

King Abdullah University of Science and Technology

An adaptive Ensemble Optimal Interpolation for cost-effective assimilation in the Red Sea Habib Toye¹, Peng Zhan¹, Furrukh Sana^{1,2}, and Ibrahim Hoteit¹

¹King Abdullah University of Science and Technology, Thuwal, Saudi Arabia, ²Harvard Medical School, Massachusetts General Hospital, USA

Seasonal Variability on the Dynamics

data

model

data

model

data

analysis

model

14

estimate

16

estimate

data 🌒

estimate analysis • $x^{a} = x^{b} + K(y^{o} - h(x^{b}))$ data •

22

30

33

Ensemble data assimilation

Ensemble data assimilation

52

 $X' = X - \bar{x}^f$ $P^{f} = \frac{1}{N-1} \left(X' X'^{T} \right)$

forecast error covariance

$$\bigvee_{P^f} = \frac{1}{N-1} \left(X' X'^T \right)$$

 $K = P^{f}H^{T}(HP^{f}H^{T} + R)$ observational error covariance

DART-MITgcm

Time

2

3

EnOl

In the EnKF configuration, all the members are advanced by the model.

EnOl

- With the EnOI, only the analysis is forecasted
- Reduce the cost of the EnKF forecast step by a factor N
- The forecast ensemble needed in the analysis step is built by adding preselected static anomalies to the forecast

LONG TERM SIMULATION

Monthly dictionary

LONG TERM SIMULATION

Adaptive EnOI

Dynamic update of the anomalies for each assimilation cycle, while keeping only 1 forecast member at the forecast step

1. Inputs:

- A dictionary $\mathbf{D} = [\mathbf{d}_1, \mathbf{d}_2, ..., \mathbf{d}_L]$ of model outputs
- The desired ensemble size N (with $L \gg N$ and at least $L \ge N$)
- The forecast **x**^f

1. Inputs:

- A dictionary $\mathbf{D} = [\mathbf{d}_1, \mathbf{d}_2, ..., \mathbf{d}_L]$ of model outputs
- The desired ensemble size N (with $L \gg N$ and at least $L \ge N$)
- The forecast **x**^f

2. Iterate through the dictionary to apply the related selection algorithm.

1. Inputs:

- A dictionary $\mathbf{D} = [\mathbf{d}_1, \mathbf{d}_2, ..., \mathbf{d}_L]$ of model outputs
- The desired ensemble size N (with $L \gg N$ and at least $L \ge N$)
- The forecast **x**^f

2. Iterate through the dictionary to apply the related selection algorithm.

3. List and/or sort the obtained elements based on the selection ordering criteria:

 $\bm{d}_{j1,}\; \bm{d}_{j2},\; \dots,\; \bm{d}_{jN},\; \dots,\; \bm{d}_{jL}$

1. Inputs:

- A dictionary $\mathbf{D} = [\mathbf{d}_1, \mathbf{d}_2, ..., \mathbf{d}_L]$ of model outputs
- The desired ensemble size N (with $L \gg N$ and at least $L \ge N$)
- The forecast **x**^f

2. Iterate through the dictionary to apply the related selection algorithm.

3. List and/or sort the obtained elements based on the selection ordering criteria:

 $\mathbf{d}_{j1,} \; \mathbf{d}_{j2}, \; \dots, \; \mathbf{d}_{jN}, \; \dots, \; \mathbf{d}_{jL}$

4. Keep the *N* first members: $\mathbf{X} = [\mathbf{d}_{j1}, \mathbf{d}_{j2}, ..., \mathbf{d}_{jN}]$

1. Inputs:

- A dictionary $\mathbf{D} = [\mathbf{d}_1, \mathbf{d}_2, ..., \mathbf{d}_L]$ of model outputs
- The desired ensemble size N (with $L \gg N$ and at least $L \ge N$)
- The forecast **x**^f

2. Iterate through the dictionary to apply the related selection algorithm.

3. List and/or sort the obtained elements based on the selection ordering criteria: $d_{j1,} d_{j2}, ..., d_{jN}, ..., d_{jL}$

4. Keep the *N* first members: $\mathbf{X} = [\mathbf{d}_{j1}, \mathbf{d}_{j2}, ..., \mathbf{d}_{jN}]$

• Through correlations:

Keep the most correlated members with the forecast

• Through correlations:

Keep the most correlated members with the forecast

• Through I1 and I2 norms:

Keep the dictionary members that are closest to the forecast

• Through correlations:

Keep the most correlated members with the forecast

• Through I1 and I2 norms:

Keep the dictionary members that are closest to the forecast

• Through orthogonal matching pursuit (OMP):

Perform a decomposition of the forecast based on the OMP algorithm and keep the members that represent the forecast

Schemes comparison

Months of OMP selected members

April 2006

August 2006

Months of OMP selected members

Months of I2-norm selected members

Conclusion

- The different OI schemes results are comparable
- The adaptive schemes require more computation
- The Seasonal EnOI seems to be the best choice

Acknowledgment

This research work was supported by King Abdullah University of Science and Technology (KAUST), Saudi Arabia and the Saudi ARAMCO-KAUST Marine Environmental Research Center (SAMERCK). The research made use of the resources of the Super computing Laboratory and computer clusters at KAUST.

King Abdullah University of Science and Technology

Thank you!