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Seasonal Variability on the Dynamics 

Zhan et al. (2016) 

Yao et al. (2013 a, b) 

Smeed et al. (2004) 

•  A stationary ensemble-
covariance may not be 
appropriate for the 
Red Sea 

! to sample stationary-
variant covariances 
adapted for each “season” 
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Ensemble data assimilation 

observational error covariance 

forecast error covariance 
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EnOI 

In the EnKF configuration, all the members are advanced by the model. 

After Toye et al. 2017 



•  With the EnOI, only the analysis is forecasted 

•  Reduce the cost of the EnKF forecast step by a factor N 

•  The forecast ensemble needed in the analysis step is built by 
adding preselected static anomalies to the forecast 
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EnOI 

After Toye et al. 2017 
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January February March December November October … 

En1 En2 En12 En11 En10 … En3 

LONG TERM SIMULATION 

Monthly dictionary 

Conventional EnOI 

Seasonal EnOI 

EnKF, EnOI, SEnOI 
 
Initial ensemble is 
selected from 
January dictionary 

… … 

… … 

Seasonal EnOI 
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Adaptive EnOI 

Dynamic update of the anomalies for each assimilation cycle, 
while keeping only 1 forecast member at the forecast step 
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Adaptive EnOI – selection algorithm 

1. Inputs: 
•  A dictionary D = [d1, d2, …, dL] of model outputs 
•  The desired ensemble size N (with L ≫ N and at least L ≥ N) 
•  The forecast xf  
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•  Through correlations: 

  Keep the most correlated members with the forecast  
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•  Through l1 and l2 norms: 

 Keep the dictionary members that are closest to the forecast 

•  Through orthogonal matching pursuit (OMP): 

          Perform a decomposition of the forecast based on the OMP       
 algorithm and keep the members that represent the forecast 

Adaptive EnOI – selection methods 
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Months of OMP selected members 
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Months of l2-norm selected members 



•  The different OI schemes results are comparable 

•  The adaptive schemes require more computation 

•  The Seasonal EnOI seems to be the best choice 
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Conclusion 
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