KU LEUVEN

Joint modelling exercise follow up plans

Jan De Niel (KU Leuven) Laurène Bouaziz (TU Delft) Lieke Melsen (Wageningen UR)

Previous study (published January 2017)

Hydrol. Earth Syst. Sci., 21, 423–440, 2017 www.hydrol-earth-syst-sci.net/21/423/2017/ doi:10.5194/hess-21-423-2017 © Author(s) 2017. CC Attribution 3.0 License.

Looking beyond general metrics for model comparison – lessons from an international model intercomparison study

Tanja de Boer-Euser¹, Laurène Bouaziz², Jan De Niel³, Claudia Brauer⁴, Benjamin Dewals⁵, Gilles Drogue⁶, Fabrizio Fenicia⁷, Benjamin Grelier⁶, Jiri Nossent^{8,9}, Fernando Pereira⁸, Hubert Savenije¹, Guillaume Thirel¹⁰, and Patrick Willems^{3,9}

¹Water Resources Section, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands

Correspondence to: Tanja de Boer-Euser (t.euser@tudelft.nl)

Received: 8 July 2016 – Published in Hydrol. Earth Syst. Sci. Discuss.: 20 July 2016 Revised: 29 November 2016 – Accepted: 16 December 2016 – Published: 25 January 2017

²Department Catchment and Urban Hydrology, Deltares, Boussinesqueg 1, 2629 HV Delft, the Netherlands

³Hydraulics division, Department of Civil Engineering, KU Leuven, Kasteelpark Arenberg 40, 3001 Leuven, Belgium

⁴Hydrology and Quantitative Water Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands

⁵University of Liège, Place du 20-Août 7, 4000 Liège, Belgium

⁶LOTERR-UFR SHS, Université de Lorraine, Île du Saulcy, 57045 Metz CEDEX 1, France

⁷Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland

⁸Flanders Hydraulics Research, Berchemlei 115, 2140 Antwerp, Belgium

⁹Vrije Universiteit Brussel (VUB), Department of Hydrology and Hydraulic Engineering, Boulevard de la Plaine 2, 1050 Brussels. Belgium

¹⁰Irstea, Hydrosystems and Bioprocesses Research Unit (HBAN), 1, rue Pierre-Gilles de Gennes, CS 10030, 92761 Antony CEDEX, France

8 research institutes and 11 model structures

Table 2. Characteristics of the configuration of the different models.

Model	Forcing	Calibration	Parameters ^a	Regionalisation	Group
GR4H	Lumped	Prefiltering of parameter space using three quantiles for each of the four parameters, followed by step-wise calibration to op- timum	4	No	IRSTEA
PRESAGES	Lumped	Optimization with 100 start- ing points within the parame- ter space that converge to local minima, which results in more than 2000 parameter sets	6	River routing based on catchment area	Université de Lor- raine
WALRUS	Lumped	Manual narrowing of parameter space 500 samples with Latin hypercube, 10 best ones for Levenberg–Marquardt optimisation	3	No	Wageningen University and Research
M2	Lumped	MOSCEM-UA (Vrugt et al., 2003)	5	No	Eawag
M3	Lumped	MOSCEM-UA	6	No	Eawag
M4	Lumped	MOSCEM-UA	7	No	Eawag
M5	Lumped	MOSCEM-UA	9	No	Eawag
NAM	Lumped	DREAM_ZS (Laloy and Vrugt, 2012)	12	No	Flanders Hy- draulics Research
FLEX-Topo	Semi-distributed	Manual narrowing of parameter space, 2000 uniform samples	20 ^b	Percentages HRUs; hydraulic length	Delft University of Technology
VHM	Lumped	MOSCEM-UA	12	No	University of Leuven
wflow_hbv	Distributed	Manual narrowing of parameter space, 2000 uniform samples	9	Interception capac- ity	Deltares

^a Number of calibrated parameters; ^b Of the parameters, 11 were linked to other parameters based on parameter constraints (e.g. Gharari et al., 2014)

Intercomparison of hydrological models

Looking beyond general metrics for model comparison – lessons from an international model intercomparison study

Tanja de Boer-Euser¹, Laurène Bouaziz², Jan De Niel³, Claudia Brauer⁴, Benjamin Dewals⁵, Gilles Drogue⁶, Fabrizio Fenicia⁷, Benjamin Grelier⁶, Jiri Nossent^{8,9}, Fernando Pereira⁸, Hubert Savenije¹, Guillaume Thirel¹⁰, and Patrick Willems^{3,9}

Correspondence to: Tanja de Boer-Euser (t.euser@tudelft.nl)

Received: 8 July 2016 – Published in Hydrol. Earth Syst. Sci. Discuss.: 20 July 2016 Revised: 29 November 2016 – Accepted: 16 December 2016 – Published: 25 January 2017

¹Water Resources Section, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands

²Department Catchment and Urban Hydrology, Deltares, Boussinesqueg 1, 2629 HV Delft, the Netherlands

³Hydraulics division, Department of Civil Engineering, KU Leuven, Kasteelpark Arenberg 40, 3001 Leuven, Belgium

⁴Hydrology and Quantitative Water Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands

⁵University of Liège, Place du 20-Août 7, 4000 Liège, Belgium

⁶LOTERR-UFR SHS, Université de Lorraine, Île du Saulcy, 57045 Metz CEDEX 1, France

⁷Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland

⁸Flanders Hydraulics Research, Berchemlei 115, 2140 Antwerp, Belgium

⁹Vrije Universiteit Brussel (VUB), Department of Hydrology and Hydraulic Engineering, Boulevard de la Plaine 2, 1050 Brussels, Belgium

¹⁰Irstea, Hydrosystems and Bioprocesses Research Unit (HBAN), 1, rue Pierre-Gilles de Gennes, CS 10030, 92761 Antony CEDEX, France

Focus on observed and simulated discharges

Link with model structures

A lot of (almost) already available data remains unanalyzed

Compare:

- States and fluxes between models
- Soil moisture state with satellite based soil moisture products
- Total storage with GRACE
- Partitioning of fast and low flow
- Long term partitioning in evaporation, deep groundwater losses and runoff

What is needed?

- Run our calibrated model (20 parameter sets) and export all states and fluxes (based on a template)
- Run our calibrated models for period 2016-2017 to assess:
 - Modelled low flow during 2017

 Combine and analyze all results → map the differences in modelled internal processes

Hydrological modelling

Climate change impact

Climate change impact: what do we need?

- Calibrated hydrological models
 - o OK. From previous study, 11 models with 20 parameter sets each.
- Time series for future climate conditions (P and ETo)
 - Different methods (Belgium, France, Germany, the Netherlands, Switzerland, ...)?

Run all models for all future conditions

Export total flow

Proposal Model intercomparison study Lieke Melsen

Research question:

What's the influence of the modeller on the model results?

Rationale:

Subjective modelling decisions influence model results. Experience with a specific model can influence the modelling decisions.

Proposal Model intercomparison study

Method:

A protocol describes input data, output variables to evaluate (start with Q only?), and calibration data (or even: calibration-strategy?). All modellers run all models.

Proposal Model intercomparison study

H0:

The model performance is independent from the modeller who ran the model

H1:

The model performance differs when the same model is run by different modellers. The model performance is not related to the experience of the modeller with that model.

H2:

The model performance differs when the same model is run by different modellers. The model performance is related to the experience of the modeller with that model.

