Bayesian Inference of Spatially-Varying Manning’s n
Coefficients in the Coastal Ocean Using a Generalized
Karhunen-Loéve Expansion and Polynomial Chaos

Adil Siripatana’,Olivier Le Maitre?!, Omar Knio', Clint Dawson® and Ibrahim

Hoteit!
1
KAUST, CEMSE and PSE 3 . "
SRI-UQ Center 21IMSI-CNRS TSl of Texas Al SN nee.
Adil.Siripatana@kaust.edu.sa UPR-3251, Orsay, France rins unz Soi no putational ginee
Tbrahim.Hoteit@kaust.edu.sa olm@limsi.fr lga . clel cet B
Omar.Knio@kaust.edu.sa waw.limsi.fr/Individu/olm ~ Clint@ices.utexas.edu

Olivier.LeMaitre@kaust.edu.sa

u N =

Science and Technology

Llest modeling echniques for shallw seas \awiva

A. Siripatana et.al Change of Coordinates & PC Acceleration for Manning’s n Inference


Adil.Siripatana@kaust.edu.sa
Ibrahim.Hoteit@kaust.edu.sa
Omar.Knio@kaust.edu.sa
Olivier.LeMaitre@kaust.edu.sa
olm@limsi.fr
www.limsi.fr/Individu/olm
clint@ices.utexas.edu

Introduction

* The shallow water model is composed of the depth-integrated
Navier-Stokes equations

o Continuity Equation:
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Introduction

The bottom stress components in the momentum equation are
defined through the coefficient

Kgip = cf|ul

Then ¢, is determined using Manning's n formulation

q@———— Manning’s n

AR TVE Coefficient

o Empirically derived
o Depends on surface characteristics

o Spatially variable
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o Bayesian Inference

o Coordinate transformation for Uncertain Correlation Function

e PC surrogate model

o Manning’s n field inference
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Bayesian Inference

Inference of parameter field

We want to infer a parameter field M € L,(2), from

@ a set of observations d € R of a given process,
@ a model u(M) € R™ that predicts the observation,
@ the Bayesian rule to update our knowledge of M.

p(M, 3|d) o p(d|M, o5)pu(M)po(o?)

@ p(d|M, o2) is the likelihood of the observations,
@ py(M) is the Gaussian field’s prior,
@ o2 is an error model hyper-parameter with prior of po(c2).

Classical choices are i.i.d. model errors with Gaussian distribution N(0, o2) leading to

p(d|M, 02) = Hps - u(M), o5),

1 x2
pirty o[- 2]
2n02 o5
with uninformative Jeffrey’s prior for .
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Bayesian Inference

Gaussian field’s prior

We shall consider prior M that are centered Gaussian processes with covariance
function C(x, x’).

The prior M(x) can then be decomposed in Principal Orthogonal Components (KL
decomposition),

COLX') =D Medw(X)di(X'),  M(x) = Z\F“’k Mk,
pa

where the ny’s are iid standard Gaussian random variables.

Upon truncation of the expansion of M to its K dominant terms,

M(x) ~ Z VAKX,

Inference problem can for the stochastic coordinates 7’s :

p(n, oald) « p(d|n, c3)py(n)po(ad),
with

1
pn(n) = WGXP—HWHZ/Z p(dln, o5) = Hpe — ui(n), %)
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Bayesian Inference

Uncertainty in the covariance function

The selection of the covariance function affects the inference procedure and C is in
general uncertain.

= families of covariance functions C(q) with hyper-parameters q, with prior pg(q)
(also inferred).

Following this approach, we write

K
M(x,q) = Mk(x,q) = > /(@) Ok (X, @),
pa

where the ny’s are still i.i.d. standard Gaussian random variables and (A\«(q), ®x(q))
are the dominant proper elements of C(x, x’, q).

p(n, q,05|d) o< p(d|n, g, 05)py(1)Pe(q)Po(a3)-

KL decomp
q ron @ many KL decomposition
Model solve Likelihood Posterior @ many model solves
n _yl\“:"z;\mmH U(n,q) }—)I p(d|n.q.02) I—>| p(n,q,08|d) I
T @ change of coordinate
2
a0 @ Use of PC surrogate
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Coordinate transformation for Uncertain Correlation Function

Reference Basis

For any covariance parameters q, the elements of the KL expansion are solution of
[ et x)0u(x' . a)ax’ = M(@)0u(x. @), (01 Di)x = 1.

We observe that {®,(q)} is a CONS of Lo(9).

It suggests the introduction of a reference orthonormal basis {®}, defined for a
prescribed reference covariance function C, and to project Mk (q) onto this reference
subspace.

