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Ensemble data assimilation
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Ensemble data assimilation
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Ensemble data assimilation
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MITgcm

(forecast step)

- rX

DART filter
(analysis step)

After Toye et al. 2017

In the EnKF configuration, all the members are advanced by the model.
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Static ensemble MITgcm
X =[x, .x] (forecast step)
xf e x¢

DART filter
(analysis step)

After Toye et al. 2017
With the EnOl, only the analysis is forecasted
Reduce the cost of the EnKF forecast step by a factor N

The forecast ensemble needed in the analysis step is built by
adding preselected static anomalies to the forecast
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Adaptive EnOl

Anomalies generation
X= [x1,x2, ...,xN]

N

_ 1

X = NZ X
i=1

MITgcm
(forecast step)
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X'=X-%

v

X=X+ % |
|

DART filter
(analysis step)

Dynamic update of the anomalies for each assimilation cycle,
while keeping only 1 forecast member at the forecast step
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Adaptive EnOl — selection algorithm

1. Inputs:
« Adictionary D =[d,, d,, ..., d,] of model outputs
» The desired ensemble size N (with L > N and at least L = N)
« The forecast x’
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1. Inputs:
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« The forecast x’

2. lterate through the dictionary to apply the
related selection algorithm.
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Adaptive EnOl — selection algorithm

1. Inputs:
« Adictionary D =[d,, d,, ..., d,] of model outputs
» The desired ensemble size N (with L > N and at least L = N)
« The forecast x’

2. lterate through the dictionary to apply the
related selection algorithm.

3. List and/or sort the obtained elements based
on the selection ordering criteria:

dj1, dj2’ fany djN’ "y djL

4. Keep the N first members: X =[d;; dy, ..., dy]
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Adaptive EnOl — selection algorithm

1. Inputs:
« Adictionary D =[d,, d,, ..., d,] of model outputs
» The desired ensemble size N (with L > N and at least L = N)
« The forecast x’

2. Iterate through the dictionary to apply the
related selection algorithm.

3. List and/or sort the obtained elements based
on the selection ordering criteria:
dJ1, dj2, “aay dJN, ey dJL

4. Keep the N first members: X =[d;; d, ..., dy]
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Adaptive EnOl — selection methods

« Through correlations:

Keep the most correlated members with the forecast
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Adaptive EnOl — selection methods

« Through correlations:

Keep the most correlated members with the forecast

 Through I1 and |2 norms:

Keep the dictionary members that are closest to the forecast
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Adaptive EnOl — selection methods

« Through correlations:

Keep the most correlated members with the forecast

 Through I1 and |2 norms:

Keep the dictionary members that are closest to the forecast

« Through orthogonal matching pursuit (OMP):

Perform a decomposition of the forecast based on the OMP
algorithm and keep the members that represent the forecast
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Schemes comparison
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Months of OMP selected members
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Conclusion

« The different Ol schemes results are comparable
 The adaptive schemes require more computation

« The Seasonal EnOIl seems to be the best choice
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