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SUMMARY 
 
Drought is one of the greatest natural hazards which affect many sectors and systems with 

major impacts on agriculture, water resources and natural ecosystems. Drought conditions 

are much more difficult to identify than other natural hazards because drought is commonly 

the result of a number of factors that are only apparent after a long period of precipitation 

deficit. Drought is often classified into four types: meteorological, agricultural, hydrological, 

and socioeconomic. Droughts are a normal part of climate variability for virtually all regions. 

 
The Eastern Nile Region covers a large portion of the Nile Basin encompassing three major 

sub-basins of the Nile: the Sobat, the Blue Nile, and the Atbara in the north. Together, the 

contribution of the three sub-basins to the total annual Nile flow is about 85%. There are 

some organizations in the Eastern Nile countries (Ethiopia, Sudan, South Sudan and Egypt) 

which are responsible for drought management whether in drought prediction or in 

adaptation to the consequences of drought events. 

 

In the study area, there are models which could be useful in studying the droughts from the 

meteorological and hydrological perspectives. This case study aims to test the available tools 

and provide improved tools for forecasting droughts and hence water availability in the 

region. The study will focus on the Blue Nile and Atbara River basins, and will pay particular 

attention to the expected effects of climate change on drought hazard. A number of statistical 

analyses of the teleconnections between climatic indices and precipitation as well as runoff is 

also performed. The case study is led by the Nile Forecast Center (NFC) with contributions 

from DCER (already active in the region), GFZ, and JRC. 

 

Drought indices are typically single numbers that are calculated including observed and 

proxy data related to rainfall, soil moisture, or water supply and provide a comprehensible 

synthesis of a situation for the decision maker that may be more useful than raw data. The 

use of a particular index to characterize drought depends on the objectives of the analysis, 

the study region, and the availability of data. Most water supply planners find it useful to 

consult one or more indices before making a decision. 

 

For assessing meteorological drought, the Standardized Precipitation Index (SPI) has been 

applied to three “observed” rainfall datasets to assess its applicability in the study area. 

These are the Climatic Research Unit (CRU) rainfall dataset, the ECMWF Rainfall 

Reanalysis dataset (ERA40), and the gauge-satellite merged rainfall dataset produced by the 

Nile Forecast System (will be referred to as the NFS dataset). The historical study period in 

1961-1990 or beyond has been selected (except for the NFS dataset which starts in 1992). 

Future rainfall is taken from an ensemble of 6 dynamically downscaled climate simulations 
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for the period 2021-2050 performed using the PRECIS regional climate model. The SPI has 

been calculated for different lead times from 1 month to one year. 

 

The analysis shows that ERA40 rainfall is overestimated for the Eastern Nile region 

compared to CRU and NFS rainfall datasets for the early part of the record, distorting the 

rainfall distributions, and to a lesser extent the SPI distributions. CRU rainfall is higher than 

NFS for the region during the peak rainfall period, and thus has higher flood probabilities but 

similar drought probabilities. When PRECIS is run using ERA40 boundary conditions (which 

do not include precipitation), it overestimates rainfall over the whole year, resulting in 

different seasonal rainfall distributions compared to ERA40 rainfall. This has its effect on the 

SPI as some dry years may be seen as wet and vice versa. Such biases need to be 

corrected, but their effect is somewhat reduced in calculating SPI because it involves 

normalization of rainfall distributions. 

 

The current set of climate simulations indicate a general increase in rainfall over the region 

but this does not exclude the increase of drought probability for some lead times especially 

longer ones and on the scale of the hydrologic year. The uncertainty bandwidth (defined by 

the range across the different simulations) increases near the ends of the SPI probability 

distributions but not for all lead times. 

 

The SPI proved to be a useful way to characterize meteorological drought across different 

catchments and at different time scales. Because it normalizes the rainfall distribution, it is 

less sensitive to systematic biases in the data (i.e. systematic overestimation or 

underestimation – shifts in the mean).   

 

In terms of hydrological drought, a set of three indices has been applied to observed as well 

as simulated and forecasted flows using the Nile Forecast System (NFS) hydrological and 

forecasting components respectively. This helped assessing the applicability of these indices 

and evaluating the NFS in predicting drought.  

 

The first of these indices is the drought classification of the Ministry of Water Resources and 

Irrigation (MWRI) of Egypt which was developed by the Nile Yield Committee in 2010 based 

on different ranges of natural flow of the Nile at Aswan. The classification has been extended 

to other important stations on the Blue Nile and the Atbara by considering the average 

irrigation abstractions in Sudan and the contribution of those basins to the flow at Dongola. 

The classification has been applied to observed and forecasted flow records for the Blue Nile 

at Khartoum and Diem and for the Atbara at its mouth near Atbara town. The results show 

that the MWRI classification has been successfully adjusted for the application to the 
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selected sub-basins. However, the small flow range of the Atbara has resulted in small 

bounds for the categories which make it difficult to get the right drought characterization. The 

results show a general agreement of drought classification between observed and forecasted 

flows for the Blue Nile but with some discrepancies for some years. The results for the 

Atbara have more discrepancies indicating that the hydrological model or forecasting 

parameters of the Atbara basin need to be revisited. 

 

The second index used is the Surface Water Supply Index (SWSI) which combines 

hydrological and climatic features in a single index and allows for the consideration of 

reservoir storage. The revised SWSI is computed using expected streamflow and initial 

reservoir storage only, which is more advantageous than the original formulation which 

required weights for the different hydrologic components (snowpack, precipitation, 

streamflow, and reservoir storage). The revised SWSI has been calculated for the Blue Nile 

and Atbara Basins using forecasted streamflows starting for the period May 1992 - October 

2011 by using the median ESP (Ensemble Streamflow Prediction) forecast. The forecasted 

flow was accumulated from the first of May till the end of October for each year (to get the 

flow forecast over the season). The period May-October denotes the rainy season for the 

Eastern Nile basins. This flow forecast is added to the actual storage in reservoirs at the end 

of April for both the Atbara and Blue Nile basins.  

 

The results have not reflected the actual situation of the flood season for some years for both 

sub-basins but the results for the Atbara are worse than those of the Blue Nile because of 

the reduced forecast quality for that basin compared to the Blue Nile. Flow forecast values 

need to be corrected to enhance the results of the SWSI values. In addition, longer records 

need to be used because SWSI values are a function of the probability of non-exceedance 

which is obtained based on the rank of the year. 

 

The third index used in the Standardized Discharge Index (SDI) which is very similar to SPI 

but uses the streamflow instead of precipitation. The SDI has been calculated using the 

observed discharge time series, NFS simulated flow, and the median of ESP forecasted flow. 

The simulated and forecasted SDI at Atbara in many years did not have the same direction 

of the observed SDI, indicating that the hydrological model of Atbara should be calibrated 

and it is clear that the bad simulation of Atbara could be the reason for the poor results of the 

ESP used to calculate SWSI above. The results of the Blue Nile at Diem and Khartoum show 

that the observed SDI, Simulated and forecasted SDI have the same sign for most years. 

 
The impact of sea surface temperature (SST) in the Pacific Ocean (Nino 3.4 region) on 

droughts and floods was investigated in the upper catchment of the Blue Nile. Discharge 

measurements (1965-2011) at the outlet of the upper catchment of the Blue Nile in relation to 
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the El Niño index were analyszed. Regarding the teleconnections between ENSO and 

rainfall, the important conclusion is that JJAS rainfall in the upper catchment of the Blue Nile 

is highly sensitive to the sea surface temperatures (SST) in the early season of AMJ in Niño 

3.4. Additionally, the performance of the regional climate model RegCM4.1 was tested for a 

28 years period (1982-2009). The model succeeds in reproducing the observed negative 

correlation between Pacific SST and the Blue Nile flow, and in particular the high correlation 

with El Nino that start during (April-June) period. We propose that observations as well as 

global models forecasts of SST during this season should be used in seasonal forecasting of 

the Blue Nile flow. 

 
 
A wavelet analysis applied to the runoff and the Oceanic Niño index showed that the two 

time series share signal properties of longer periods of ca. 16 years. Shorter periods are also 

common to both series but non-stationary. Both signals are linked but the non-stationarity 

can be an obstacle for statistical seasonal prediction. Nevertheless a statistical approach 

was followed to investigate the forecasting quality which can be achieved by building solely 

upon teleconnections of sea surface temperatures to model runoff in the Blue Nile at the 

station in Khartoum. Three different forecasting schemes were set up with statistical models 

for the Blue Nile station in Khartoum. The best forecasting skill was achieved for one month 

ahead forecasts of runoff in the late rainy season from September to November. The 

predictability for June to August runoff was lower than for September to April in this study. 
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1. INTRODUCTION: EASTERN NILE BASIN CASE STUDY 

 

Drought is one of the greatest natural hazards, with effects on many sectors and systems, 

and major impacts on agriculture, water resources and natural ecosystems. Droughts affect 

many people worldwide, are responsible for famine, epidemics and land degradation in 

developing countries (Obasi, 1994; Nicholson, 2001), and cause large economic losses in 

developed regions (Meehl et al., 2000; Fink et al., 2004; UN, 2008). Drought is a natural 

phenomenon that occurs when water availability is significantly below normal levels over a 

long period, and cannot meet demand (Redmond, 2002).  

 

Drought conditions are much more difficult to identify than other natural hazards because 

drought is commonly the result of a number of factors that are only apparent after a long 

period of precipitation deficit. Drought differs from other natural hazards in that it has a slow 

onset, evolves over months or even years, affects a large spatial region, and causes little 

structural damage. Its onset and end, and the severity of drought are often difficult to 

determine (Wilhite, 1993). In contrast to other natural hazards including floods, which are 

typically restricted to small regions and occur over well-defined temporal intervals, drought is 

difficult to pinpoint in time and space because it affects wide areas over long time periods. 

Moreover, it is very difficult to objectively quantify drought severity, which is a combination of 

the duration, magnitude and spatial extent (Dracup et al., 1980).  

 

Drought is often classified into four types: meteorological, agricultural, hydrological, and 

socioeconomic. Meteorological drought refers to a precipitation shortage from average; 

agricultural drought results when the precipitation shortage results in a deficit of soil moisture 

and therefore produces agricultural impacts derived from the water deficit in the vegetation; 

hydrological drought results when the deficit in precipitation extends to large periods and 

therefore there is a shortfall on surface or subsurface water supply. Finally, socioeconomic 

drought is often referred to when the deficit precipitation or water shortage has an impact on 

the economy and society. 

 

Droughts are a normal part of climate variability for virtually all regions. The Eastern Nile 

region is no exception. This region, as most of Nile sub-catchments, exhibits large climatic 

variability that results in even larger hydrological variability. The high variability leads to high 

exposure to floods and droughts. Coupled with low adaptive capacity in terms of socio-

economic systems and infrastructure, the region is highly vulnerable to floods and droughts. 

Droughts have led to famine in several occasions in Ethiopia.  

 



DEWFORA Project Report <WP6-D6.2>  

20 

 

1.1 THE EASTERN NILE BASIN 

 

The Eastern Nile Region covers a large portion of the Nile Basin (Figure 1-1). The region 

encompasses three major sub-basins of the Nile: the Sobat in the south, the Blue Nile in the 

middle, and the Atbara in the north. Together, the contribution of the three sub-basins to the 

total Nile flow is about 85%. Most of that flow is generated in the Western Ethiopian 

highlands during the rainy summer season (July-September) with some minor contribution to 

the Sobat from South Sudan. The Eastern Nile region is characterized by heavy rainfall (up 

to 1800mm/year) and steep slopes in the headwater areas of the mountains and less rainfall 

and mild slopes in the Sudanese plains near the outlets of the three rivers. In this study, the 

focus is on the Blue Nile and the Atbara sub-basins which are described briefly in the coming 

sections in terms of their hydrology, climate, and water resources utilization. 

