

Coastal and Regional Ocean COmmunity model

JONSMOD, Firenze 2018

Advances in CROCO fine-scale non-hydrostatic dynamics

P. Marchesiello, F. Auclair, R. Benshila, L. Bordois, X. Capet, L. Debreu, F. Dumas, F. Lemarié, S. Jullien, J. Penney, L. Roblou

The Gibraltar bottleneck

From submesoscale to micro-turbulence: the non-hydrostatic approach

Non-hydrostatic approach

Pressure correction method

Non-hydrostatic approach

Pressure correction method

 $p = p_a + p_H + \mathbf{q},$

Homogeneous linearized equations

$$\partial_x u + \partial_z w = 0$$

$$\partial_t u = -g \partial_x \eta - \partial_x q / \rho_0$$

$$\partial_t w = -\partial_z q / \rho_0$$

 $\partial_t \eta = w(0) = -H \partial_x \overline{u}$

Solve
$$\Delta q = \frac{\rho_0}{\Delta t} \left(\partial_x \widetilde{u}^{n+1} + \partial_z \widetilde{w}^{n+1} \right)$$

Correct velocity field to remove divergent part
 $u^{n+1} = \widetilde{u}^{n+1} - \Delta t \partial_x q, \quad w^{n+1} = \widetilde{w}^{n+1} - \Delta t \partial_z q$

- + Problem with 2D/3D consistency
- + Complexity of Poisson solver in sigma coordinates
- + Scalability issues

Non-hydrostatic approach

- Pressure correction method
- Compressible approach (Auclair et al., 2017)

Non-hydrostatic approach

- Pressure correction method
- Compressible approach (Auclair et al., 2017)

 $p = p_a + p_H + c_s^2 \delta \rho$

Homogeneous linearized equations

$$\partial_t u = -g \partial_x \eta - c_s^2 \partial_x \delta \rho$$

$$\partial_t w = -c_s^2 \partial_z \delta \rho$$

$$\partial_t \delta \rho = -\rho_0 (\partial_x u + \partial_z w)$$

$$\partial_t \eta = w|_{z=0}$$

$$w|_{z=-H} = 0$$

$$\delta \rho|_{z=0} = 0$$

Acoustic mode integrated in a split-explicit free surface approach at the same fast step as the barotropic mode

Semi-implicit forward-backward

$$u^{m+1} = u^{m} - \delta t \left(g \partial_{x} \eta^{m} + c_{s}^{2} \partial_{x} \delta \rho^{m} \right)$$

$$w^{m+1} = w^{m} - \delta t c_{s}^{2} \partial_{z} \left(\delta \rho^{m+\theta} \right)$$

$$\delta \rho^{m+1} = \delta \rho^{m} - \rho_{0} \delta t \left(\partial_{x} u^{m+1} + \partial_{z} w^{m+\theta} \right)$$

$$\eta^{m+1} = \eta^{m} + \delta t (w|_{z=0})^{m+\theta}$$

Non-hydrostatic approach

- Pressure correction method
- Compressible approach (Auclair et al., 2017)

ADVANTAGES

- Solves short surface waves
- Solves mixed acoustic-gravity waves (tsunami precursor)
- High-order pressure gradient \rightarrow accuracy for internal waves
- Same fast step as hydrostatic code because of :
 - ✓ possible reduction of c_{s} (> \sqrt{gh})
 - \checkmark semi-implicit treatment
- Scalability: scales well with resolution

COST: NH ~ $3 \times H$

Coastal and Regional Ocean COmmunity model

Applications

Submesoscale dynamics Internal bores Breaking internal tides Turbulence mixing Surface wave dynamics River plumes

Nonlinear internal waves: Gibraltar

Bordois et al., 2018

Nonlinear internal waves: Gibraltar

Bordois et al., 2018

Nonlinear internal waves: Gibraltar

SST - CROCO - MEDIONE - 2015/05/01

L. Roblou, PhD M. Hilt (LEGOS)

CROCO Turbulent mixing

Penney et al., 2018

Coastal and Regional Ocean COmmunity model

Numerical methods

CROCO 2- High-order benefit

CROCO 2- High-order benefit: Gibraltar

Gibraltar IGW

Hyperviscosity in linear advection schemes does not preserve monotonicity \rightarrow oscillations near shocks (Boyd, 1994)

Viscous shock ~ Gibb's shock

3- Hyperviscous shocks: Gibraltar

3- Hyperviscous shocks: Gibraltar

CROCO 3- Hyperviscous shocks: KHI

Dispersive (ρ Vert Adv)

Non monotonic (ρ Vert Adv)

CROCO CONCLUSIONS Mod

CROCO is designed for bridging a few gaps:

From geostrophic eddies to micro-turbulence
From the ocean to nearshore zone

 There is still room for improving numerical methods

heading for robust, high-order, monotonic advection schemes