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Abstract A decision support system for water management based on convex optimization, RTC-Tools 2, is 

is applied for a water system containing river branches connected by weirs. The advantage of convex 

optimization is the ability of finding the global optimum, which makes the decision support system robust 

and deterministic. In this work the convex modeling of open water channels and weirs is presented. The 

decision support system is implemented for a river made of 12 river reaches divided by movable weirs. It is 

shown how the discharge wave is dispatched in the river without the water levels exceeding the bounds by 

controlling the weir heights. After this test the optimization can be applied to a realistic numerical model and 

model predictive control can be implemented. 
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1 Introduction 

Optimization methods are often used for managing water systems. Model predictive control is one 

of them and several studies have been carried out about its application [1, 2, 3]. In these studies 

linear models are used to preserve convexity even though the problem at hand is essentially 

nonlinear. However, when the nonlinearities are moved to the inequality constraints, it is possible to 

create a convex optimization problem and in some cases preserve non-linearity of the system. In 

this research such approach is demonstrated through the modelling of weirs by RTC-Tools 2 [4], a 

toolbox to create decision support systems, used and applied within the Slim Malen project in 

cooperation with Deltares and the Dutch Water Boards [5]. 

2 Material and methods 

2.1 Modelling  

The river branches are modelled with the Integrator Delay model [6]. The water level is the integral 

of the difference of the in- and outflow. The time it takes for the inflow wave to arrive to 

downstream is the time delay: 

( ) ( )in out
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where A is the backwater surface of the river reach, h is the water level and qin and qout are the in- 

and outflow rates and τ is the time delay. As Eq. 1 discretized is affine, it can be used as equality 

constraint (see Eq. 4). The weirs are modelled with the common weir equation: 

 
3/22
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3

d wq C gB h h     (2) 

where Cd is the weir discharge coefficient (approximated as 0.61), g is the acceleration of gravity, B 

is the width of the weir, hw is the crest height, and h is the upstream water level. As this equation is 

non-linear, it cannot be used as equality constraint. 

In the optimization problem with controllable weirs, the goal is to find the appropriate crest height 

so that the constraints (to keep the water level within bounds) are satisfied. The following approach 

is adopted: in the optimization only the discharge is used and the crest height is calculated as post-

processing. However, it should be ensured that all the computed discharges are feasible for the weir: 

the discharge cannot be larger than the discharge corresponding to the minimum crest level. Thus at 

each step, the discharge to be calculated is limited by the minimum and maximum discharges that 

the current water levels and the minimum and maximum crest heights allow. An example for such 

“working area” of the weir is shown in Figure 1. The possible discharge is bounded by horizontal 

lines of qmin and qmax: these values should be approximated based on the characteristics of the 

system. The left side of the area is bounded by the line corresponding to Eq. 2 with hw =hw,min, when 

the weir is in the lowest position (blue line in Figure 1). The area is bounded to the right by the 

maximum crest height (green line in Figure 1), the line shows the plot of Eq. 2 when hw=hw,max. 

However, these relations are non-convex, and therefore their linear approximation is used (black 

lines in Figure 1). Note that for both lines the approximation is conservative: the approximated area 

lies completely within the possible non-linear area. This means that any resulting flow-head pair 

from within the working area has a corresponding crest height that is physically realizable and 

respects the non-linear weir equation (Eq. 2). 

 

 
 

Figure 1 Working area of the weir: with blue 

and green line the non-linear flow head relations 

and with black line the actual constraints. The 

Figure 2 Working area of the weir 



 
 

 
HIC 2018 – Palermo 1-6 July 2018  3 

red crosses are the actual head-flow relations 

during the case study (for weir 1) 

2.2 Convex optimization approach 

 

The decision support system is using convex optimization which guarantees that the global 

optimum is reached. This property is crucial for a decision support system. If the problem was not 

convex, a local optimum can be reached instead, and a small change in the initial conditions might 

direct the solution into an entirely different local optimum. This fact would reduce the credibility of 

the decision support system by the user. Therefore, we aim at describing the water system as convex 

optimization problem in the form [7]: 

 

 

 
0minimize

subject to 0 1,...,

1,..., p

i

T

i i

f x

f x i m

a x b i

 

 
,  (3) 

where f0,…,fm are convex functions. The objective and the inequality constraints are convex 

functions, but the equality constraints should be affine. The objective can be minimizing energy 

used by pumps, or minimizing water level error. Constraints can be for example lower and upper 

bounds within which the water levels should be kept. In case of a water system containing branches 

and weirs the optimisation problem looks like the following: 
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for ever k and for i=1,..,12, where qi-1 is the upstream and qi is the downstream flow of the i
th

 

branch, hi is the water level of the i
th

 branch, A is the backwater area, τk is the integer time delay, 

hmax and hmin are the bounds on water level and amax, amin, bmax, bmin are the coefficients of the linear 

weir equation corresponding to the minimum and maximum allowable crest level (the equations of 

the black lines in Figure 1). This example is a feasibility problem: there is no objective function and 

a solution is valid if the constraints are satisfied, in this case, the water levels are kept within the 

bounds. Note that each equation contains i and k, thus altogether the optimisation problem of Eq. 4 

(in case of considering 16 time steps – or later 16 steps long prediction horizon) has 1152 

constraints. 

3 Case study 

The Linge River is part of the drainage system in the South of the Netherlands. The Upper Linge 

has 12 branches divided by weirs and the Lower Linge is just one long branch. The Linge is used to 
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collect the water from the polders and lead it to the North Sea through the river Merwede. The 

water leaves the Linge by free flow or by pumping depending on the water level in the Linge and 

the Merwede river. The goal of the Slim Malen project is to reduce the cost of pumping. This can be 

achieved by storing water in the system until the conditions are favourable for free flow.  

In this work an optimal strategy for the setting of the weirs is presented in order to use the storage 

capacity of the Upper Linge. In this work we start with the modelling go the weirs and the pumps 

are modelled in later stage of the project. This is carried out by mathematical optimisation, by using 

the RTC-Tools 2. The Upper Linge contains 12 branches separated by weirs. There is an inflow 

upstream and this example a fixed outflow (0.1m
3
/s) downstream. The characteristics of the weirs 

together with the geometry of the system, including the calculated time delay, are shown in Table 1. 

The backwater area and the time delay is obtained from [8]. The time step for the control is 30 

minutes. 

 

Table 1 Geometry of the branches and the weirs, data is obtained from [8]  

Branch 

name 

Backwater area 

(m
2
) 

Delay             

(Time step) 

Min. crest level 

(m) 

Max. crest level 

(m) 

Weir width 

(m) 

Branch 1 41682 0 8.2 9.2 6.0 

Branch 2 26416 0 8.0 9.0 6.0 

Branch 3 47601 0 7.86 8.84 6.0 

Branch 4 43848 0 7.41 8.4 6.0 

Branch 5 47712 0 6.8 7.97 6.0 

Branch 6 76457 1 6.24 6.81 6.0 

Branch 7 270461 1 5.51 6.01 5.94 

Branch 8 55691 0 4.8 5.72 5.94 

Branch 9 99111 1 3.72 4.58 6.0 

Branch 10 436163 3 2.42 3.35 9.5 

Branch 11 103840 1 1.47 2.26 9.5 

Branch 12 210146 1 - - - 

 

 

4 Results and discussion 

4.1 Results 

The following test illustrates how the optimisation procedure works. The system has an upstream 

inflow with a step at 2 hours (Figure 2) and a constant outflow downstream (0.5m
3
/s). The goal of 

the decision support system is to propose weir movements such that the water level stays within the 

prescribed bounds in all reaches. There was one optimisation step carried out (no receding horizon 

was used), thus the coming disturbance is known by the controller. The resulting water and weir 

levels and the corresponding discharges are shown for each branch in Figures 3-8.  

Figure 3 shows the results in the first two branches. It can be seen that the weir crest is lowered as 

soon as the inflow wave arrived so that the water level could stay within the bounds. Similar action 

is seen for branch 3 and 4 (Figure 4). The height of the wave decreases as it moves to the next 

branch. Branch 6 is the first one with delay, it can be seen that the weir crest height starts to 

decrease half an hour after the upstream perturbation (Figure 5). The attenuated wave is sent 

through the branches. The water levels in the downstream branches hardly change; the presence of 

the wave can be seen by the weir movements and the outflow (Figure 6). Branch 9 has 1.5 hours of 

delay (Figure 7), thus the discharge wave arrives there at 5
th

 hour of the simulation (3 hours after 

the upstream perturbation). Half an hour later the wave arrives to the last two branches (Figure 8). 
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The water levels again stay close to constant, at the lower and end of the allowable water level 

bounds. By the end of the simulation the water volume is distributed along the branches, Branch 4 

has slightly more water level increase than the other branches. 

Note that here the only goal of the controller was to keep the water levels in the prescribed bounds, 

and no preference was given to certain water level in any of the branches. 

 

 

Figure 3 Water levels (grey) with weir height (black) and discharge in branches 1 and 2 

 

Figure 4 Water levels (grey) with weir height (black) and discharge in branches 3 and 4 
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Figure 5 Water levels (grey) with weir height (black) and discharge in branches 5 and 6 

 
 

Figure 6 Water levels (grey) with weir height (black) and discharge in branches 7 and 8 
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Figure 7 Water levels (grey) with weir height (black) and discharge in branches 9 and 10 

 

 
Figure 8 Water levels (grey) with weir height (black) and discharge in branches 11 and 12 

 

5 Conclusions 

A decision support system, RTC-Tools 2, based on convex optimization is presented. The convex 

modelling of open water channels and weirs is described. The system is illustrated through a case 

study with a river containing 12 reaches divided by weirs. It was shown that by applying the weir 

movements calculated by the decision support system, the water levels can be kept within the 



 
 

 
HIC 2018 – Palermo 1-6 July 2018  8 

prescribed bounds. After this test the optimization can be applied to a realistic numerical model and 

model predictive control can be implemented. 
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