 
1.1.1 The Blue Nile Basin 

 

The Blue Nile (Figure 1-2) has a total catchment area of about 314,000 km2. The river and all 

of its tributaries rise on the Ethiopian Plateau at elevations of 2,000 to 3,000m a.m.s.l. The 

average elevation is about 2,400 m with peaks up to 4,200 m. The main source of the river is 

generally considered to be a small spring at Gish Abbay at an altitude of approximately 2,744 

metres flowing into the Little (or Gilgel) Abbay, which flows into Lake Tana. Lake Tana has a 

water area of 3,000 km2 and a catchment area of 15,082 km2. The average rainfall and 

evaporation over the lake balance each other at 1,300 mm and the annual lake outflow is 

about 3.93 BCM (1920-1933 – Shahin, 1985). The hydrograph at the exit of Lake Tana has 

one peak in September. 

 

The Blue Nile leaves Lake Tana and flows to the south east in a large circle for about 935 km 

before reaching Roseires in Sudan near the border between Ethiopia and Sudan. The slope 

of the river changes drastically upon entering Sudan from 1.6 m/km to 15 cm/km. The 

Roseires river gauge was moved upstream to Diem after the construction of the Roseires 

dam in 1961. The river receives several tributaries on its way from Lake Tana to Roseires, 

which increase the flow tenfold. The total basin area up to Diem is about 182,000 km2 with 

annual average rainfall and PET (Potential Evapotranspiration) of 1,166 mm and 1,427 mm 

respectively. The mean discharge at Roseires/Diem for the period 1940-1982 is about 49.5 

BCM. The hydrograph at Roseires still has one peak, but this time it occurs in August. The 

river continues its journey to Sennar at a much milder slope for another 270 km where rainfall 

reaches 460 mm. There are no tributaries in this reach; therefore the flow at Sennar is about 

2 BCM less than that at Roseires. 
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Figure 1-1 Nile Basin Map - Eastern Nile Region Marked 
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Between Sennar and the basin outlet to the Nile at Khartoum, the Blue Nile receives two 

major tributaries, the Dinder and the Rahad. Both of these rivers originate in the Ethiopian 

Highlands. The Dinder has a drainage basin of 16,000 km2 while the Rahad has a smaller 

catchment of only 8,000 km2. Both tributaries run dry during the winter/spring months 

(January to May). The mean annual precipitation and PET for the Blue Nile basin between 

Diem and Khartoum are 521 mm and 2,157 mm respectively. The observed flow record at 

Khartoum has an average annual of 46 BCM. This is less than that at Diem because the 

irrigation diversions along the reach and losses from the Roseires and Sennar reservoirs 

outweigh the contributions of the Dinder and the Rahad. 

 
Figure 1-2 Map of the Blue Nile and Atbara Basins 

 

The climate in the basin varies from humid to semi-arid and is mainly dominated by latitude 

and altitude. This is reflected in the high variability of local climates, ranging from hot and arid 

in Sudan to temperate at the highlands and even humid-cold at the mountain peaks in 

Ethiopia. Within the Blue Nile Basin, there is significant variability in terms of sub-catchment 

sizes, slopes, climatic patterns, topography, drainage patterns, geological formations, soils 

and vegetation. In general, three broad topographical divisions are identifiable: the highland 
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plateau, steep slopes adjoining the plateau that tilt to the west and the western low lands with 

gentler topography comprising the remainder of the Basin. The Blue Nile Basin hydrology is 

characterised by seasonal and annual variability, very steep catchment and channel 

gradients and rapidly eroding watersheds, which result in very high sediment loads. This is 

exacerbated by poor agricultural practices, overgrazing and deforestation. The dominant land 

cover in the Blue Nile Basin is rainfed agriculture. Wood and shrubland are minor compared 

to the other land cover types (Teferi et al., 2010). The dominant soil texture of the Basin is 

clay. The soil type in the basin is dominated by Alisols and Leptosols, followed by Nitosols, 

Vertisols and Cambisols. The Nitisols are deep non swelling clay soils with favourable 

physical properties like drainage, workability and structure, while the Vertisols are 

characterized by swelling clay minerals with more unfavourable conditions. The basin 

geology is characterized by basalt rocks, which are found in the Ethiopian highlands, while 

the lowlands are mainly composed of basement rocks and metamorphic rocks such as 

gneisses and marbles (ENTRO, 2007).  

 

Currently, there is limited irrigation in Ethiopia around Lake Tana and along the Beles 

tributary as most agriculture depends on rainfall. There are some proposed irrigation 

schemes on some of the Blue Nile tributaries and around Lake Tana. The largest irrigation 

scheme in the Blue Nile basin is the Gezira-Managil Scheme in Sudan with an area of about 

8000 km2. 

 

There are currently two major dams on the Blue Nile supplying water for irrigation and 

hydropower. These are the Roseires and Sennar dams in Sudan. The Roseires Dam 

downstream of El Diem was completed in 1966 and was heightened very recently (2012). 

Before heightening, it had a full supply capacity of 2100 million m3. Roseires is operated 

primarily for hydropower but also to supplement irrigation demands downstream in case of 

need. It has an installed power capacity of 280 MW. The Sennar Dam downstream of 

Roseires was built in the 1920s and is used primarily for irrigation of the Gezira and Managil 

irrigation schemes. Two canals from Sennar Dam supply water to the schemes. Sennar dam 

also generates hydropower with an installed capacity of 15 MW. 

 

Releases are made from Roseires to Sennar in order to maintain the water level in Sennar 

for irrigation supply to the Gezira and Managil canals. At present Roseires is operated to 

maintain electrical supply from the dam, although the storage is also reduced in July and 

August to try to reduce the rate of sedimentation in the dam. The dam is allowed to start 

filling at the earliest at the beginning of September or when the flow at dam drops to 350 

Million m3/d or at the latest on the 26th September and fill for 26 days. 
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In Ethiopia, there are few and more recent hydropower plants. These include the Beles 

Hydroelectric Power Plant, sometimes referred to as Beles II or Tana-Beles, which is a run-

of-the-river hydroelectric power plant in Ethiopia near Lake Tana. The power plant receives 

water from the lake and after utilizing it to produce electricity; the water is then discharged 

into the Beles River. The plant will eventually have an installed capacity of 460 MW and 

when fully operational and will be the largest power plant in the country. It is also expected to 

help provide water for the irrigation of 140,000 ha (350,000 acres) It was inaugurated in May 

2010. 

 

Below the natural outlet of Lake Tana, the Tis-Abbay hydroelectric power plants are located 

on the Abbay River (Abbay is the Blue Nile in the Ethiopian Amharic language) where the 

head of the Tis Issat Falls has been used to generate electricity since 1964. Tis-Abbay I has 

an installed capacity of 11 MW and Tis-Abbay II has increased the installed capacity at this 

location to 73 MW. 

 

In addition, the Fincha’a Dam on the Fincha’a River, a tributary of the Blue Nile has an 

installed capacity of 128 MW. It was constructed in 1973 and is now also connected to the 

Amerti River via a tunnel. 

 

Currently, the Grand Ethiopian Renaissance Dam is under construction near the Ethio-

Sudanese border with a capacity of about 74 BCM and installed hydropower capacity of 

5,250 MW. When completed, it will be the largest on the Blue Nile in terms of storage and the 

largest on the Nile in terms of hydropower production. Several other “mostly” hydropower 

dams along the main Blue Nile and on some of its tributaries are also proposed and some 

were studied to the pre-feasibility level. 

 
1.1.2 The Atbara Basin 

 

The River Atbara is the last tributary that joins the Nile. It originates in the Ethiopian 

Highlands to the north of Lake Tana. There is little consensus upon the area of the Atbara 

basin. Hurst (1959) reports an area of 100,000 km2 which is taken forward by Shahin (1985) 

and Sutcliffe and Parks (1999), while Conway and Hulme (1993) reported a larger area of 

about 137,000 km2. Recent estimates using GIS delineation techniques based on recent 

digital elevation models gives an extremely larger area of more than 200,000 km2. The River 

Setit (called Tekeze in Ethiopia), the major tributary to Atbara, has a catchment area of 

68,000 km2 (Hurst, 1950). The upper basin (including the Setit) area is about 148,000 km2 

and has an average annual rainfall and PET of 556 and 1,774 mm respectively. The area of 

the lower basin is about 61,000 km2 and has a low rainfall of 208 mm and a higher PET of 
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2,313 mm. The total annual contribution of the Atbara, as measured at its mouth near the 

junction with the Nile is 10.95 BCM (1940-1982 average). All of this flow comes from the 

upper basin as the lower reach is a source of loss due to the high evaporation rate and due 

to irrigation diversions and losses from the reservoir of Khashm El-Girba dam. The 

hydrograph of the Atbara is almost triangular with a very high peak in August and almost 

zero flow during January till May in most years. 

 

Extreme variations in the climatic conditions exist across the Atbara-Tekeze river basin. 

While the average monthly temperatures are in the range of 12°C to 18°C in the highlands 

the monthly average at the confluence with the main Nile is more than 29°C with minimum 

and maximum temperatures from 5°C to 46°C. The rainfall varies from 1500mm on the 

highlands to 500mm at the Ethiopia/Sudan border and to less than 100mm at the confluence 

with the main Nile. The rainy season extend over 8 months on the highlands to 5 months at 

the border, but is mainly concentrated in the period June to September. 

 

There are two dams on the Atbara: TK5 on the Tekeze (Setit) tributary in Ethiopia with a 

capacity of 9 BCM inaugurated in 2009, and Khashm El-girba dam (1964) on the Main 

Atbara in Sudan with a design capacity of 1.3 BCM but dropped to almost half of that due to 

sedimentation. The TK5 has a hydropower capacity of 300 MW. The TK5 reservoir is 

operated primarily for hydropower and the water is available for irrigation projects in the 

surrounding area. Because of the large storage capacity of the TK5 reservoir compared to 

river yield, regulating the releases from the dam can provide a high reliability of supply for 

hydropower and for downstream irrigation schemes.  

 

Khashm El-Girba is a multipurpose reservoir which supplies irrigation water through a canal 

system to the New Halfa Scheme (190,000 ha) and also generates a small amount of 

hydropower (18.2 MW turbine capacity). The Khashm El-Girba reservoir is drawn down to 

almost empty before the high flow season in order to reduce sediment build up. 

 

On the Ethiopian side of the Tekeze basin, the arable land is mostly situated in the border 

zone with an identified potential of over 70,000 ha. Around 135,000 ha irrigation area is 

planned under the Upper Atbara Project in Sudan. In Sudan land resources is not a 

limitation.  

 

The nature of the topography in Ethiopia offers several dam sites for minor to large scale 

hydroelectric power generation and multipurpose use. The rainfall is poorly distributed over 

the year with 70% in the months of July to Oct. Seasonal storage in dams would be 

necessary for hydropower generation and multipurpose use. Adequate survey of the 
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topography and hydrometrical records would reveal the full extent of the hydropower 

potential of the basins. This could be combined with the purposes of river regulation, 

sedimentation reduction, and creation of livelihood and protection of the watershed. The long 

term harnessing of the river could possibly include a cascade like series of several dams with 

regional power interconnection programs and irrigation opportunities. 

