Università degli Studi di Genova

Surface Lagrangian Coherent Structures in the Gulf of Trieste

Francesco Enrile

DICCA - Univesità degli Studi di Genova

October 17, 2018

Research Topics

Mixing in the Gulf of Trieste

- Introduction to the dataset: velocity fields and drifter trajectories
- Statistics from Lagrangian numerical observations
- LCS as finite-time Lyapunov Exponents
- LCS as tensorlines of the Cauchy-Green Tensor

Francesco Enrile - Surface Lagrangian Coherent Structures in the Gulf of Trieste

Gulf of Trieste dataset

The dataset consists in surface velocity fields recorded by Coastal Radars (CODAR) in the Tracking Oil Spills & Coastal Awareness Network (TOSCA) Project.

Gulf of Trieste dataset

CODE drifters were deployed. 26 trajectories were adopted in order to validate the results.

Statistics from Numerical Observations

Absolute Dispersion

Absolute dispersion tensor is calculated above particle trajectories:

$$A_{ij}^2(t) = rac{1}{M} \sum_{m=1}^M \left\{ \left[x_i^m(t) - x_i^m(t_0)
ight] \left[x_j^m(t) - x_j^m(t_0)
ight]
ight\}$$

The total absolute dispersion:

$$a^{2}(t) = \operatorname{Tr}\left[\boldsymbol{A}^{2}(t)\right]$$
⁽²⁾

7 of 20

The total absolute diffusivity is:

$$\mathcal{K}^{(1)}(t) = \frac{1}{2} \frac{d}{dt} \left\{ \mathsf{Tr} \left[\mathbf{A}^2(t) \right] \right\}$$
(3)

Typical dispersion regimes are:

$$A_{ii}^{2}(t) = \rho_{L_{ii}}(0)t^{2} \qquad t < T_{L_{i}}$$
(4)

$$A_{ii}^{2}(t) = 2\rho_{L_{ii}}(0)T_{L_{i}}t + \text{const.} \qquad t > T_{L_{i}}$$
(5)

Francesco Enrile - Surface Lagrangian Coherent Structures in the Gulf of Trieste

Velocity autocorrelation

Lagrangian Integral Scale

Francesco Enrile - Surface Lagrangian Coherent Structures in the Gulf of Trieste

Absolute Dispersion

Panel a): absolute dispersion varying the initial conditions Panel b): absolute dispersion at the same time-instance Panel c): influence of the initial conditions $\sigma(t) = \operatorname{std}[a^2(t)]/\mu(t)$

Francesco Enrile - Surface Lagrangian Coherent Structures in the Gulf of Trieste

Lagrangian Coherent Structures /

Lagrangian Coherent Structures

Lagrangian Coherent Structures (LCS) capture transient coherent transport dynamics in unsteady and aperiodic fluid flows that are known over finite time.

Francesco Enrile - Surface Lagrangian Coherent Structures in the Gulf of Trieste

Lagrangian Coherent Structures

Release a grid of tracers and see where they go: flow map

$$oldsymbol{x}\left(t
ight)=oldsymbol{x_{0}}+\int_{t_{0}}^{t_{0}+ au}oldsymbol{u}(oldsymbol{x},t)dt$$

Differentiate the flow map: compute Cauchy-Green Tensor

$$\boldsymbol{C}_{t_0}^{t_0+T} = \left[\frac{dF_{t_0}^{t_0+T}}{d\boldsymbol{x_0}}\right]^* \left[\frac{dF_{t_0}^{t_0+T}}{d\boldsymbol{x_0}}\right]$$
(9)

• Compute the maximum finite-time Lyapunov exponent (FTLE) field

$$\sigma_{t_0}^{t_0+T} = \frac{1}{T} \log \sqrt{\lambda_{max}} \tag{10}$$

13 of 20

Francesco Enrile - Surface Lagrangian Coherent Structures in the Gulf of Trieste

Drifter simulated as single particles

Francesco Enrile - Surface Lagrangian Coherent Structures in the Gulf of Trieste

FTLE in The Gulf of Trieste

Green point: real drifter. Red point: simulated drifter. Blue point: simulated drifter with reseeding.

Francesco Enrile - Surface Lagrangian Coherent Structures in the Gulf of Trieste

Tensorlines of the Cauchy-Green Tensor

Tensorlines: $x' = \xi_1$, $x' = \xi_2$

Most repelling and attracting material lines

16 of 20

Francesco Enrile - Surface Lagrangian Coherent Structures in the Gulf of Trieste

Search Approach

Joint application of LCS and single-particle tracking.

Francesco Enrile - Surface Lagrangian Coherent Structures in the Gulf of Trieste

Search Approach

Example of two reseeding time windows:

Francesco Enrile - Surface Lagrangian Coherent Structures in the Gulf of Trieste

Conclusions

- Mixing in a semi-enclosed basin:
 - Lagrangian statistics in a tidal dominated basin are influenced by initial conditions
 - Single-particle tracking simulations are affected by some uncertainties

- Lagrangian Coherent Structures detected directions of transport
- Joint approach: LCS/single-particle tracking

Thank you for your attention!

