
Liège, October 13, 2017

Nonlinear optimization of hydraulic systems

Jorn Baayen



Model predictive control

• Predict system state based on model
• Compute control inputs that maximize performance over prediction horizon
• Implement first computed control input
• Repeat procedure at next time step

Source: Wikipedia. CC BY-SA 3.0.



Prediction model

A good prediction model satisfies several requirements:

• Accurate: It captures the relevant physical processes with sufficient
accuracy. 

• Simple: It focuses on the essential processes. Details are left out. 
Optimizing for details is a bad idea, considering the inaccuracies 
inherent in any inflow forecast. Less = more.

• Quick: As it will need to be evaluated many times during 
optimization, a single run needs to be computationally inexpensive.



Prediction model



Local and global optima

Source: Wikipedia. GFDL 1.2.
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Idea: Formulate optimization problems that only admit global minima.

The mathematical term for such formulations is that they are convex.
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Unfortunately, we will see that convexity is too restrictive when it 
comes to modelling hydraulic processes with large discharge 
variations.
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Open channel hydraulics

In open channel flow, a common approximation is to take the square 
of the discharge 𝑄 proportional to the head difference Δ𝐻:

𝑄$ ∝ Δ𝐻

Problem: Both 𝑄 and Δ𝐻 vary throughout optimization. 

➡ Nonlinear equality constraint.
➡ Nonconvex optimization problem.
➡ Finding even any feasible solution hard in general, and when 
one is found, no certificates on solution quality.



Solution: Homotopy

Idea: Interpolate between linear and nonlinear model.

𝑀 = 1 − 𝜃 𝑀+ + 𝜃𝑀-+

With continuation parameter 𝜃 ∈ 0, 1 .

.



Continuation method

Start solving at 𝜃 = 0 continuing step–by-step until 𝜃 = 1.

At 𝜃 = 0, the linear problem only admits global optima. We find a global 
optimum, and trace this through to a nonlinear solution at 𝜃 = 1: 
Solution to nonlinear problem can be traced back to globally optimal 
solution of linearized problem.



Continuation method: Bifurcations

Bifurcations occur at so-called singular points.

Continuation method

Ongoing research challenge: Bifurcations



Nonlinear hydraulic model
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Idea: 
• Discretize 1D shallow water (Saint-Venant) equations on 

staggered grid;
• Drop advection term (valid when :;

:<
and :=

:<
are small); of minor 

importance for typical NL water board applications.



Linear hydraulic model

Idea: Take nonlinear discretization, and fix terms that vary little 
compared to other terms.

(≠ linearization, which does not work well for large variations in flow 
variable 𝑄.)
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Theorem A necessary condition for a singular point is for either of the 
following alternatives to hold:

• Wetting and drying (𝐻	 = 𝐻A)
• Flow reversal (𝑄	 = 	0)



Homotopy linear → nonlinear: Main result

Theorem A necessary condition for a singular point is for either of the 
following alternatives to hold:

• Wetting and drying (𝐻	 = 𝐻A)
• Flow reversal (𝑄	 = 	0)

N.B. If these conditions are avoided, local, nonglobal minima may still 
arise (originating at ∞)!



Homotopy linear → nonlinear: Main result

Theorem A necessary condition for a singular point is for either of the 
following alternatives to hold:

• Wetting and drying (𝐻	 = 𝐻A)
• Flow reversal (𝑄	 = 	0)

N.B. If these conditions are avoided, local, nonglobal minima may still 
arise (originating at ∞)!

As long as the alternatives are avoided, a continuation method can be 
applied. 



Use Case - Rijnland
Model
schematization

Primary channel system 
of Rijnland



Use Case – Primary channel system Rijnland

• Multi-objective optimization for safety, salt 
flushing, and energy use.

• Primary goal: Optimization of water level 
in primary channel system (the boezem)

• Water level range as well as target 
level

• Salt and wind dynamics are relevant
• Wind has an impact on relative water 

level differences and hence on 
circulation pattern

• Multiple sources of salinity, flushing 
strategy required



Feedback control vs. Optimization – wet event

Feedback control results Optimization results



Measured vs. Optimized – similar pump action 

Optimization prefers nighttime 
pumping (lower price)



Rijnland

A decision support and control system for the water board of Rijnland 
was brought online earlier this year. The system provides advice 
on the dispatch of pumping stations, taking into account the 
operational objectives of flood control, water quality, and cost 
savings.



Thank you for your attention!

Feel free to contact me any time at

jorn.baayen@deltares.nl