 

1.2 DROUGHT MONITORING AND MANAGEMENT WITHIN THE BASIN 

 

There are some organizations in the Eastern Nile countries (Ethiopia, Sudan, South Sudan 

and Egypt) which are responsible for drought management whether in drought prediction or 

in adaptation to the consequences of drought event. Some of these organizations are 

important to this study in one or more of the main three prospective: agriculture, water 

resources and human health. Some of them focus only on drought monitoring and early 

warning while others aim to provide aid to mitigate drought impacts in affected regions. In the 

next section, the main organizations and their main mandates will be explained stressing the 

drought-related activities for each. 

 
1.2.1 Ethiopia 

 

Contingency Planning and Financing Committee of the Somali Region 
Also known as Disaster Prevention and Preparedness Committee (DPPC), it is currently 

mandated with contingency planning that involves food and non-food sectors, consider the 

effects of food crises like increased incidence of diseases, and that would consider mitigation 

and recovery interventions to ensure the continued development of a more robust 

emergency response system is in process. Some agencies working in Ethiopia have 

contingency plans for their own operations. For example Oxfam international has a drafted a 

contingency plan for humanitarian operation in Ethiopia. There are also contingency plans of 

agencies for specific areas like the contingency plan for Somali Region that was initiated by a 

multi-agency team working in the Region and supported by UNDP in 1997. 

 

Under the umbrella of the committee of the Somali Region in Ethiopia, in many seriously 

drought affected areas of the country, especially in the lowlands of Somali region and Borena 

Zone of Oromiya region, there is little alternative to the emergency tankeing of water from 

permanent sources of water to where people have congregated. Tankering operations need 

to be supported with the provision of storage and delivery systems. The repair and 

rehabilitation of boreholes is feasible in some areas and also needs support.  
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The DPPC has a lot of activities in related to human health protection and quality; some of 

these activities are as follows: 

- Migration and Population Tracking: A mechanism for tracking and monitoring 

migratory movements in order to understand the determinants to displacement is 

urgently needed. The data and findings thus generated can be applied to design 

interventions and to optimize the allocation of resources to areas with urgent needs.  

- Emergency Education: Three years of poor rains have placed a serious economic 

burden on many poor rural families. In drought-affected areas, school attendance 

has been low and drop-out rates have been accelerating. The aim is to assist 

children whose parents might not otherwise be able to afford to send their children 

to school. 
- Special Protection Needs of Women and Children: The severe drought in the 

Somali region, in particular, has led to the migration of at least 10,000 people in the 

Gode area. The most vulnerable segments of the displaced population, especially 

women and children, have a greater need for special help under such 

circumstances. 

- Shelter and Logistics Requirements: The migration of communities in search of 

water and food significantly increases the risks associated with exposure to wind, 

sun and rain. The aim is to mitigate the effects of exposure, and to provide some 

basic household requirements to the most vulnerable families. 

 

One of the main components of the National Disaster prevention and preparedness 

commission (DPPC) in Ethiopia is an early warning system (EWS) which has been in place 

since 1976 to monitor and warn against the threat of disasters ahead of time, and to trigger 

timely, appropriate, and preventative measures. It monitors closely factors which affect food 

security at household, regional and national levels. 

 

The system is an inter-agency activity involving different relevant government institutions. It 

is led at the national level by a committee with the DPPC acting as its secretariat. Since 

1993, The EWS has been decentralized in line with the regionalization policy and bottom-up 

planning approach. Training in data collection for early warning and analysis has been given 

to functionaries at regional and lower levels. 

 

As part of the regular activity of the program, all relevant indicators of food security are 

monitored on a monthly basis culminating in an annual nation-wide pre and post-harvest crop 

assessments. Pastoral assessments are also carried out in the livestock dependent regions, 

while disaster assessments are conducted in an emergency situation. 
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Early warning reports are regularly issued to Government, donors and the international 

community. Efforts are now underway to improve the system through the introduction of 

enhanced methodologies, and tools for data analysis. The system enhancement work which 

is in progress focuses on six major components: The monitoring of national food security, 

and crop, livestock, market and agro-metrology assessments. 

 

The DPPC has now evolved to be the Early Warning and Response Directorate (EWRD) 

which is also through PSNP and under DRMFSS, provides accurate and timely early warning 

information for the PSNP Risk Financing (RF) (see Section 0) and ensures adequate 

linkages between PSNP RF and other humanitarian response activities. The EWRD is 

responsible for the timely delivery of food resources. 

 
1.2.2 Relief and Rehabilitation Commission 

The relief and rehabilitation commission (RRC) was established in 1974 (RRC, 1984). It was 

set up to organize and coordinate government's relief and rehabilitation measures for the 

millions of people affected by the 1973/74 famine.  The awkward manner in which RRC was 

created, the magnitude of tasks (reaching out millions of victims, inexperienced and 

unprepared staff, archaic government bureaucracy with little skills in sheltering victims, 

warehousing, stockpiling and emergency operations), the rampant corruption inherent in the 

administrative system and absence of a clear policy and/or legal framework had all operated 

to undermine disaster management efforts. A tumultuous social and political milieu coupled 

with a series of disaster situations never allowed sufficient breathing space to look towards a 

coherent, integrated and comprehensive DM system. The arrival of another famine in 

1983/84 made the work of the agency (RRC) all the more intractable. 

 

Absence of coordinated and integrated prevention, preparedness and response effort 

between central government and local government institutions on the one hand, and RRC 

and line ministries on the other were the major predicaments facing the EDM system (PDRE, 

1989). Lack of organized information system and planned logistical support undermined the 

post-disaster response and recovery efforts of the agency, let alone thinking strategically 

towards mitigation and preparedness measures. This trend during the period from 1974 to 

1989, therefore, the disaster management machinery in Ethiopia heavily invested in 

response and recovery rather than in preparedness and prevention. 

 

Productive Safety Net Program 
The PSNP was established as a government led program where government systems and 

personnel implement the activities with coordinated donor support. The objective of the 



DEWFORA Project Report <WP6-D6.2>  

29 

 

PSNP is to span the mandates of two Ministries and multiple departments within each 

Ministry. 

 

The Ministry of Agriculture and Rural Development (MOARD) 
In Ethiopia, the MOARD is responsible for the management of the PSNP, with the Disaster 

Risk Management and Food Security Sector (DRMFSS) responsible for overall program 

coordination. Within the DRMFSS, the Food Security Coordination Directorate (FSCD), 

previously called the Food Security Coordination Bureau, facilitates the day-to-day 

management and coordination of the PSNP. It is directly responsible for the timely delivery of 

transfers to beneficiaries and supports the implementation of public works. 

 
For drought affected farmers in the central highlands of Ethiopia, assistance is needed in the 

form of seeds. In some areas small-scale irrigation can be supported through the provision of 

pumps. Lowland farmers in the Somali region, especially those living along the permanent 

rivers (in Gode, Liben and Afder zones) also need help with seeds, farm tools and irrigation 

pumps. Livestock and pastoralists in the drought-affected lowlands of Somali region, the 

Borena zone of Oromiya and South Omo Zone of the SNNP region are also being targeted 

for special emergency assistance. The provision of feed for animals, the provision of 

adequate veterinary services in the drought affected areas, and the establishment of 

slaughter facilities for the preparation of dried meat are all elements of the planned 

programme. 

 

Through the PSNP in Ethiopia, the Natural Resource Management Directorate (NRMD) 

NRMD is responsible for coordination and oversight of the public works. This includes 

capacity building and technical support, supervision of environmental guidelines, liaising with 

FSCD and other PSNP partner institutions on coordination and management of public works, 

and participation in PSNP design and management forums, including policy issues and the 

roll out of the pastoral PSNP. The Ministry of Finance and Economic Development (MOFED) 

oversees financial management of the program and disburses cash resources to 

implementing federal ministries and to the regions based on the annual plan submitted by 

MOARD. 

 

National Meteorological Services Agency (NMSA) 
The agency has started as a small Meteorological unit which was established in 1951 within 

the Civil Aviation department (now Civil Aviation Authority) to deliver only the needed data for 

aeronautical purposes. Thirteen years later and due to more requests for meteorological 

information the unit was promoted to be the Meteorological Department under the auspices 

of civil Aviation Authority. The National Meteorological Services Agency is responsible for the 
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control and operations of short-medium-and long-range forecasts and early warnings. The 

NMSA Develops ways and means for adopting new systems, better techniques and 

simplified procedures so as to render an efficient and effective weather forecast services. 

 

The NMSA prepares and disseminates Agro-Meteorological Advisory Bulletins on a real-time 

basis, which can assist planners, decision makers and farmers at large. The agency 

disseminates agro meteorological reports on ten daily, monthly and seasonal in which all the 

necessary current information relevant to agriculture is compiled.  NMSA also issues agro-

meteorological bulletins through World Agro Meteorological Information Service Web site. 

The government decision-makers are using their recommendations to alter agricultural 

practices on relatively short notices in order to maximize the value of the forecasted rains 

and minimize the impacts of forecasted droughts (Nicholls & Katz, 1991). 

 
1.2.3 The Sudan (including South Sudan) 

Sudan Meteorological Authority 
The Sudan Meteorological Authority (SMA) is a governmental body working on monitoring, 

forecasting of weather parameters and it is considered as an advisor for policy makers in all 

issues about climate and weather. The SMA also provides data and information for the public 

and for scientific researches and also work as consultants for some organizations and 

companies. 

 

Desertification Research Institute, Sudan (DRI)  
The research focuses on two axis: Socio-economic and Basic and Applied research to 

achieve the institute objectives which are: Formulation and execution of basic and applied 

research in dry and desertified lands putting livelihood in top agenda; Applied research to 

develop drought and disease resistant crops and improve productivity and dissemination of 

research results and developed techniques. 

 

Institute of Environmental Studies 
The institute of Environmental Studies (IES) has special interest and experience in 

educational and research in monitoring, environmental awareness and how the community’s 

response to drought. 

 

1.1.1 Egypt 
After the completion of the High Aswan Dam in the late 1960s, Egypt became protected to a 

large extent from flood and drought risks. As Egypt depends mainly on the river Nile to 

provide most of its water supply and because rainfall in limited and unreliable, drought 
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forecasting and management in Egypt focus on hydrological drought and is mainly taken 

care of the Ministry of Water Resources and Irrigation (MWRI). 

 

Nile Forecasting Centre 
The general aim of the centre is to provide tools and information for water planning and 

management. To this end, the Nile Forecast Centre through various tools including the Nile 

Forecast System (NFS) will provide to planners and decision-makers in Egypt with: 

- Timely forecasts of the Nile River inflows into the High Aswan Dam reservoir; 

- Real-time information about hydrological and meteorological processes occurring in the 

whole Nile Basin; and 

- Assessment of climate change and future development impacts on the flow regime of 

the Nile. 

The information available from the NFC is only internally published to the different 

departments in the Ministry of Water Resources and Irrigation (MWRI) in Egypt and most 

importantly to the Nile Yield Committee. 

 

Nile Yield Committee 
This a standing committee within the Ministry of Water Resources and Irrigation with 

representatives from the Nile Water Sector (NWS), the Nile Forecasting Center, the High 

Aswan Dam Authority (HADA), the Irrigation Sector and other sectors and research 

institutions of MWRI. It meets on a monthly basis, or more frequently as circumstances 

demand, especially prior to and during the flood season to review the flood forecasts and 

adjudicate on operational decisions. In addition to NFC, other sectors in MWRI such as NWS 

and HADA also make forecasts of inflows to Lake Nasser for short-term operational 

decisions using simple regression techniques. The lead time from the monitored river station 

at Eddeim on the Blue Nile is of the order of 17 days. Depending on the water level of Lake 

Nasser, and the expected flows, the committee may take measures to discharge water from 

the reservoir or open the Toshka spillway to accommodate high expected floods, or to cut 

some supplies if some drought is expected. 

