



### Optimization methods for hydraulic systems

September 13th, 2019, Jorn Baayen, Tjerk Vreeken, & Pierre Archambeau





The movement of water is governed by the Saint-Venant equations, which state that ...

This is nonlinear.

Furthermore, the wave propagation is dominated by both flow velocity u = Q/A and water depth  $\eta = H - H_b$ , i.e.,  $u \pm \sqrt{g\eta}$ .







Optimizing nonlinear systems, such as those governed by

 $\Delta H \propto Q^2$ 

is (in general) *very hard*:







Imagine this in 45 weirs times 24 hours is 1080 dimensions ...

... a *lot* of local minima.



# Solution I: Genetic Algorithms



### Reduced Genetic Algorithms

LIÈGE Deltares KISTERS

Idea behind the RGA

The RGA

- Uses a metaheuristic approach and a limited number of gate operation moments, with fixed time intervals (larger than the control step)
- Replaces standard GA operators (crossover and mutation) by a new methodology (diversification and intensification)

Details in Vermuyten, Meert, Wolfs, & Willems, *Combining Model Predictive Control with a Reduced Genetic Algorithm for Real-Time Flood Control*, 2018.

The RGA is **easy to code** and can be applied to all type of models (conceptual or physically based). Stopping criterion must be defined but usually a maximum number of scenarios is considered.

### **Reduced Genetic Algorithms**

**RGA** operators







source : Vermuyten and al, J. Water Resour. Plann. Manage (2018)

### **Reduced Genetic Algorithms**





#### Parameterization used for the benchmarks

Number of random/mutation **10000/2000** independently of the number of level nodes

Random frequency

Mutation frequency = Control time step (minimum 1h; maximum 8h)

**8** h

Probability diversification/intensification 0.5 Weirs

| Lower Limit     | <b>0</b> m³/s   |
|-----------------|-----------------|
| Upper Limit     | <b>200</b> m³∕s |
| Sensitive range | 20%             |



# Solution II: Globalized Interior Point Method (the "GIP")



### Globalized Interior Point Method

#### The idea

#### The GIP

- Uses mathematical topology (homotopy) to transfer global optimality of simplified problem to complete nonlinear problem.
- Finds solutions by applying Newton's method to find zeroes of the Lagrangian (the *second order method* underlying industry standard packages such as **IBM CPLEX** and **MOSEK**).
- Produces a **certificate** that the solution is **globally optimal**.

Details in Baayen, Piovesan, and VanderWees, Continuation method for PDE-constrained global optimization: Analysis and application to the shallow water equations, 2019.











#### Outlook for the GIP

**KISTERS Real Time Optimization** (RTO) is the first and so far only software implementation of the GIP. It can load existing SOBEK or HEC-RAS models and set up correctly formulated optimization problems automatically.

Collaboration is ongoing between IBM and KISTERS to integrate GIP and CPLEX technology.





**KISTERS RTO** powered by CPLEX will bring IBM's three decades of *mixed integer* solver expertise to the technology stack.



# Comparison



### Benchmark setting

### université Deltares



#### Model

Mathematical hydraulic model

Numerical model

spatial scheme temporal scheme friction law

upstream BC

downstream BC

#### Dimensions of one reach

cross section

length

slope

#### 1D full Saint-venant

Staggered grid finite difference
Euler semi-implicit
Chezy
Prescribed hydrograph ; 100 → 300 [m³/s]
Optimized hydrograph ; adjustable weir with upper limit 200 [m³/s]

Rectangular with width = 50 [m] 10 [km] 2 [m/km]

### Benchmark setting

Parameters for 48 hours optimization horizon

Total computation points (level nodes) Hydraulic time step Control time step

Adjustable weirs

[16; 32; 64; 128; 256; 512]
[5 min; 10 min; 15 min]
[1 hour; 2 hours; 4 hours; 8 hours]
[1; 2; 4; 8; 16] spaced every 10 km

... total of 360 combinations



- level
- upstream discharge
- optimized discharge
- internal discharge



### Benchmark setting



#### **Optimization objective**

*Tracking problem*: The optimization objective is to steer the water levels just upstream and downstream of a reach to the reference value.

Both optimization algorithms were seeded with constant 100 m<sup>3</sup>/s weir flow hydrographs.

The benchmarks were run (repeatedly - min 10x) on an Amazon Web Services "c x4large" node:

- 16 Intel Xeon processors @ 3.0 GHz.
- 32 GB RAM.
- Ubuntu Linux 18.04.3 LTS.

### Benchmark results

Illustration of results for a single level lode per reach

In the specific case *n* level nodes and *n* weirs:

- Only one level node exists per reach
- The constraints are linear (mass balance)
- The objective function is quadratic

The problem admits an obvious optimal solution

- The input signal is damped by the first reach
- All weirs work at full capacity (200 m<sup>3</sup>/s) for twice as long as the input signal
- The output hydrograph is then repeated indefinitely without damping





LIÈGE Deltares université



RGA







Hydraulic Optimization | Author: Jorn Baayen & Pierre Archambeau | Creation date: 2019-09

### Benchmark results – Wall time

RTO







RGA



### Benchmark results – Wall time

RTO





Hydraulic Optimization | Author: Jorn Baayen & Pierre Archambeau | Creation date: 2019-09

### Benchmark results





#### 72 combinations for 16 weirs – sorted by (nb level nodes ; hydraulic dt ; control time step)



### Benchmark results



#### 72 combinations for 1 weir – sorted by (nb level nodes ; hydraulic dt ; control time step)





The results show a clear complementarity. The continuation method produces significantly better solutions, but requires more computation time than the reduced genetic algorithm.

|                      | Reduced genetic algorithm | Continuation method |
|----------------------|---------------------------|---------------------|
| Solution optimality  | Suboptimal                | Globally optimal    |
| Solution determinism | Non-deterministic         | Deterministic       |
| Computation time     | Low                       | Moderate            |

Notes:

- The problem formulation used for the benchmark has a single, global optimum. The RGA solutions are therefore nor global, nor local minima.

- The source code of our RGA implementation is available for review.

- Access to the KISTERS Real Time Optimization REST API may be requested for purposes of independent result verification.

### Recommendations



Our results lead to the recommendation that:

- GIP be used for mission-critical applications, such as real-time flood control: *Who would trade CPU time for flood damage?*
- GIP be used for hydropower optimization: In our world, every megawatt of renewable energy is needed.
- RGA be used for exploratory desk studies, where user interaction and fast results are needed.





#### KISTERS Nederland B.V. St Jacobsstraat 123-135 NL-3511 BP Utrecht

Phone +31 6 33881175 jorn.baayen@kisters-bv.nl http://water.kisters.eu

# File name:Creation date:2019-09Presentation date:Jorn Baayen, Tjerk Vreken, Pierre ArchambeauSpeaker:Jorn Baayen

23.1