1 − 𝜃 𝑀> + 𝜃𝑀?>

With 𝜃 ∈ 0, 1 .

.



Continuation method

Start solving at 𝜃 = 0 continuing step–by-step until 𝜃 = 1.

At 𝜃 = 0, the linearized problem only has global optima. We find a global 
optimum, and trace this through to a nonlinear solution at 𝜃 = 1: 
Solution to nonlinear problem can be traced back to globally optimal 
solution of linearized problem.



Continuation method

Ongoing research challenge: Bifurcations



Multi-objective optimization

Suppose we have the following goals:

• Keep water levels within bounds as much as possible
• Maintain minimum spill flows for fish migration, if possible
• Apply best effort to track the generation request

Let 𝑓C: 𝑖 ∈ 𝐼 denote the set of functions encoding these goals. We have:

min 𝑓C 	∀𝑖 ∈ 𝐼 subject to
𝑔 𝑥 ≤ 0
ℎ 𝑥 = 0

How to solve this?



Pareto optimality

A solution 𝑥∗ of the problem

min 𝑓C 	∀𝑖 ∈ 𝐼 subject to
𝑔 𝑥 ≤ 0
ℎ 𝑥 = 0

Is Pareto-optimal if there is no 𝑥∗∗ such that for a 𝑗

𝑓J 𝑥∗∗ < 𝑓J(𝑥∗∗)

and for all 𝑖 ≠ 𝑗
𝑓C(𝑥∗∗) ≤ 𝑓C(𝑥∗∗)

In words: Pareto optimality implies that no goal can be improved without 
making another one worse.



Pareto front

The Pareto front is the set of all Pareto-optimal solutions.



Weighting method

The weighting method transforms the multi-objective problem to the 
scalar problem

min∑C𝜆C𝑓C	subject to
𝑔 𝑥 ≤ 0
ℎ 𝑥 = 0

• Problem: How to pick the weighting factors 𝜆C.
• And if the weighting factors are arbitrary to a                                 
degree, then so is the solution!

Solution on Pareto front shown with a circle.



Lexicographic goal programming

In lexicographic goal programming, we transform the multi-objective 
problem to a sequence of scalar optimization problems.

First, we order our goals. For example:

1. Keep water levels within bounds as much as possible
2. Maintain minimum spill flows for fish migration, if possible
3. Apply best effort to track the generation request



Lexicographic goal programming

The idea of the algorithm is:

1. Minimize 𝑓$ to yield a minimum objective value of 𝜀$. 
2. Minimize 𝑓( to yield 𝜀( subject to the additional constraints

• 𝑓$(𝑥) = 𝜀$
3. Minimize 𝑓P subject to the additional constraints 

• 𝑓$(𝑥) = 𝜀$
• 𝑓((𝑥) = 𝜀(

4. …

Solution on Pareto front shown with an arrow.



Mixed integer: Minimum on-time pump

0 ≤ 𝑄Q ≤ 𝑄RST𝛿Q

𝛿Q − 𝛿QV$ ≤ 2 1 − 𝑥Q − 1

𝛿Q − 𝛿QV$ ≥ −𝑥Q

𝛿QV$ − 𝛿Q ≤ 2 1 − 𝑦Q − 1

𝛿QV$ − 𝛿Q ≥ −𝑦Q

∑𝒊∈{𝒕,…,𝒕^𝑵V𝟏}(𝒙𝒊+𝒚𝒊) ≤ 𝟏

𝛿Q, 𝑥Q, 𝑦Q ∈ {0, 1}

𝛿QV$ 𝛿Q 𝛿Q − 𝛿QV$ 𝑥C 𝑦C

Pump stays off 0 0 0 0 0

Pump switched on 0 1 1 1 0

Pump switched off 1 0 -1 0 1

Pump stays on 1 1 0 0 0

Idea: Encoding logical tables using linear
constraints.