 

1.3 HISTORICAL INFORMATION ON DROUGHTS 

Ethiopia faces a heightened vulnerability to extreme weather events such as droughts and 

floods. According to EM-DAT, the International Disasters Database, in the last 30 years there 

have been ten periods of drought (see Table 1-1) and 43 floods. One of the most serious 

drought events, which occurred in 2003, affected approximately 12.6 million people. In 

addition to the direct impact on human lives, natural disasters have been also detrimental to 

Ethiopia’s economy. Total economic damage costs due to the three major droughts since 

1969 are estimated at US$ 92.6 million (EM-DAT, 2010). 
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In 2008, two successive seasons of minimal rain events left Ethiopia in drought, and millions 

of people across the country hungry as crops failed and food prices soared (NASA Earth 

Observatory, 2008). With close to half of Ethiopia’s GDP attributable to the agricultural 

sector, managing food and economic security in the face of an uncertain climate continues to 

be an issue. 

 

 

 

 
Table 1-1 List of the main droughts in the Blue Nile in Ethiopia and the total number of affected people 

Disaster Date Total affected (Millions) 

Drought 2003 12.6 

Drought May-83 7.8 

Drought Jun-87 7.0 

Drought Oct-89 6.5 

Drought May-08 6.4 

Drought Sep-99 4.9 

Drought Dec-73 3.0 

Drought Nov-05 2.6 

Drought Sep-69 1.7 

Drought Jul-65 1.5 

[Source: Africa Water Atlas] 

 

During the last 100 years, the Sahel Zone (extending into Sudan) had witnessed drought and 

famine years of crisis which claimed millions of animal and human lives. British records refer 

to several periods of serious drought (Table 1-2). 

 
Table 1-2 List of the main droughts in Blue Nile in Sudan 

Disaster Date Comment 

Drought 1888-89 no rain for a year 

Drought 1904   

Drought 1910-1911  

Drought 1925-1927  

Drought 1941-1942   
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Drought 1948-1949  

Drought 1955- 1958   

Drought 1984 no rain 

Drought 1990 no rain 

[Source: http://adroub.net/default.aspx?page=Climate.%20Drought%20A] 

 

 

1.4 STUDY OBJECTIVES 

In the study area, there are models which could be useful in studying the droughts from the 

meteorological and hydrological perspectives. On the other hand, there is no model available 

to assess he impacts of droughts on agriculture. It will be useful if such a model is developed 

and tested within this study. This case study aims to test the available tools and provide 

improved tools for forecasting droughts and hence water availability in the region. The study 

will focus on the Blue Nile and Atbara River basins, and will pay particular attention to the 

expected effects of climate change on drought hazard. The case study is led by the Nile 

Forecast Center (NFC) in collaboration with other partners already active in the region. The 

following sections will shed more light on the sub-basins under study, the current drought 

monitoring and management practices within the region, and the approach used to assess 

current and future drought risk in the region in order to achieve the objectives of the study. 

 

Drought indices are typically single numbers that are calculated including observed and 

proxy data related to rainfall, soil moisture, or water supply and provide a comprehensible 

synthesis of a situation for the decision maker that may be more useful than raw data. The 

use of a particular index to characterize drought depends on the objectives of the analysis, 

the study region, and the availability of data. Most water supply planners find it useful to 

consult one or more indices before making a decision. 

 

For assessing meteorological drought, in section 3, the approach is to apply the 

Standardized Precipitation Index (SPI) to different rainfall datasets to assess its applicability 

in the study area. In addition, it will be applied to several climate change scenarios to 

evaluate the possible future change in drought risk.  

 

In terms of hydrological drought, a set of indices are to be applied to observed as well as 

simulated and forecasted flows. This will assess the applicability of these indices and allows 

the evaluation of the current hydrological forecasting tool (the NFS) available at NFC in 

predicting drought. 

 

http://adroub.net/default.aspx?page=Climate.%20Drought%20A
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In sections 4 and 5, the river flow, and rainfall observations were analyzed, and the impact of 

El Niño on the drought and flood in the upper catchment of the Blue Nile was evaluated. The 

suitable seasonal SST conditions were identified over the Pacific Ocean to be recommended 

as input to seasonal forecasting by water resources managers in the region. A simulation of 

an ensemble of 9 members describing the regional climate to study the impact of Niño on the 

drought and flood in the upper catchment of the Blue Nile was made.  

 

Furthermore, in section 6, three runoff forecasting schemes were tested with different models 

for the Blue Nile station in Khartoum. Hence, the first forecasting scheme was established for 

June to August at a one month lead time. The second scheme was forecasting the flow of 

September to November at a one month lead time. The last forecasting scheme forecasted 

the runoff of the whole rainy season at a three month lead time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



DEWFORA Project Report <WP6-D6.2>  

35 

 

2. METEOROLOGICAL DROUGHT ASSESSMENT 

2.1 INTRODUCTION 

Meteorological droughts are periods of less than normal rainfall over a specified region. 

Several indices have been developed to quantify the severity of meteorological droughts. 

One of the most commonly used of these is the Standardized Precipitation Index (SPI). This 

chapter presents the application of the SPI to assess droughts in the Eastern Nile sub-

catchments of Atbara and Blue Nile under current and projected future climates. The 

methodology, including a description of the SPI and used models, is presented in the coming 

section (2.2) followed by the results of applying SPI to the selected basins in Section 2.3 and 

finally these results are discussed in Section Error! Reference source not found.. 
 

2.2 METHODOLOGY 

Historical and future meteorological drought occurrence over the Eastern Nile sub-

catchments is assessed through calculating the Standardized Precipitation Index – SPI using 

the catchment rainfall from several sources. For historical rainfall, three datasets are used 

and results are compared in terms of drought frequency for a period starting in 1961 and 

ending in 1990 or beyond (except for the NFS dataset which starts in 1992). Future rainfall is 

taken from an ensemble of 6 RCM simulations for the period 2021-2050. The baseline 

rainfall series from the ensemble members (1961-1990) are first compared to observed 

rainfall and SPI before the impact of climate change on the frequency of drought is assessed. 

The following sections give more details about the different models and datasets used in the 

analysis. 

 
2.2.1 The Standardized Precipitation Index 

The Standardized Precipitation Index (SPI, McKee et al. 1993; 1995) assigns a single 

numeric value to the precipitation which can be compared across regions with markedly 

different climates. The SPI is the number of standard deviations by which an observed value 

deviates from the long-term mean, for a normally distributed random variable. Since 

precipitation is not normally distributed, a transformation is first applied so that the 

transformed precipitation values follow a normal distribution. SPI can be applied to monitor 

both droughts and floods. 

The SPI is designed to be a relatively simple index, based on precipitation alone. Its 

fundamental strength is that it can be calculated all year round for a variety of time scales, 

either locally at a given point, or for precipitation averages over larger areas. This versatility 

allows the use of the SPI to monitor short-term water supplies, such as soil moisture, which 

is important for agricultural production, and longer-term water resources such as ground 

water supplies, stream flow, and lake and reservoir levels. The ability to examine different 
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time scales also allows droughts to be readily identified and monitored for the duration of the 

drought. According to McKee et al. (1993), a drought event occurs any time the SPI is 

continuously negative and reaches an intensity of -1.0 or less. The event ends when the SPI 

becomes positive. Each drought event, therefore, has a duration defined by its beginning and 

end, and intensity for each month that the event continues. The positive sum of the SPI for all 

the months within a drought event can be termed the drought’s “magnitude”. 

 

The SPI can be used as the basis for the analysis of the climatic input. Although the 

requirement for a transformation to a normal distribution could be a challenge in certain 

areas with highly skewed precipitation distributions, it offers the advantage of homogeneity 

across different areas covered by the DEWFORA consortium and can be used as the basis 

to generate global or continental maps of drought occurrence. The SPI can be very difficult to 

calculate in arid climates since the marginal distribution of precipitation is really non-

symmetrical. In some regions the number of rainy days with very low precipitation is very 

high and the number of rainy days with very high precipitation is very low. In order to 

calculate the SPI it is necessary to find a previous transformation that gives rise to a marginal 

distribution. In many cases this can be difficult to implement and it could be an argument to 

adopt the percentile index. The SPI is normalised, since if transforms the precipitation to a 

normal distribution, and therefore permits comparison among drought values in different 

locations. 

 

The program to calculate SPI was obtained from:  

http://www.drought.unl.edu/monitor/spi/program/spi_program.htm 

The method of calculation includes the following steps: 

• Data preparation. Generation of a time series of the precipitation value of interest is 

generated. At least 30 years of data are needed. 

• Determination of a probability frequency distribution that statistically fits the time 

series of precipitation data. 

• Calculation of the cumulative probability distribution from the fitted frequency 

distribution. 

• Transformation of the frequency distribution to the normal or Gaussian frequency 

distribution with a mean of zero and standard deviation of one so that values of the 

SPI are expressed as standard deviations. 

 
Table 2-1 SPI Values and Corresponding Drought Intensity - McKee et al. (1993) 

SPI Value Drought Intensity 

2.0 or more Extremely wet 
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1.5 to 1.99 Very wet 

1.0 to 1.49 Moderately wet 

-.99 to .99 Near normal 

-1.0 to -1.49 Moderately dry 

-1.5 to -1.99 Severely dry 

-2 and less Extremely dry 

 

Because SPI values are normally distributed, the frequencies of extreme and severe drought 

classifications for any location and any time scale are consistent. An extreme drought 

according to this scale (SPI = -2.0) occurs approximately 2-3 times in 100 years, an 

acceptable frequency for water planning. Fourth, because it is based only on precipitation 

and not on estimated soil moisture conditions as is the Palmer Drought Severity Index 

(PDSI), the SPI is just as effective during the winter months. 

 
2.2.2 Observed Rainfall Datasets 

The SPI has been calculated for catchment rainfall over the Blue Nile and Atbara sub-basins 

for the current climate from three different sources. These are the Climatic Research Unit 

(CRU) rainfall dataset, the ECMWF Rainfall Reanalysis dataset (ERA40), and the gauge-

satellite merged rainfall dataset produced by the Nile Forecast System (will be referred to as 

the NFS dataset). The following sub-sections shed more light about each dataset. For the 

future climate, dynamically downscaled rainfall from an ensemble of 6 simulations is used. 

These were produced by the PRECIS regional climate model described in Section 2.2.3. 

 

CRU Dataset 
The Climatic Research Unit (CRU) of the University of East Anglia has been producing this 

dataset since the 1990s (New et al. 1999, 2000). This dataset has a global coverage at 0.5° 

spatial resolution. It has a monthly time step and comprises a set of important climatic 

variables including precipitation, temperature, humidity, diurnal temperature range, cloud 

cover, and potential evapotraspiration making it one of the most comprehensive climate 

datasets available. The CRU dataset is based only on observations interpolated to a regular 

grid in a two-tier process; first a climatology is interpolated for the period 1961-1990; then 

anomalies are interpolated to the same grid for other years creating a time series covering 

the period 1901-2009 by the latest version of the CRU dataset (3.1). The dataset creation 

methodology has changed slightly since it was first produced as documented by the various 

responsible scientists at the CRU – see for example Mitchel and Jones (2005).  
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For this study, precipitation from the CRU dataset version 3.0 was used covering the period 

up 2006 to calculate the SPI over the Eastern Nile sub-catchments. The CRU Dataset is 

available for download from (http://badc.nerc.ac.uk/browse/badc/cru/data/cru_ts_3.00). At 

the time of download, the latest version was not yet available. The starting date was selected 

to be 1961 to coincide with the available baseline data from the RCM simulations as the 

observed datasets (CRU, ERA40, and NFS) to allow cross-comparisons. 

