RAINFALL ESTIMATION, NOWCASTING AND WARNINGS FOR THE MEUSE BASIN

Edouard Goudenhoofdt, Maarten Reyniers and Laurent Delobbe

Royal Meteorological Institute of Belgium

13 Oct 2017, Liège 4th Meuse symposium

COOPERATION BETWEEN DGO2 AND RMIB

TO IMPROVE HYDRO-METEOROLOGICAL OBSERVATIONS, FORECASTS AND WARNINGS

- best precipitation estimation using radar and rain gauges
- new extreme precipitation statistics and warnings
- better observations and modelling of snow

STARTED IN MARCH 2016

- steering committee meets 2 times per year
- 1 scientist (coordination, research and development) and 1.5 operators (data quality control)
- exchange of observation data and products

More than 400 rain gauges in Belgium

THERE IS A NEED FOR QUANTITATIVE PRECIPITATION ESTIMATES (QPE)

AT HIGH RESOLUTION

- as input for hydrological models
- to validate high resolution Numerical Weather Prediction (NWP) models
- regional climate model

FOR A LONG PERIOD

- to calibrate hydrological models
- to verify NWP model hindcast
- to verify regional climate model statistics

BELGIUM IS WELL COVERED BY RADARS

WITH A TYPICAL RESOLUTION OF $500\,\mathrm{M}$ AND 1°

RADARS EMIT ELECTROMAGNETIC PULSES

BELGIAN RADARS PERFORM SCANS IN 5 MIN

RELATION BETWEEN REFLECTIVITY AND RAINFALL RATE

RADAR EQUATIONS

$$Z_e = \int_0^{Dmax} |K|^2 N_0 e^{-\Lambda D} D^6 dD$$
$$R = \int_0^{Dmax} N_0 e^{-\Lambda D} \frac{\pi D^3}{6} v(D) dD$$

but unknown distribution of rain droplets' diameter (D)

EMPIRICAL RELATION

$$Z_e = a R^b$$

ESTIMATING RAINFALL FROM RADAR MEASUREMENTS IS A CHALENGE

because of the many sources of error and uncertainty

SURFACE RAINFALL ESTIMATION ALGORITHMS

BASIC (CAP)

• Doppler filtering & PCAPPI 800 m & $Z=200R^{1.6}$

COMPLEX (QPE)

- 1. non-meteo echoes removal & beam blocking correction
- 2. average VPR & extrapolation towards ground
- 3. convective (Z = 77 $R^{1.9}),$ stratiform (Z = 200 $R^{1.6}),$ hail (max 55 dBZ)

MERGING RADAR AND RAINGAUGES (1 H ACCUM)

- MFB : single correction by the median of their ratios
- EDK : spatial merging by Kriging of the gauges with the radar as external drift

2005-2014 VERIFICATION AGAINST DAILY GAUGE MEASUREMENTS ABOVE 1 MM

2005-2014 MEAN ANNUAL TOTALS

- most radar artifacts are mitigated
- correlation with gauges increases from 0.54 to 0.80 more verification results in Goudenhoofdt and Delobbe (2016)

1-HOUR MAXIMUM 2005-2016

• mainly due to hail threshold and non-meteo echoes removal

REALTIME QPE COMPOSITE SINCE SEP 2016

- merging with DGO2 gauges
- available within 5 minutes
- rainfall accumulation
- manual quality control

REALTIME QPE USED FOR NWP MONITORING

Alaro 1.3km

1h precipitation 2017-07-20:02h

radar composite

RMIB HYDROLOGICAL ENSEMBLE FORECASTS (HEPDO): MEUSE/CHOOZ

based on realtime QPE and ECMWF ensemble forecasts

MAX 30 MIN ACCUM FOR THE PAST 2 HOURS

MAX 30 MIN ACCUM FOR THE PAST 2 HOURS

RMIB OPERATIONAL NOWCASTING SYSTEM INCA-BE (SMARTPHONE APPLICATION)

- extrapolation based on area tracking of radar observations
- nowcast up to +4h every 10 min
- blending with NWP from +2h

MAX 30 MIN ACCUM FOR THE NEXT 2 HOURS

MAX 30 MIN ACCUM FOR THE NEXT 2 HOURS

RADAR EXTREME RAINFALL STATISTICS

more results in Goudenhoofdt, Delobbe, and Willems (2017)

NEXT STEPS

PRECIPITATION OBSERVATIONS

- correction for QPE time sampling errors
- automatic QPE quality control
- QPE in INCA-BE (RMIB nowcasting system)
- QPE in HYDROMAX (DGO2 hydrological model)

PRECIPITATION NOWCASTS

- probabilistic nowcasts (STEPS-BE)
- improved radar-NWP blending

PRECIPITATION WARNINGS

- use radar extreme statistics
- areal precipitation warnings