

Mud as a resource: reducing turbidity while keeping up with sea level rise

Applied research Deltares and Rijkswaterstaat in the Ems Estuary from 2011 to 2019

The Ems Estuary

The Ems Estuary

- Human activity in estuaries results in high mud concentrations. This leads to low visibility, anoxic conditions and high costs (port siltation, dredging)
- Mud can be a resource to strengthen dikes, raise low-lying land, produce construction materials, or enrich agricultural soils. Extraction of mud leads to lower sediment concentrations
- Mud may also be needed for the estuary to grow with rising sealevels
- So.... can we reduce turbidity while keeping up with sealevel rise?
 - 1 What is the role of mud extraction on turbidity?
 - . What is the role of mudan keeping up with sealevel rise?

- In the past centuries, several million m³ annually deposited in the Dollard basin.

- In the past centuries, several million m³ annually deposited in the Dollard basin.
- Similar quantities were extracted in the period 1960-1994. Concentrations in the Dollard doubled since 1990. Relation?

- In the past centuries, several million m³ annually deposited in the Dollard basin.
- Similar quantities were extracted in the period 1960-1994. Concentrations in the Dollard doubled since 1990. Relation?
- Model simulations suggest that extracting such quantities leads to significantly lower sediment concentrations. → yes, there is a relation.

- In the past centuries, several million m³ annually deposited in the Dollard basin.
- Similar quantities were extracted in the period 1960-1994. Concentrations in the Dollard doubled since 1990. Relation?
- Model simulations suggest that extracting such quantities leads to significantly lower sediment concentrations. → yes, there is a relation.
- Therefore measures (such as the Kleirijperij) are presently designed and implemented to extract sediment from the system (or trap sediment in the system) in a sustainable way.

 Sand-mud modelling Ems estuary with SLR of 0.28 cm in 2050: difference in bed level for a simulation WITH and WITHOUT Sea Level Rise

Sand-mud modelling Ems estuary with SLR of 0.28 cm in 2050: *only significant accretion of mud* to (nearly) keep up with SLR

- Sand-mud modelling Ems estuary with SLR of 0.28 cm in 2050: *only significant accretion of mud* to (nearly) keep up with SLR
- How certain are these predictions?
 - Modelled historic change in sediment budgets in line with historic observations

- Sand-mud modelling Ems estuary with SLR of 0.28 cm in 2050: *only significant accretion of mud* to (nearly) keep up with SLR
- How certain are these predictions?
 - Modelled historic change in sediment budgets in line with historic observations
 - Response of the upper flats to SLR limitedly depending on model settings: mud deposition will largely follow SLR

- Sand-mud modelling Ems estuary with SLR of 0.28 cm in 2050: *only significant accretion of mud* to (nearly) keep up with SLR
- How certain are these predictions?
 - Modelled historic change in sediment budgets in line with historic observations
 - Response of the upper flats to SLR limitedly depending on model settings: mud deposition will largely follow SLR

- Response of lower flats: much stronger dependence on model settings →

higher uncertainty

'completely following SLR'

'complete drowning'

- Sand-mud modelling Ems estuary with SLR of 0.28 cm in 2050: *only significant accretion of mud* to (nearly) keep up with SLR
- How certain are these predictions?
 - Modelled historic descriptions
 - Way forward: predict impact of SLR with a range of different data and model-based tools to deal with this absence of validation data!

Major uncertainty in evaluating the predicted response to SLR:
absence of calibration / validation data.

Relevance for other parts of the Wadden Sea

Also the Wadden Sea lost sediment sinks (maybe even more)

Relevance for other parts of the Wadden Sea

- Also the Wadden Sea lost sediment sinks (maybe even more)
- Concentrations in the Eastern Wadden Sea are also increasing

Relevance for other parts of the Wadden Sea

- Also the Wadden Sea lost sediment sinks (maybe even more)
- Concentrations in the Eastern Wadden Sea are also increasing
- Sealevel rise...

Conclusions

- The Ems Estuary is part of the Wadden Sea
- Extraction of sediment reduces turbidity
- SLR will lead to a muddier Ems Estuary
- Extraction of sediment has limited impact on the response of the upper flats to SLR; more on the lower flats
- Quantifying both the effect of extraction and of SLR is complex and cannot be verified with data → need for research lines and methodologies