 

ERA40 Dataset 
ERA-40 is an ECMWF (Eurpoean Center for Medium-range Weather Forecasting) re-

analysis of the global atmosphere and surface conditions for 45-years, over the period from 

September 1957 through August 2002 by ECMWF. Many sources of the meteorological 

observations were used to produce this dataset, including radiosondes, balloons, aircraft, 

buoyes, satellites, scatterometers. These different data were assimilated through the 

ECMWF medium-range forecast model at 125 km resolution (about 1.125°). The data is 

stored in GRIB/NetCDF format. The reanalysis was done in an effort to improve the accuracy 

of historical weather maps and aid in a more detailed analysis of various weather systems 

through a period that was severely lacking in computerized data. For more information about 

the dataset refer to Uppala et al. (2004). The ERA40 rainfall was analysed as one of the 

“observed” datasets. ERA40 boundary conditions were also used to run PRECIS (described 

below in Section 2.2.3) and the resulting rainfall series was compared to original dataset to 

assess the quality of RCM simulations and the impact of that on SPI calculations. 

 
NFS Dataset 
The NFS rainfall dataset has been obtained from the NFS database as gridded daily rainfall 

fields (at a resolution of 20x20 km2) for the period 1992–2011 (in fact, it is available in real-

time but the analysis was limited to end of 2011). Although this period does not overlap with 

the selected baseline period (1961-1990), it is the historical period available with near-

observed daily data, especially satellite data. The effect of this difference on the SPI 

frequency is found to be small – see the results below. 

 

These rainfall fields were created by merging satellite-based and gauge-based gridded fields 

using a spatially fixed set of monthly weights. These weights were obtained from rainfall 

analysis over the Blue Nile and thus give more weight to satellite estimates during the rainy 

season (May-Oct) over the Ethiopian Plateau. The satellite-based estimate is inferred from 

half hourly infrared images received from the METEOSAT satellite (and quarter hourly 

images since 2007). These give the cloud-top temperature which is used to delineate rainfall 

areas using a threshold temperature of −40°C. Assuming that very cold temperatures 

correspond to very high clouds, which in turn are associated with rainfall, the daily rainfall 

http://badc.nerc.ac.uk/browse/badc/cru/data/cru_ts_3.00
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rate over a pixel is calculated as a linear function of the Cold Cloud Duration (CCD). That is 

the duration for which that pixel is covered with a cold cloud computed by accumulating all 

the half-hourly counts. Initially, existing satellite estimation methods at the time of NFS 

development (early 1990s) were investigated for use within the NFS including the GOES 

Precipitation Index (GPI) (Arkin, 1979), the READING technique (Milford and Dugdale, 

1990), the PERMIT technique (Barrett et al., 1989), the Convective-Stratiform Technique 

(CST) (Adler and Negri, 1988), and the Progressive Refinement Technique (PRT) (Bellerby 

and Barrett, 1993). Currently satellite rainfall is estimated by the Nile Hybrid technique 

(Green-Newby, 1992, 1993) which merges strengths of the CST and PRT Techniques to 

form a strategy designed to combine short-term and long-term satellite rainfall estimates to 

produce a high resolution (20 km) daily rainfall estimate. 

 

Gauge estimates are obtained using the Nile Inverse Distance (NID) interpolation (Cong and 

Schaake, 1995) technique based on WMO synoptic gauge data downloaded daily from the 

Florida State University website (http://www.met.fsu.edu/rawdata/syn/). The NID is a variant 

of the inverse distance method in which rainfall at an ungauged location is estimated as the 

weighted average of rainfall at surrounding gauges where weights are the inverse distance 

between the gauges and the ungauged location (which are selected here to fall on the same 

grid as the satellite estimate). The final gauge estimate is the weighted sum of the 

interpolated estimate and the long-term mean rainfall at the ungauged location. Those 

weights are calculated such that the influence of the long-term mean increases with the 

distance to the nearest gauge with recorded rainfall on the day. This is similar to the 

climatologically aided interpolation (CAI) technique of Willmott and Robeson (1995). This 

method overcomes the sparseness and discontinuity of the records because, on any 

particular day, usually data from about 40 stations are available. These are not necessarily 

the same ones received on another day. The observed daily database has 236 entries while 

only 142 of these lie within or close to the basin. In the early stages of NFS development, 

gauge-based fields were used to calibrate the satellite estimation equations but operationally, 

the two estimates are calculated separately and then a weighted average is computed as the 

final rainfall estimate. More details about the NFS rainfall estimation component can be found 

in the operations manual (Nile Forecast Center, 1999) and Elshamy (2006). 

 

This satellite-gauge merged dataset has a daily time step and was therefore aggregated to 

produce a monthly time series and spatially averaged over each of the studied basins. 

 
2.2.3 RCM Simulations 

The PRECIS regional modelling system developed by the UK Met Office (UKMO) / Hadley 

Centre has been used in this study to project future climate. This application considers 

http://www.met.fsu.edu/rawdata/syn/
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uncertainties in the regional climate response to global climate change through the 

construction of an ensemble of 6 RCM runs, but not those arising from different emissions 

scenarios nor those arising from different downscaling methods (e.g. different RCMs or 

statistical methods). Results from the GCM were all derived for one emission scenario 

(SRES A1B) as previous studies (e.g. Elshamy et al., 2009) indicated that the uncertainty 

across climate models is much larger than that across emission scenarios, at least till 2050. 

Baseline simulations (1961-1990) from the ensemble are compared to the observed datasets 

mentioned above. 

 

The study followed the UK Met Office (UKMO) procedure to select a subset of 6 scenarios 

out of the 17 QUMP (Quantifying Uncertainty in Model Predictions) ensemble members 

(UKCP09 - Murphy et al., 2009) for which boundary date are available from the UKMO. The 

different members of the QUMP ensemble are obtained by running the same GCM by slightly 

altering some physical parameters in the climate model to sample the range of climate 

sensitivity and produce a range of uncertainty similar to using multiple GCMs. The following 

sections provide a brief description of the history and development of PRECIS and an 

introduction to the different components of the model. 

 

RCM Description 
A regional climate model (RCM) is a high resolution climate model that covers a limited area 

of the globe, typically 5,000 km x 5,000 km, with a typical horizontal resolution of 50 km. 

RCMs are based on physical laws represented by mathematical equations that are solved 

using a three-dimensional grid. Hence RCMs are comprehensive physical models, usually 

including the atmosphere and land surface components of the climate system, and 

containing representations of the important processes within the climate system (e.g., cloud, 

radiation, rainfall and soil hydrology). Many of these physical processes take place on much 

smaller spatial scales than the model grid and cannot be modelled and resolved explicitly. 

Their effects are taken into account using parameterisations, by which the process is 

represented by relationships between the area or time averaged effect of such sub-grid scale 

processes and the large scale flow. 

 

Given that RCMs are limited area models they need to be driven at their boundaries by time-

dependent large scale fields (e.g., wind, temperature, water vapour and surface pressure). 

These fields are provided either by analyses of observations or by GCM integrations in a 

buffer area that is not considered when analysing the results of the RCM (Jones et al., 1995). 

 

The Hadley Centre’s current version of the RCM (HadRM3P) is based on HadAM3H, an 

improved version of the atmospheric component of the Hadley Centre coupled AOGCM, 
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HadCM3 (Gordon et al., 2000). HadRM3P has been used with horizontal resolutions of 50 

and 25 km with 19 levels in the atmosphere (from the surface to 30 km in the stratosphere) 

and four levels in the soil. The RCM uses the same formulation of the climate system as in 

the GCM which helps to ensure that the RCM provides high-resolution regional climate 

change projections generally consistent with the continental scale climate change projected 

by the GCM. 

 

Dynamical flow, the atmospheric sulphur cycle, clouds and precipitation, radiative processes, 

the land surface and the deep soil are all described in PRECIS. Boundary conditions are 

required at the limits of the model's domain to provide the meteorological forcing for the 

RCM. Information about all the climate elements as they evolve through being modified by 

the processes represented in the model is produced. 

 

PRECIS Development 
Under Article 4.1 and 4.8 of the UN Framework Convention on Climate Change (UNFCCC), 

all Parties to the convention are required to assess their national vulnerability to climate 

change and to submit regular National Communications. To this effect, the National 

Communications Support Unit (NCSU) of UNDP is developing an integrated package of 

methods to assist developing countries to develop adaptation measures to climate change. 

Assessments of vulnerability are informed by estimates of the impacts of climate change, 

which in turn are often based on scenarios of future climate. 

 

These scenarios are generally derived from projections of climate change undertaken by 

Global Climate Models (GCMs). These GCM projections may be adequate up to a few 

hundred kilometres or so, however they do not capture the local detail often needed for 

impact assessments at national and regional levels. One widely applicable method for adding 

this detail to global projections is to use a regional climate model (RCM). Other techniques 

include the use of higher resolution atmospheric GCMs and statistical techniques linking 

climate information at GCM resolution with that at higher resolution or at point locations.  

 

The idea of constructing a flexible regional modelling system originated from the growing 

demand of many countries for regional-scale climate projections. Only a few modelling 

centres in the world have been developing RCMs and using them to generate projections 

over specific areas as this task required a considerable amount of effort from an experienced 

climate modeller and large computing power. Both these factors effectively excluded many 

developing countries from producing climate change projections and scenarios. The Hadley 

Centre has configured the third-generation Hadley Centre RCM so that it is easy to set up. 

This, along with software to allow display and processing of the data produced by the RCM, 
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forms PRECIS. The provision of a flexible RCM is thus part of an integrated package of 

methods, which would also include a range of GCM projections for assisting countries to 

generate climate change scenarios and hence to inform adaptation decisions. It can be run 

over any area of the globe on a relatively inexpensive, fast PC. 

 

PRECIS (Providing REgional Climates for Impacts Studies, pronounced pray-sea, i.e. as in 

French), has been developed at the Hadley Centre and is sponsored by the UK Department 

for Environment, Food and Rural Affairs (DEFRA), the UK Department for International 

Development (DFID) and the United Nations Development Programme (UNDP). PRECIS 

runs on a personal computer (PC) and comprises: 

• An RCM that can be applied easily to any area of the globe to generate detailed climate 

change projections, 

• A simple user interface to allow the user to set up and run the RCM, and 

• A visualisation and data-processing package to allow display and manipulation of RCM 

output. 

To conduct thorough assessments, impact researchers need regional details of how future 

climate might change, which in general should include information on changes in variability 

(e.g. Arnell et al., 2003) and extreme events. An RCM is a tool to add small-scale detailed 

information of future climate change to the large-scale projections of a GCM. RCMs are full 

climate models and as such are physically based and represent most or all of the processes, 

interactions and feedbacks between the climate system components that are represented in 

GCMs. They take coarse resolution information from a GCM and then develop temporally 

and spatially fine-scale information consistent with it using their higher resolution 

representation of the climate system. In general they do not model oceans, as this would 

substantially increase the computing cost yet, in many cases, would make little difference to 

the projections over land where most impact assessments are conducted. 

 

2.3 RESULTS 

As mentioned earlier, the SPI was calculated for 1, 3, 6, 9, and 12 months lead times for the 

three mentioned historical rainfall time series as well as rainfall time series from 6 PRECIS 

simulations over the baseline period (1961-1990) and the future period (2021-2050). All 

calculations are made at the catchment scale for the Atbara and the Blue Nile catchments. 

The following section (2.3.1) compares precipitation across the three “observed” datasets 

while Section 2.3.2 shows the impact of climate change on rainfall and SPI. 

 
2.3.1 Observed Rainfall Comparisons 

Figure 2-1 shows the annual total rainfall series from the three observational datasets: CRU, 

ERA40, and NFS for the Blue Nile and the Atbara while Figure 2-2 shows the mean monthly 
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distributions for the catchments. CRU dataset is close to that of the NFS for both catchments 

except during the peak rainfall months (July and August). ERA40 overestimates rainfall up to 

1988 for the Blue Nile and up to 1978 for the Atbara compared to CRU rainfall. This 

overestimation occurs mainly during the recession period of the rainy season (Figure 2-2). 

The ERA40 PRECIS results are further overestimated but this occurs all year round resulting 

in about 32% more annual rainfall for the Blue Nile and about 70% more rainfall for the 

Atbara on average compared to original ERA40 dataset (which is already overestimated). 

This casts doubts on the use of this dataset for drought detection. 

 
a) Blue Nile at Khartoum 

 
b) Atbara at Atbara Town 

Figure 2-1 Annual “Observed” Rainfall Series for the Blue Nile and the Atbara 

 

Figure 2-3 shows the calculated SPI time series for the hydrologic year (12-months SPI 

calculated at the end of July each year) for the ERA40 rainfall. The results clearly shows that 

PRECIS, having its climate evolving freely within its domain (which covers North Africa and 

Southern Europe) distorts the pattern in such a way that some dry years are predicted as wet 

and vice versa. This clearly shows the requirement for correcting the systematic 
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overestimation bias that occurs for the seasonal distribution as shown in Figure 2-2. 

However, this was not done for this study. 

 
a) Blue Nile at Khartoum 

 
b) Atbara at Atbara Town 

Figure 2-2 Mean Monthly Distribution of “Observed” Rainfall Series for the Blue Nile and the Atbara 
 

 
a) Blue Nile at Khartoum 

 
b) Atbara at Atbara Town 

Figure 2-3 Hydrologic Year SPI for ERA40 Rainfall Series for the Blue Nile and the Atbara  

 

0

50

100

150

200

250

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

M
ea

n 
M

on
th

ly
 R

ai
nf

al
l (

m
m

/m
on

) CRU

ERA40

NFS

ERA40-PRECIS

0

20

40

60

80

100

120

140

160

180

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

 
 

 

-3

-2

-1

0

1

2

3

19
61

19
63

19
65

19
67

19
69

19
71

19
73

19
75

19
77

19
79

19
81

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

20
01

An
nu

al
 S

PI

ERA40 ERA40-PRECIS

-3

-2

-1

0

1

2

3

19
61

19
63

19
65

19
67

19
69

19
71

19
73

19
75

19
77

19
79

19
81

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

20
01

An
nu

al
 S

PI



DEWFORA Project Report <WP6-D6.2>  

45 

 

2.3.2 Climate Change Impacts 

Figure 2-4 shows the impact of climate change on the cumulative frequency distribution of 

the rainfall over the Blue Nile and Atbara sub-catchments. The distributions of the ERA40 are 

higher than those of both CRU and NFS datasets for both sub-catchments resulting from the 

overestimation shown above. The CRU deviates from the NFS for high rainfall (at 20% 

probability of exceedance) but the distributions are very close elsewhere indicating similar 

probabilities for droughts. The distributions of the PRECIS rainfall (shown as a range from 

the 6 simulations) take the shape of the ERA40-PRECIS with slight increase in the future for 

both basins (about 6% on average for both basins). This further indicates that the source of 

the bias is the RCM itself. 

 
a) Blue Nile - Present (1961-1990) 

 
b) Blue Nile - Future (2021-2050) 

 
c) Atbara - Present (1961-1990) 

 
d) Atbara - Future (2021-2050) 

Figure 2-4 Impact of Climate Change from 6 RCM Simulations on Rainfall Frequency Distribution of the Blue 
Nile and Atbara. (The yellow band indicate the range across the 6 PRECIS simulations) 

 

Because the SPI normalizes rainfall, SPI distributions of all three observed datasets (CRU, 

ERA40, and NFS) in addition to the ERA40 PRECIS simulation take similar shapes as shown 

in Figure 2-5 for annual SPI series calculated over the hydrologic year (August to July). 

Climate change as depicted by the 6 PRECIS simulations raises the whole distribution 

indicating more rainfall over all probabilities, especially for the Blue Nile. For the Atbara, 

though, the uncertainty (as indicated by the bandwidth) seem to increase at the low end of 
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the distribution indicating that some scenarios still predict increases in drought despite the 

general increase in rainfall. 

 
a) Blue Nile - Present (1961-1990) 

 
b) Blue Nile - Future (2021-2050) 

 
c) Atbara - Present (1961-1990) 

 
d) Atbara - Future (2021-2050) 

Figure 2-5 Impact of Climate Change from 6 RCM Simulations on Hydrologic Year SPI Frequency 
Distribution of the Blue Nile and Atbara 
 

Figure 2-6 to 3-10 show similar results to what is seen for the annual series (Figure 2-5) 

above except that the bandwidth across PRECIS simulations is smaller because of the 

increased sample size – these are monthly time series. In fact the bandwidth increases with 

the lead time. The figures show the SPI distributions calculated for 1, 3, 6, 9, and 12 months 

in sequence. Probability distributions shift upwards in the future indicating more rainfall over 

the different probability bands, however, with some increases in both flood and drought 

probabilities at the edges of the distribution, i.e. increased probability of extremes. This is 

clear for droughts of the Blue Nile SPI at one month lead time (compare Figure 2-6 a and b), 

flood probability of the Blue Nile at 3 months lead time (compare Figure 2-7 a and b), and 

both drought and flood probabilities of the Atabara at 6 and 9 months lead times (compare 

Figure 2-8c vs. d and Figure 2-9c vs. d).  
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a) Blue Nile - Present (1961-1990) 

 
b) Blue Nile - Future (2021-2050) 

 
c) Atbara - Present (1961-1990) 

 
d) Atbara - Future (2021-2050) 

Figure 2-6 Impact of Climate Change from 6 RCM Simulations on Monthly SPI Frequency Distribution of the 
Blue Nile and Atbara 
 

 

 

 
a) Blue Nile - Present (1961-1990) 

 
b) Blue Nile - Future (2021-2050) 
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c) Atbara - Present (1961-1990) 

 
d) Atbara - Future (2021-2050) 

Figure 2-7 Impact of Climate Change from 6 RCM Simulations on 3-Monthly SPI Frequency Distribution of 
the Blue Nile and Atbara 
 

 

 

 

 

 

 
a) Blue Nile - Present (1961-1990) 

 
b) Blue Nile - Future (2021-2050) 

 
c) Atbara - Present (1961-1990) 

 
d) Atbara - Future (2021-2050) 

Figure 2-8 Impact of Climate Change from 6 RCM Simulations on 6-Monthly SPI Frequency Distribution of 
the Blue Nile and Atbara 
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a) Blue Nile - Present (1961-1990) 

 
b) Blue Nile - Future (2021-2050) 

 
c) Atbara - Present (1961-1990) 

 
d) Atbara - Future (2021-2050) 

Figure 2-9 Impact of Climate Change from 6 RCM Simulations on 9-Monthly SPI Frequency Distribution of 
the Blue Nile and Atbara 

 

 

 

 
a) Blue Nile - Present (1961-1990) 

 
b) Blue Nile - Future (2021-2050) 
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c) Atbara - Present (1961-1990) 

 
d) Atbara - Future (2021-2050) 

Figure 2-10 Impact of Climate Change from 6 RCM Simulations on 12-Monthly SPI Frequency Distribution of 
the Blue Nile and Atbara 

 

2.4 CONCLUSION 

The results show that ERA40 rainfall is overestimated for the Eastern Nile region compared 

to CRU and NFS rainfall datasets for early part of the record, distorting the rainfall 

distributions, and to a lesser extent the SPI distributions. CRU rainfall is higher than NFS for 

the region during the peak rainfall, and thus has higher flood probabilities but similar drought 

probabilities. When run using ERA40 boundary condition (which does not include 

precipitation), PRECIS overestimates rainfall over the whole year, resulting in different 

seasonal rainfall distributions compared to ERA40 rainfall. This has its effect on the SPI as 

some dry years may be seen as wet and vice versa. Such biases need to be corrected, but 

their effect is somewhat reduced in calculating SPI because it involves normalization of 

rainfall distributions. 

 

The current set of climate simulations indicate a general increase in rainfall over the region 

but this does not exclude the increase of drought probability for some lead times especially 

longer ones and on the scale of the hydrologic year. The uncertainty bandwidth (defined by 

the range across the different simulations) increases near the ends of the SPI probability 

distributions but not for all lead times. 

 

The SPI proved to be a useful way to characterize meteorological drought across different 

catchments and at different time scales. Because it normalizes the rainfall distribution, it is 

less sensitive to systematic biases in the data (i.e. systematic overestimation or 

underestimation – shifts in the mean).   
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3. HYDROLOGICAL DROUGHT ASSESSMENT 

3.1 INTRODUCTION 

Hydrological droughts occur when the deficit in precipitation extends to large periods and 

therefore there is a shortfall on surface or subsurface water supply. Therefore, hydrological 

droughts follow from meteorological droughts but they are affected by the catchment size 

and the existing management infrastructure. Meteorological drought indices respond to 

weather conditions that have been abnormally dry or abnormally wet. When conditions 

change from dry to normal or wet, for example, the drought measured by these indices ends 

without taking into account streamflow, lake and reservoir levels, and other longer-term 

hydrologic impacts. Meteorological drought indices do not take into account human impacts 

on the water balance, such as irrigation. These aspects are considered when computing 

hydrological drought indices.  

 

Based on time series of hydrological drought characteristics, corresponding indices (single 

values) can be derived, for example the mean annual minimum flow or mean annual deficit 

duration. As droughts are regional in nature and critical drought conditions occur when there 

is an extreme shortage of water for long durations over a large area, a drought study often 

includes the spatial extent of the drought as a measure of the severity of the drought. 

 

A common feature of all indices is that they are calculated over a particular period of time 

within the year (e.g., March to October). The period of time to be considered in the 

calculation depends on the characteristics of the systems to be analysed. For example, 

dryland agriculture is affected by the atmospheric behaviour of short periods of time (i.e., one 

or two months) while the rate at which shallow wells, small ponds, and smaller rivers become 

drier or wetter is affected by the atmospheric behaviour of longer periods (i.e., several 

months). Some processes have much longer time scales, such as the rate at which major 

reservoirs, or aquifers, or large natural bodies of water rise and fall, and the time scale of 

these variations is on the order of several years. 

 

This chapter presents the application of three hydrological drought indices to assess 

droughts in the Eastern Nile sub-catchments of Atbara and Blue Nile under current and 

forecasted flow conditions. The methodology, including a description of the selected indices 

and used models, is presented in the coming section (4.2) followed by the results of applying 

the indices to the selected basins in Section 4.3 and finally these results are discussed in 

Section 4.4. 
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3.2 METHODOLOGY 

Under work package 3, Deliverable D3.1, titled “White paper for definition of drought 

vulnerability across Africa”, gives short descriptions for the most common drought indices 

used. In this study, we test two of the common drought indices. The first is the Surface Water 

Supply Index (SWSI), mentioned in D3.1, which is calculated using forecasted flow. The 

other, not mentioned under D3.1, is the streamflow Drought Index (SDI) which is commonly 

used in Asia (India, Iran, etc.). SWSI has been used to assess the drought frequency in 

streamflow forecasts while SDI has been applied to assess the drought frequencies for 

observed, simulated, and forecasted streamflows for the Eastern Nile sub-basins of Atbara 

and Blue Nile. Simulated and forecasted streamflows are calculated using the hydrological 

component of the Nile Forecast System (NFS). A third indicator developed by the Ministry of 

Water Resources and Irrigation of Egypt is adapted to assess droughts of the selected sub-

basins based on the naturalized flows at the outlets of the sub-basins (based on 

observation). 

 
3.2.1 NFS Hydrological Component and Forecasting 

The NFS is a real-time distributed hydro-meteorological modelling system designed for 

forecasting Nile flows at designated key points within the Nile. Of major interest is the inflow 

of the Nile into the High Aswan Dam, Egypt. The system is hosted at the Nile Forecast 

Center (NFC) of the Ministry of Water Resources and Irrigation (MWRI), Giza, Egypt. NFS 

version 5.1 (Nile Forecast Centre, 2007) was used for this study. The current version of the 

NFS is 6.08, which is still under testing. Figure 3-1 shows a schematic of the NFS. 

 

The core of the NFS is a conceptual distributed hydrological model of the whole Nile system 

including soil moisture accounting, hill slope and river routing, lakes, wetlands, and man-

made reservoirs within the basin. The model accounts for irrigation abstractions in Sudan, 

but these are currently defined in a static way (i.e. inter-annual variability is not accounted 

for). The distributed hydrological model is defined on the quasi-rectangular grid of the 

METEOSAT satellite from which the system receives imagery to estimate rainfall. Each grid 

cell (pixel) imitates a small basin with generalized hillslopes and stream channels. Inputs to 

each grid cell are precipitation and potential evapotranspiration. This input is applied to a 

two-layer soil moisture accounting (water balance) model of the pixel. The upper layer is thin 

to represent the short-term detention of storm water. This layer receives precipitation inputs 

and evapotranspiration occurs at the potential rate. All rainfall is assumed to infiltrate the 

upper layer. Excess rainfall percolates to the lower layer which has a larger moisture 

capacity. If the evaporative demand is not met from the upper layer, water is extracted from 

the lower layer at a rate which varies linearly with the current moisture capacity. Subsurface 

runoff is calculated as a non-linear function of the relative moisture content of the lower layer 

(a non-linear reservoir). Surface runoff is calculated as a fraction of the excess rainfall which 
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depends on the amount of the lower layer deficit. Surface and subsurface runoffs are 

subsequently input to the pixel’s hillslope routing model, simulating the transfer of water 

towards the main channel. Generated runoff is then routed through this channel to the 

downstream pixel according to a pre-defined connectivity sequence. The system relies on a 

GIS database to represent the connectivity of the different pixels as well the different 

streams, rivers, and sub-basins associated with the designated forecast points. 

 

 
Figure 3-1 Schematic of the Nile Forecast System 

 

Elshamy (2008) evaluated the long-term performance of the NFS at the monthly time scale 

and found that it is generally satisfactory for the Blue Nile and Atbara tributaries. For more 

details about the NFS refer to Nile Forecast Center (1999) and Elshamy (2006). 

When used for forecasting as intended, a short NFS simulation (a few weeks) is performed 

using observed rainfall (merged satellite and gauge estimates as described in Section 0) to 

define the model status (soil moisture storage, reach storage) on the current date. 

Subsequently, an ensemble of historical rainfall (for as many years as available – currently 

60 years are used) for the 3 months following the current date is applied to the model to 

simulate possible inflow series to Lake Nasser, called Extended (and more recently 

Ensemble) streamflow Predictions (ESP). The resulting flow traces are analysed statistically 

to provide forecast traces the 10% and 90% exceedance probability used as the bounds for 

the forecast and the 50% probability corresponding to the median forecast. These three 

values are generally the ones that get reported but values corresponding to other 

probabilities are also available from the analysis. Once a week observed flows at some key 

points (e.g. Diem at the Blue Nile near the Ethio-Sudanese border) are assimilated to update 

the model states. It implies that the rainfall estimates are adjusted for the last 4 weeks to 

minimise the difference between the simulated and the observed flows.  
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As mentioned above, the NFS requires rainfall and potential evapotranspiration data for the 

whole Nile basin as inputs. These are required as gridded rainfall and potential 

evapotranspiration data (i.e. maps) with a daily time step although monthly data can be also 

used as the system contains routines for disaggregating these to the daily time step. NFS 

also requires discharge data at key stations for assimilation, calibration, and performance 

evaluation. Discharge is usually obtained from stage measurements using rating curves that 

are updated annually based on concurrent stage and discharge measurements. 

 
3.2.2 MWRI Drought Classification 

In 2010, the Nile Yield Committee (see Section 0) commissioned a study to classify the Nile 

flood volume regarding floods and droughts. As Egypt is concerned with the total annual flow 

of the Nile over the hydrologic year (1st August – 31st July), the categories are based on the 

annual naturalized flow of the Nile at Aswan (Table 3-1). According to the 1959 Nile Water 

Treaty with Sudan, the average annual natural flow of the Nile is 84 BCM (1901-1950 

average). Therefore, the categories are centred on this figure.  

 
Table 3-1 MWRI Flow Classification According to Naturalized Flow (BCM) at Aswan 

Category Natural Flow at Aswan 

Extremely dry < 56 

Very dry 56 - 70 

Dry 70 - 77 

Lightly dry 77 - 81 

Near normal 81 - 87 

Lightly wet 87 - 91 

Wet 91 - 98 

Very wet 98 – 112 

Extremely Wet > 112 

 

For this study, flood/drought categories are needed at other important points along the Nile 

and were derived from the natural flow values at Aswan. For Dongola, the last river gauge 

above the inlet of Lake Nasser, the categories bounds are defined subtracting 14.5 BCM 

from the natural flows at Aswan. This figure is the average Sudan withdrawals over the study 

period.  

 

For Khartoum, the categories bounds are calculated from those at Dongola based on the 

average percentage of the Blue Nile at Khartoum flows to the Main Nile flows at Dongola 



DEWFORA Project Report <WP6-D6.2>  

55 

 

over the period 1992-2011. A similar procedure was done for Atbara and the Blue Nile at 

Diem (Table 3-2).  

 

For this study, the ESP is run at decadal (10 days) time step over the period 1992-2011 and 

the flow forecasts for the locations (Dongala, Atbara, Khartoum, and Diem) are summed 

annually over the hydrological year. The median (50% probability) is used to characterize the 

flood and the time series of those flows are compared to the mentioned categories to 

determine the flood/drought condition. These are compared to observed records in Section 

3.3.1. 
Table 3-2 MWRI-Based Flow Classification and Corresponding Naturalized Flow Ranges (BCM) at Key 

Locations along the Main Nile, the Blue Nile, and the Atbara 

Category Dongola Khartoum Diem Atbara 

Extremely dry < 41.5 < 24.5 < 27.5 < 6.5 

Very dry 41.5 – 55.5 24.5 – 32.7 27.5 – 36.8 6.5 – 8.7 

Dry 55.5 – 62.5 32.7 - 36.9 36.8 – 41.5 8.7 – 9.8 

Lightly dry 62.5 – 66.5 36.9 – 39.2 41.5 – 44.1 9.8 – 10.4 

Near normal 66.5 – 72.5 39.2 – 42.8 44.1 – 48.1 10.4 – 11.4 

Lightly wet 72.5 – 76.5 42.8 – 45.1 48.1 – 50.7 11.4 – 12.0 

Wet 76.5 – 83.5 45.1 – 49.3 50.7 – 55.4 12.0 -13.1 

Very wet 83.5 – 97.5 49.3 – 57.5 55.4 – 64.7 13.1 -15.3 

Extremely Wet > 97.5 > 57.5 > 64.7 > 15.3 

 
3.2.3 SWSI drought index 

The Surface Water Supply Index (SWSI) combines hydrological and climatic features in a 

single index and allows for the consideration of reservoir storage. The SWSI is computed for 

a hydrographic basin or for a water resources system by obtaining the probability of non-

exceedance for the values of precipitation, runoff, stored water, and snowpack in the basin 

(Garen, 1993, Shafer and Dezman, 1982). Each component is assigned a weight depending 

on local conditions. These weighted components are summed to determine the global SWSI 

value for the entire basin. The use of non-exceedance probabilities as a normalizing 

technique allows comparison of water supply availability among regions of differing 

variability. 

 

The SWSI was first introduced in Colorado in the early 1980s (Shafer and Dezman 1982) to 

provide a more appropriate indicator of water availability in western United States than the 

widely used Palmer drought index (Palmer 1965). Subsequent developments of SWSI in 

Oregon and Montana have followed the same basic procedure as in Colorado, with minor 
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differences in coefficient estimation and data usage. These indexes have been used by US 

state governments as a tool for monitoring drought and as a mechanism to trigger specific 

actions by state drought committees and other related groups. 

 

The original SWSI was formulated as a rescaled weighted sum of non-exceedance 

probabilities of four hydrologic components: snowpack, precipitation, streamflow, and 

reservoir storage. The mathematical formulation of the SWSI is: 

𝑺𝑾𝑺𝑰 =  
𝒂𝑷𝒔𝒏𝒐𝒘 + 𝒃𝑷𝒑𝒓𝒆𝒄 +  𝒄𝑷𝒔𝒕𝒓𝒎 + 𝒅𝑷𝒓𝒆𝒔𝒗 − 𝟓𝟎

𝟏𝟐
 

where a,b,c and d are weights for each hydrological component; a+b+c+d=1; Pi is the 

probability of nonexceedance (in percent) for component i; and snow, prec, strm, and resv 

are the snowpack, precipitation, streamflow, and reservoir storage hydrological components 

respectively. By subtracting 50 the SWSI values are centred on zero, and dividing by 12 

compresses the range of values between -4.17 and +4.17. This centering and compressing 

was done to make the values have similar magnitudes to the Palmer Index. Weights 

determined subjectively or from normalizing procedure but not optimized to predict a certain 

variable. 

 

Although the SWSI is not the most widely used drought index, it was selected because of 

three main advantages. First, it can be computed with relatively few data, which are generally 

available in most water resources system (rainfall, streamflow, snowpack and reservoir 

storage). Second, it is computed for a water resources system, and can describe the global 

behaviour of the entire basin under analysis. Third, the weights assigned to the different 

components can be adapted to local requirements, depending on the specific structure of a 

given system (available resources, degree of development, demand type, relative role of 

regulation, snowpack or groundwater, etc.). 

 

In 1993, Garen published a revised formulation for the SWSI based on streamflow volume 

forecasts: 

𝑺𝑾𝑺𝑰 =  
𝑷𝒇𝒄𝒔𝒕+𝒓𝒆𝒔𝒗 − 𝟓𝟎

𝟏𝟐
 

  

The revised formula has a single probability of summed expected streamflow (over an 

appropriate time horizon) and current reservoir storage. The component weightings are done 

implicitly within the streamflow forecast. Streamflow forecast components vary throughout 

the year and switches to upcoming year at beginning of water year. This revision is sensible 

because rainfall and snowmelt both contribute to the streamflow and thus the original 

formulation was somewhat double-counting their effects. The SWSI values and categories 

are listed in Table 3-3. 
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Table 3-3 SWSI Drought Classification 

Category SWSI Range 

Extremely dry -4.2 to -3.0 

Moderately dry -2.9 to -2.0 

Slightly Dry -1.9 to -1.0 

Near Average -0.9 to 1.0 

Slightly Wet 1.1 to 2.0 

Moderately Wet 2.1 to 3.0 

Extremely Wet 3.1 to 4.2 

 

 
3.2.4 SDI Drought Index 

As suggested by Mckee et al. (1993), the SPI procedure can also be applied to other water 

variables, such as soil moisture, snowpack, streamflow, reservoir and groundwater. The SDI 

developed by Nalbantis and Tsakiris (2009) and the Standardized Runoff Index (SRI) 

developed by Shukla and Wood (2008), have computation procedures very similar to that of 

SPI. The difference between SDI and SRI is that the SDI uses observed streamflow data, 

while the SRI uses simulated runoff data from hydrological models. 

 

This index SDIi,k requires streamflow volume values Qi,j where i denotes the hydrological year 

and j denotes a month within the hydrological year. We can obtain Vi,k cumulative streamflow 

volume for the i-th hydrological year and k-th reference period. 

 𝑽𝒊,𝒌 = ∑ 𝑸𝒊,𝒋
𝒊𝒌
𝒋=𝟏   i= 1,2,3,…., j= 1,2,….12, k= 1,2,3,4,… 

 𝑺𝑫𝑰𝒊,𝒌 =  𝑽𝒊,𝒌−𝑽
�𝒌

𝑺𝒌
 

Where Vk and Sk are respectively the mean and standard deviation of the cumulative 

streamflow volumes for the k-th reference period. The definition of states of drought with SDI 

are given in Table 3-4 below 

 
Table 3-4 SDI Drought Classification 

Category SDI Range 

Non drought ≥ 0.0 

Mild drought -1.0 to 0.0 

Moderate drought -1.5 to -1.0 

Severe drought -2.0 to -1.5 

Extremely Dry < -2.0  
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3.3 RESULTS 

 
3.3.1 MWRI Drought Categories 

As mentioned earlier, median ESP forecasts are compared to observations in terms of 

MWRI-based flood/drought categories at 4 main stations along the Main Nile, the Blue Nile, 

and the Atbara. For this analysis, total annual flows are calculated for hydrological years 

spanning the period August 1st to July 31st of the next year. Figure 3-2 shows the comparison 

at Dongola on the Main Nile. Forecasts seem to be close to observations especially for the 

first half of the record. For example, year 1998-1999 was a flood year, categorized as very 

wet for both observation and forecast. Similarly, 2010-2011 was a flood year categorized as 

very wet according to forecasts while the observed total lies in the wet category. The 

selected period has more flood years than drought years in general but most of the drought 

years (e.g. 2002-2003 and 2009-2010) are missed by the forecasts despite being very dry 

according to observations. In general the ESP seems to overestimate the flows resulting in 

wrong categorization of drought years. 

 

Figure 3-3 and Figure 3-4 compare the observed and forecasted flow records for the Blue 

Nile at Khartoum and Diem respectively. Here the ESP seems to be less successful than at 

Dongola for flood years while it predicts drought years better. The ESP forecast volumes are 

generally underestimated especially in flood years (e.g. 1998-1999, 2006-2007 are observed 

to be very wet at Khartoum but only wet according to ESP forecast). The severity of the 

drought in 2002-2003 is underestimated by the forecast while the correct categories are 

picked for drought years 1997-1998, 2003-2004, and 2009-2010 at Khartoum. At Diem, the 

forecast line seems to be shifted down for the whole record. Therefore, flood categories are 

underestimated, while drought categories are overestimated by the forecasts. 
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Figure 3-2 Categorized Observed and Forecasted Flows of the Main Nile at Dongola 

 

 
Figure 3-3 Categorized Observed and Forecasted Flows of the Blue Nile at Khartoum 
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Figure 3-4 Categorized Observed and Forecasted Flows of the Blue Nile at Diem 

 
Figure 3-5 shows the results for the Atbara where more discrepancies are observed. 

Categorizing a year as a drought year according to forecasts can turn out to be completely 

wrong, e.g. year 1994-1995 is an extremely wet year according to the derived categories for 

Atbara while it is forecasted as very dry. 2004-2005 was a dry year while the forecast shows 

it as a lightly wet year. The small range of the Atbara flows resulted in tight categories but the 

forecasts of the Atbara need to be revisited. 

 
 
3.3.2 SWSI Drought Index 

 

Streamflows were forecasted on a decadal (ten days) time step starting in May 1992 till 

October 2011 by using the median ESP forecast (probability of 50% exceedance). The 

forecasted flow was accumulated from the first of May till the end of October for each year (to 

get the flow forecast over the season). The period May-October denotes the rainy season for 

the Eastern Nile basins. This flow forecast is added to the actual storage in reservoirs at the 

end of April for both the Atbara and Blue Nile Basins. 
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Figure 3-5 Categorized Observed and Forecasted Flows of the Atbara at Atbara Town 

 

 

To calculate the SWSI, reservoirs need to have a historical record and have been managed 

consistently over time and data must be available in real time. On Atbara River, there is the 

Khashm El-Gerba (KEG) reservoir (1964) and the TK5 reservoir (2009), and on Blue Nile, 

two reservoirs exist, these are the Roseries (1966) and Sennar (1925). All reservoirs started 

operating (as in the brackets) prior to the start of the selected period except TK5. However, 

due to the short length of the record (only 20 years), years 2009-2011 were not omitted from 

the analysis. 

 

The forecast points are selected at basin outlets; therefore, the Atbara town is selected as 

the outlet of the Atbara River, while Khartoum is the outlet of the Blue Nile. Then the 

forecasted streamflow for the season is added to the end April reservoir storage, prior to 

runoff. Finally, the results are sorted in descending order to calculate the non-exceedance 

probability using the empirical formula (1-(Rank/n+1)), where Rank represent the rank of the 

summed values in descending order, and n equals the total number of years analyzed. 

Fitting distributions was avoided because the record length is rather short and the fits are 

usually affected by the storage term. The previous steps allow the calculation of the SWSI 

values as explained in Section 3.3.2. 

 

 

 

0

5

10

15

20

25

30

35

19
92

-1
99

3

19
93

-1
99

4

19
94

-1
99

5

19
95

-1
99

6

19
96

-1
99

7

19
97

-1
99

8

19
98

-1
99

9

19
99

-2
00

0

20
00

-2
00

1

20
01

-2
00

2

20
02

-2
00

3

20
03

-2
00

4

20
04

-2
00

5

20
05

-2
00

6

20
06

-2
00

7

20
07

-2
00

8

20
08

-2
00

9

20
09

-2
01

0

20
10

-2
01

1

20
11

-2
01

2

To
ta

l H
yd

ro
lo

gi
ca

l Y
ea

r F
lo

w
 (B

CM
) 

ESP(BCM)

Obs(BCM)

Extremely dry

Very dry

Dry

Light dry

Near normal

Light wet

Wet

Very wet



DEWFORA Project Report <WP6-D6.2>  

62 

 

Table 3-5 SWSI values for the flood season during the period (1992-2011) for Atbara Basin 

Rank Year ESP Flow Observed KEG 
Storage 

ESP+Storag
e 

Non-exceedence SWSI 

1 2010 21.15 17.91 1.23 22.38 0.95 3.77 

2 1998 17.32 20.48 0.81 18.13 0.90 3.37 

3 1999 15.23 13.23 1.01 16.24 0.86 2.98 

4 2001 14.99 13.45 1.06 16.05 0.81 2.58 

5 2011 14.88 10.25 1.10 15.98 0.76 2.18 

6 2007 12.57 19.86 1.11 13.69 0.71 1.79 

7 2005 12.63 13.56 1.01 13.64 0.67 1.39 

8 2003 12.02 15.40 0.89 12.91 0.62 0.99 

9 2000 11.18 13.92 1.12 12.30 0.57 0.60 

10 2004 11.18 8.82 1.00 12.18 0.52 0.20 

11 2008 10.18 22.66 0.88 11.06 0.48 -0.20 

12 2009 9.91 8.37 0.84 10.74 0.43 -0.60 

13 1994 8.82 13.11 0.83 9.65 0.38 -0.99 

14 2006 8.19 16.08 1.02 9.21 0.33 -1.39 

15 1995 7.59 15.42 0.96 8.55 0.29 -1.79 

16 2002 6.93 15.01 1.05 7.98 0.24 -2.18 

17 1992 6.78 8.13 0.69 7.47 0.19 -2.58 

18 1993 6.18 7.70 1.14 7.32 0.14 -2.98 

19 1996 6.00 10.30 0.97 6.97 0.10 -3.37 

20 1997 5.38 10.23 0.98 6.35 0.05 -3.77 

*All Flow Volumes and Storages are in BCM; Storage is taken as observed on 30th of April 

  

Table 3-5 and Table 3-6 show the results of the SWSI values for Atbara and Blue Nile 

respectively. The results show some conflicts between Atbara Town, and Khartoum. For 

example, year 2001 is categorized as Moderately Wet for the Atbara River, while it is 

categorized as Near Average for the Blue Nile. However, this does not mean either is wrong. 

Despite the proximity of the basins, they need not be in the same flood/drought category 

each year as can be seen by comparing Figure 3-3 to Figure 3-5 (e.g. 1993-1994). The 

results do not reflect the actual situation of the flood season for the year 1997-1998 which is 

categorized as an extremely dry year for both rivers, while, in section 3.3.1 above, this year 

lies between mild drought and severe drought. The results for the Atbara are worse than 

those of the Blue Nile (Table 3-6) because of the reduced forecast quality for that basin 

compared to the Blue Nile. Flow forecast values need to be corrected to enhance the results 

of the SWSI values (compare the observed and ESP Flow columns). 
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The results also show that this method requires a large number of years (more than 40 

years) to cover most hydrological phenomena. SWSI values are a function of the probability 

of non-exceedance which is obtained based on the rank of the year. In this study; the total 

number of the years is 20, and no extreme drought happened in the selected period, the 

values ranked at the bottom will always be Extremely Dry, even if that year is not really dry. It 

is the driest only on the used record.      

 

 

 
Table 3-6 The SWSI values for the flood season during the period (1992-2011) for Khartoum Basin 

Rank Year 
ESP 
Flow 

Observed Roseires Sennar ESP+Storage 
Non- 
Exceedance 

SWSI 

1 1998 42.51 53.84 1.01 0.52 44.04 0.95 3.77 

2 2007 39.83 61.37 1.97 0.51 42.31 0.90 3.37 

3 2010 39.46 48.02 0.65 0.32 40.43 0.86 2.98 

4 1999 37.68 49.62 1.52 0.53 39.73 0.81 2.58 

5 2011 37.72 36.68 0.79 0.40 38.91 0.76 2.18 

6 1993 35.37 42.89 1.33 0.49 37.19 0.71 1.79 

7 2006 34.58 49.62 1.53 0.48 36.59 0.67 1.39 

8 1996 33.86 43.97 0.93 0.49 35.28 0.62 0.99 

9 2000 32.90 37.27 1.36 0.52 34.78 0.57 0.60 

10 2003 31.71 36.02 0.98 0.49 33.18 0.52 0.20 

11 2001 31.21 42.36 1.43 0.50 33.15 0.48 -0.20 

12 1994 30.60 42.67 0.85 0.44 31.89 0.43 -0.60 

13 2005 29.30 34.97 1.46 0.56 31.32 0.38 -0.99 

14 2008 27.13 52.05 1.76 0.40 29.29 0.33 -1.39 

15 2002 25.55 23.67 1.29 0.48 27.33 0.29 -1.79 

16 1995 25.76 25.10 0.32 0.69 26.77 0.24 -2.18 

17 2004 22.63 27.93 1.50 0.47 24.60 0.19 -2.58 

18 1992 22.80 29.40 0.50 0.42 23.72 0.14 -2.98 

19 2009 21.42 27.37 1.30 0.40 23.11 0.10 -3.37 

20 1997 21.35 27.83 1.21 0.51 23.08 0.05 -3.77 

All Flow Volumes and Storages are in BCM; Storage is taken as observed on 30th of April 

 
3.3.3 SDI Drought Index 

In this section, the Standardized Discharge Index (SDI) is calculated using the observed 

discharge time series, NFS simulated flow, and the median of ESP forecasted flow 

generated as explained above. Figure 3-6, