Modelled Diurnal Oscillations around Saint Pierre and Miquelon Islands

Marion Bezaud Supervised by: Pascal Lazure Bernard Le Cann

Plan

- Physical setting
- > Measurements in the water column
- Modelling experiments
- > Preliminary results
- Perspectives

Area of study

- Seasonal stratification
- Semi-diurnal tide on the sea levels
- Diurnal anomaly of the current around Grand Banks and near Saint Pierre and Miquelon (SPM) (Xu and Loder 2004)

First temperature measurements (2011)

- ▶ Two thermistor moorings P30 (30m) and P60 (60m) in Miquelon Bay:
 - Surface temperature (blue & green curves) -> seasonal cycle
 - Near bottom temperature (red (30m) black (60m) curves): Strong Diurnal oscillations during stratified period
 - Amplitude reaching 11.5°C.

Lazure Pascal, Le Cann Bernard, Bezaud Marion (2018). Large diurnal bottom temperature oscillations around the Saint Pierre and Miquelon archipelago. *Scientific Reports*, 8(1), 13882.

Bottom temperature measurements on the shelf around the archipelago (2015)

- 13 moorings at 30 and 60 m depth (15/08 04/09/2015):
 - Bottom temperature oscillations.
 - Large range of temperature.
 - Dominant Periodicity: diurnal (01 tidal component ~26h)
 - ω < f (=2.pi/17h) subinertial oscillations

Recent publication (based on observations):

- nearly resonant for islandtrapped waves
- -Clockwise propagation
- -Evidence of an azimuthal mode 2 pattern (2 wavelengths)

(Lazure et al. 2018)

Recent measurements (2017) Time evolution of the vertical structure of temperature

- Summer stratification
- Vertical range reaching 20 m.
- diurnal oscillations of the isotherms

Model configuration

- Modelling strategy (MARS model)
 - Run without meteorological forcing
 - Realistic tide ->good agreement with data (sea levels).
 - For CTW investigation : simulation with O1 tidal component only

- 2D regional model (resolution ~2km)
 - Open boundary condition FES 2004 (Lyard 2006).
- Barotropic tide validated (with tide gauges and ADCP).
- 3D local model (resolution ~500 m 30 sigma levels)
 - Schematic stratification

Open boundary conditions provided by regional

Bottom temperature spectra Observations/ modelling (realistic tide)

Preliminary results (O1 only): isotherm 6°C depth anomaly

- of O1 (26h).
- Mean depth of the 6°C isotherm = 35 m

Preliminary results (O1 only): isotherm 6°C depth anomaly

Propagation clockwise

t = 13h

56°W

Azimuthal mode 2

47°N

Preliminary results (O1 only): Isotherms oscillations range

- Immersion range (max depth min depth)
- Intensification near the bottom.
- Amplification north west of Miquelon

Preliminary results (O1 only): Bottom and surface current

- Surface current :
 - Amplification on western side SPM
 - North intensification
- Bottom current:
 - Amplification north west SPM

Preliminary results (O1 only): cross shore dynamics

- Near bottom amplification
- Up and down sloping of bottom water

Dynamics on a transect

- Up and down sloping of bottom water
- Strong vertical shear of cross shore current

Conclusion and perspectives

Conclusion

- Diurnal oscillations are propagating around the islands. -> hypothesis of a CTW (Lazure et al 2018)
- Modelling results consistent with observations.
- Clockwise propagation 6°C isotherm depth anomaly
- A bottom intensification -> isotherm oscillations and cross shore current.

Perspectives

- Improve the stratification for boundary condition & bottom layers distribution.
- Find the location and mechanism of the generation of the diurnal oscillations.
- Investigate the impact of the seasonal stratification on these oscillations.
 - Meteorological impact on the system.

Thank you for your attention !!

▶ Contact : marion.bezaud@ifremer.fr

