JONSMOD 2018

Local time parameters use in tropical bays: Understanding of coastal hydrodynamic responses to natural and anthropic physical forcings

Marion Drouzy

Hydrodynamic Modeling

engineer & PhD student

- •Introduction
- Material & Methods
- Results
- Conclusions

Introduction

Introduction

Caledonian context

• A widely known lagoon

 Second in size after the Great barrier (24 000 km²)

One of the greatest marine biodiversity

- Unesco site (2008)

Introduction

Caledonian context

• A contentious mining industry

4th Nickel exporter

Essential to local economy

- Environnemental issues

Introduction

Objectives

- Assessment of the environmental impacts of human activity through 3D modeling
- Definition of potential risk zones by use of Hydrodynamic times parameters
- Determination of Time Parameters variability depending on physical and meteorological forcings

Introduction

Material & Methods

Study site

- Two bays of similar shape and size (2,5 km²)
- Kwe bay under mining influence
- Port Boisé free from anthropic influence
- Divided in 8 zones of interest

3D Hydrodynamic modeling

- Model « MARS3D » (Ifremer, Lazure et Dumas 1998)
- Finite differences method
- Governing equations:
 - Conservation of Mass (Continuity equation)
 - Conservation of momentum
 - Energy conservation for incompressible fluids

- Mesh size constant on x & y
- 30 variable sigma layers
- 2 « AGRIF » nested grids
- K-ε turbulence closure

OBC & initial conditions:

- Boundary ocean conditions: Hycom
- Local atmospheric conditions: WRF
- Tidal signal: TPXO8

Hydrodynamic time parameters

Lagrangian « Residence Time » vs Eulerian « Local e-Flushing Time »

Advantages of local e-Flushing times (eFTs):

Help identify potential stagnation zones by highlightening spatial contrast in small scale areas

Wide simulation panel

102 simulations launched:

- 2 river flow conditions
- 3 tidal ranges

- 8 wind directions
- 3 wind intensities (1 null)

River condition	Wind intensity	Tidal range	Wind directions		
		Low	N		
Low River Flow	8 m/s	Medium		Ā	
		High	NW	NE	
	5 m/s	Low			
		Medium		E	
		High	\\\\		
Medium River Flow	8 m/s	Low	W		
		Medium			
		High		SA -P	
	5 m/s	Low	sw SE		
		Medium			
		High		S	

Precision of Local Flushing time formulation

→ Testing the accuracy of the exponential decreasing equation linking tracer concentration and local flushing time

Correlation Coefficient > 0,94 within the bays

- Introduction
- Material & Methods
- Results

Results: Local eFTs

Averaged Flushing time distribution, by wind direction:

Results: Local eFTs

Mean e-Flushing Time	Kwe Bay	Port Boisé	Difference	Multiplication Factor
No Wind	1,78	3,19	1,41	1,79
North Wind	1,34	2,82	1,48	2,10
Trade wind	1,29	3,36	2,07	2,60
South Wind	1,39	4,09	2,69	2,93
West Wind	1,23	2,61	1,38	2,13
All 102 simulations	1,33	3,15	1,82	2,37

Results: Radars

Local e-flushing times by zone, with medium rivers' flow radars

- 5 m/s wind
- 8 m/s wind

Results: Tide influence

Variability of Flushing Times with the tidal range

- Tidal currents intensity vary correspondingly to the tidal range
- → The more important tidal currents are, the more heterogeneous the eFTs values between the bays and within the bays
- → In Port Boisé, highest currents trigger longer eFTs in Zones 5 and 6

Results: Variation rates

Variations of Flushing times (in %)

- from the averaged eFTs for a same wind direction
- Due to changes in wind intensity and tidal range

Results: Variation rates

Variations of Flushing times (in %)

- from the averaged eFTs for a same wind direction
- Due to changes in wind intensity, river flows and tidal range

- Introduction
- Material & Methods
- Results

Conclusions

Results: Variation rates

- Two similar bays can have completely different deposition and stagnation risk levels
 - → Local time parameters help identify these disparities and allow their classification
- EFTs values does not only depend on turbulence level
 - → Passing zones, concomitant or opposite effects, accumulation phenomenon highlighted by this parameter
- EFTs values significantly change according to physical forcings such as Wind intensity and direction, tidal range, and river inputs
 - → meteorological forcings variability must be taken into account for eFTs calculation rather than averaged weather conditions
- Differences in eFTs values also exist upon the vertical
 - → For complete evaluation of risk, there will be a need of distinguishing eFTs depending on the depth

