A conceptual modelling tool for water quality and sediment transport

Jiri Nossent, Befekadu Taddesse Woldegiorgis, Ann van Griensven and Fernando Pereira

Is 123456789 divisible by 3?

Is 123456789 divisible by 3?

45

Is 45 divisible by 3?

Yes!

123456789 is divisible by 3!

Detailed, complex WQ simulators

Detailed WQ process representation

Complex hydraulic simulations

E.g. RWQM-VUB

Time consuming!

Not suitable for long-term simulations

Not suitable for SA, UA and auto-calibration

Simple and efficient conceptual models

Development of conceptual models for an integrated catchment management

Conceptual model for WQ

Simple representation of the reality

Qual2E based equations

No hydrodynamics

Linked with conceptual model for Q

Reaches assumed to behave as CSTR

Computationally efficient

Suitable for long-term simulations

Suitable for multiple model runs

The CITOWA conceptual WQ model can be an efficient and adequate alternative for detailed wQ models

A quasi-analytical solution scheme leads to stable and consistent numerical results

A probabilistic size-selective sediment transport simulator provides an adequate representation without detailed hydrodynamic calculations

The Conceptual Integrated Tool for WQ Assessment can be applied for simulations in complex networks and for reverse flows

leads to stable and consistent numerical results

A probabilistic size-selective sediment transport simulator provides an adequate representation without detailed hydrodynamic calculations

The Conceptual Integrated Tool for WQ Assessment can be applied for simulations in complex networks and for reverse flows

leads to stable and consistent numerical results

Traditional calculation schemes

leads to stable and consistent numerical results

Stability & consistency

Time step, residence time and decay rate

Quasi-analytical solution scheme

Dynamic integration of the reaction (into mass balance equation)

$$C_{t+\Delta t} = C_t \exp\left(\frac{-\Delta t}{K_{res,pol}}\right) + \left(C_{in,t+\Delta t} * \frac{K_{res,pol}}{t_{res}} + m * K_{res,pol}\right) * \left[1 - \exp\left(\frac{-\Delta t}{K_{res,pol}}\right)\right]$$

Test stability and robustness

Compare with other solution schemes

leads to stable and consistent numerical results

E.g. rapid flow/fine spatial discretization

leads to stable and consistent numerical results

E.g. rapid flow/fine spatial discretization

leads to stable and consistent numerical results

leads to stable and consistent numerical results

A probabilistic size-selective sediment transport simulator provides an adequate representation without detailed hydrodynamic calculations

The Conceptual Integrated Tool for WQ Assessment can be applied for simulations in complex networks and for reverse flows

A probabilistic size-selective sediment transport simulator provides an adequate representation without detailed hydrodynamic calculations

Representation of sediment movement

Important for sediment-bound pollutants

Difficult without hydrodynamics

PDF for Particle Size Distribution (PSD)

Mobility depends on bed shear stress and PSD

Incipient motion of (nonuniform) sediment

Based on Hjulström-Sundborg-Miedema diagram

Dimensionless expression

A probabilistic size-selective sediment transport simulator provides an adequate representation without detailed hydrodynamic calculations

Traditional uniform distribution

A probabilistic size-selective sediment transport simulator provides an adequate representation without detailed hydrodynamic calculations

PSD based approach

leads to stable and consistent numerical results

A probabilistic size-selective sediment transport simulator provides an adequate representation without detailed hydrodynamic calculations

The Conceptual Integrated Tool for WQ Assessment can be applied for simulations in complex networks and for reverse flows

can be applied for simulations in complex networks and for reverse flows

CIToWA

Integrates

quasi-analytical scheme sediment simulator Qual2E equations (DO, BOD, N & P)

CSTR assumption for the reaches

Requires flow, depth, velocity and boundaries

How to handle complex networks & reverse flows?

Tidal zones, flood plains, sewer systems,...

can be applied for simulations in complex networks and for reverse flows

A quasi-analytical solution scheme leads to stable and consistent numerical results

A probabilistic size-selective sediment transport simulator provides an adequate representation without detailed hydrodynamic calculations

The Conceptual Integrated Tool for WQ Assessment can be applied for simulations in complex networks and for reverse flows

can be an efficient and adequate alternative for detailed WQ models

Case study of the River Zenne

can be an efficient and adequate alternative for detailed WQ models

Case study of the River Zenne

can be an efficient and adequate alternative for detailed WQ models

Case study of the River Zenne

can be an efficient and adequate alternative for detailed WQ models

CIToWA outperforms detailed model

Faster (>10 000 faster)

Better performance

Due to more efficient calibration

Allows for sensitivity and uncertainty analysis

Applicable for tidal rivers

Is 123456789 divisible by 3?

123456789 is divisible by 3!

A conceptual modelling tool for water quality and sediment transport

Jiri Nossent, Befekadu Taddesse Woldegiorgis, Ann van Griensven and Fernando Pereira

