Behind the scenes of the runoff performance

An analysis of internal states and fluxes of process-based models

Laurène Bouaziz
13-09-2019

Introduction - follow up comparison

Looking beyond general metrics for model comparison lessons from an international model intercomparison study

Tanja de Boer-Euser ${ }^{1}$, Laurène Bouaziz ${ }^{2}$, Jan De Nie 5, Claudia Brauer ${ }^{4}$, Benjamin Dewals ${ }^{5}$, Gilles Drogue ${ }^{6}$, Patrick Willems ${ }^{3,9}$

Hydrol. Earth Syst. Sci., 21, 423-440, 2017

Hypotheses

1. Process-based models with similar runoff performance show similar dynamics of internal states and fluxes
2. Identify and explain model strengths and weaknesses through a comparison of modeled states and fluxes with multiple remotely-sensed products

Water balance
 (Lesse)

Mean annual runoff (2001-2016)

Mean annual evaporation

Root-zone soil moisture

Root-zone soil moisture

Root-zone soil moisture

Evaporation

Runoff

Root-zone soil moisture

Total storage anomalies - GRACE

Total storage - spatial variability

м3

Snow - number of days

- 2001 - 2003 - 2005 - 2007 - 2009 - 2011 • 2013 - 2015 - 2017
- 2002 - $2004 \cdot 2006 \cdot 2008 \cdot 2010: 2012: 2014: 2016$

GR4H-CemaNeige

$\left(R^{2}=0.30\right)$

Summary

- Differences
- Water balance
- Drying out of soil moisture
- Total storage anomalies
- Number of days with snow
- Model structure? Parametrization?
- Become aware of aspects that could be improved

Conclusion

1. Process-based models with similar runoff performance show rather similar dynamics of internal states and fluxes, but also important differences
2. Identify and explain model strengths and weaknesses through a comparison of modeled states and fluxes with multiple remotely-sensed products

Thanks \& Discussion

