

Improvements in turbulence model realisability for enhanced stability of ocean forecast and its importance for downstream components

BSH: Tasks and services

National, supranational, international obligations to report

General overview: Operational model applications

Motivation – A problem with surface currents during a storm event in December 2013

BUNDESAMT FÜR SEESCHIFFFAHRT UND

ε-tests

- originally a pure technical test
- results of short model runs (e.g. 24 simulation hours) are compared
- only difference between these runs being the compiling of the source code.
 - It is done with different compilers
 - and/or with a different set of compiler flags
- results are compared point by point, maximum differences are the ε's
 - Small ε's indicate a both technically and physically stable code, providing reliable, portable and reproducible results.
 - Large ε's, indicate a stability problem in the code, which can have both technical and physical reasons.

ε-test on 5 December 2013 at 12 UTC of surface eastward velocity (optimazation level O2 vs O3)

unrealistic current / diffusitivity profile (at 55° 35' N / 6° 33' E)

Stability and Realisability – Introduction into Turbulence model

The vertical diffusivities are defined as follows:

$$K_i = 2 \frac{k^2}{\epsilon} S_i$$

with structure/stability or closure functions

$$S_i = S_i(a_m, a_h, a_s)$$
 with double diffusion

$$S_i = S_i(a_m, a_n)$$
 without double diffusion

which depends on dimensionless shear, heat, salinity and buoyancy number: $a_m=(\tau\Sigma)^2$, $a_h=\tau^2R_h$, $a_s=\tau^2R_s$, $a_n=(\tau N)^2$ with the dynamic dissipation time scale $\tau=2\frac{k}{\epsilon}$,

the mean shear Σ , the buoyancy N^2 , $R_h = a_T^{\partial T}/\partial_z$ and

$$R_S = a_S \frac{\partial S}{\partial z}$$
 wherby $\alpha_{T,S} = -\frac{1}{\rho} \frac{\partial \rho}{\partial (T,S)}$ denotes the thermal/

haline concentration coefficient and $N^2 = R_h - R_s$

Stability and Realisability – The criteria (stated in Umlauf and Burchardt (2005)

- (1) $K_i \ge c_i \ge 0$ with c_i being a constant
- (2) To guarantee increasing effective vertical shear anisotropy with increasing dimensionless vertical shear number we have $\frac{1}{2}\partial_{a_m}(K_m(a_m,a_n)a_m^{1/2}) \geq 0$
- (3) $a_n \ge a_n^*$ whereby a_n^* describes the value of a_n in shear-free convective conditions for the turbulence equilibrium, in which buoyancy production equals dissipation rate
- (4) To prevent oscillation between two mathematically solutions, monotonicity of ${}^{K_n(a_{m,}a_n)}/{a_n}$ with respect to a_n must be insured for negative $a_n: -\partial_{a_N} \left({}^{K_n(a_{m,}a_n)}/{a_n} \right) > 0$
- (5) The velocity variances must be positive, with the only critical condition being $< w', w' > \le 2k$ whereby < w', w' > is the vertical velocity variance.

Stability and Realisability – The adapted criteria for double diffusion

- (1) $K_i \ge c_i \ge 0$ with c_i being a constant was already implemented HYDROGRAPHIE
- (2) To guarantee increasing effective vertical shear anisotropy with increasing dimensionless vertical shear number we have $\frac{1}{2}\partial_{a_m}(K_m(a_m,a_n)a_m^{1/2}) \geq 0 \text{ extended to } \frac{1}{2}\partial_{a_m}(K_m(a_m,a_h,a_s)a_m^{1/2}) \geq 0$
- (3) $a_n \ge a_n^*$ whereby a_n^* describes the value of a_n in shear-free convective conditions for the turbulence equilibrium, in which buoyancy production equals dissipation rate
- (4) To prevent oscillation between two mathematically solutions, monotonicity of ${}^{K_n(a_{m,}a_{n)}}/{a_n}$ with respect to a_n must be insured for negative $a_n: -\partial_{a_N} {}^{K_n(a_{m,}a_{n)}}/{a_n} > 0$ NOT NEEDED (implied by (3))
- (5) The velocity variances must be positive, with the only critical condition being $< w', w' > \le 2k$ whereby < w', w' > is the vertical velocity variance. **NO PROBLEM to implement**

Stability and Realisability – The adapted criteria for double diffusion

(3) $a_n \ge a_n^*$ whereby a_n^* describes the value of a_n in shear-free convective conditions for the turbulence equilibrium, in which buoyancy production equals dissipation rate

To generalize this, the shear-free convection case once without vertical temperature differences (heat number = 0) and once without vertical salinity differences (salinity number = 0) is considered. We get values a_h^* and a_s^* .

Due to symmetry, we get $a_h^* = a_s^* = a_{h,s}^*$

So that we finally have $a_h \ge a_{h,s}^*$ and $a_s \ge a_{h,s}^*$

New surface currents during storm event in December 2013

New (now realistic) current / diffusitivity profile (at 55° 35' N / 6° 33' E)

ε-test (with additional stability/realisibility checks) on 5 December 2013 at 12 UTC of surface eastward velocity (optimazation level O2 vs O3)

Drift of an object from 5 December 10 UTC to 8 December 10 UTC (3 days)

Particle cloud of a drift simulation of a fictitious oil accident with 15000 t of oil on 8 December 10 UTC (after 3 days)

conclusions

- Explicit realisability is a must in every turbulence model!
 - For those not using double diffusion criteria were well known
 - We presented an extension of these criteria to turbulence models using double diffusion
- Even very intensive physical validation (especially statistical validation) is not able to detect all temporally and spatially limited instabilities -> a look at specific individual events should always be part of the validation
- Technical validation is a useful tool and a good supplement to physical validation, which can also detect physical instabilities

Questions?