For a finite dimensional reference basis (with K modes for simplicity), it comes

K K

Me(q) = (@) =~ M = Sriie(q),  7(q) = B(q)n.
k=1 P

Regarding the selection of the reference basis :

@ select of particular hyper-parameter value : C = C(g)
@ use the g-averaged covariance function,

¢= () = [ c@palada.

The latter choice is optimal in terms of representation error (averaged over q).
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PC surrogate model

PC surrogate : motivation

Sampling of the posterior p(n, g, 2|d) involves many resolution of the forward model
to predict the observation u(n, q).

To accelerate this step, the use of polynomial surrogates (PC expansions) was
proposed by Marzouk, Najm, et al :

P
u(n,q) = Y _ uaVa(n,q),

a=0

where the W,,’s are orthogonal polynomials and the PC expansion is truncated at some
order r.

The PC expansion is computed in an off-line stage.

We propose an alternative approach, relying on coordinate transformation :
P
u(n, q) ~ 0(&(n,9)) = >_ uaV(&(n, q)),
a=0

where the random vector & has the same dimension as 7, that is K.
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PC surrogate model

PC surrogate

It can be shown that we can approximate 7 — u(#) using the reference Gaussian field

P
Wi (¢ Z\/ibkék, SLCEDILE

where the &’s are independent standard Gaussian random variables. Then

p Bk/(Q)’

umn, @)~ > BaVa(€(n q), £m.q)=B(@m, Bulq) = Y
a=0 0, otherwise.

Xk/X1 > K,
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Manning’s n field inference

Sampling flow-chart
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FicuRE: Offline step (surrogate construction) of the accelerated MCMC sampler and Online step of

the PC surrogate based evaluation of the posterior.
A. Siripatana et.al Change of Coordinates & PC Acceleration for Manning’s n Inference




Manning’s n field inference

ADCIRC

Inference for "true" Manning’s n field :
@ ADvanced CIRCulation (ADCIRC) solves the shallow water equations on an
unstructured grid, discretized by a first-order continuous Galerkin finite element.
@ The time derivatives computed with centered finite differences in GWCE and
forward differences in the momentum equations.
@ ADCIRC was intensively validated, e.g. Hurricanes Betsy (1965), lvan (2004),
Dennis (2004), Katrina (2005), Rita (2005), Gustav (2008) and lke (2008)

. Ideallze inlet with Ebb shoal domain
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FIGURE: Idealized inlet with ebb shoal domain.
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Manning’s n field inference

Observation simulation system experiments (OSSEs) :

@ Synthetic water elevation data are extracted from an ADCIRC run.
@ Manning’s n field used in reference run is considered truth.

@ We attempt to recover Manning’s based on the data and ADCIRC, using a
generalized KL expansion and PC-MCMC.

Observations are measurements of U(x, t) (water elevation) at several locations in
space and time, perturbed with i.i.d. ¢; ~ N(0,02 = 0.01).

For prior, we use M ~ GP(0,C(q)), with Gaussian covariance C(q) and
hyper-parameter q = {/} :

@ [/~ U[1000,4000],
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Manning’s n field inference

Offline : reconstruction of Manning’s n field

We set K = 3, true normalized / = 0.085 and true coordinates
{n1,m2,m3} = {1.73,0.26,0.04}.

True Gaussian Manning field (nkl = 3) Gaussian Manning field (nkl = 3, approx with ref) Gaussian Manning field (1ki = 3, approx with ref, PC)
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Manning’s n field inference

Offline : PC surrogate of the ADCIRC model

Based on reference q, number of stochastic dimension equal to 3 and r = 6.

station 1, st quadrature station 2, 2nd quadrature station 3, 3rd quadrature
g g g
— e moger $ e moder
~ surrogate mode |~ Surrogate model
water elevation (m) water elevation (m) water elevation (m)
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Manning’s n field inference

Online : MCMC inference results

1st KL Coordinate 2nd KL Coordinate

3rd KL Coordinate Inferred q (normalized length scale)
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Manning’s n field inference

Inference : True Manning’s field vs. inferred field

True Gaussian Manning field (nkl = 3) Inferred Gaussian Manning field (nkl = 3)
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Manning’s n field inference

Conclusion & Future work

o Effective treatment of covariance hyper-parameters
@ Generic PC construction for the surrogate

@ Accelerate both coordinate transformation and likelihood sampling using PC
surrogate

@ Successfully application of generalized KL and PC for parameter inference to
large-scale coastal ocean

Further possibilities

@ Treats the prior in the Baysian inference directly instead of resorting to coordinate
transformation approach (which can be expensive for large-scale system)
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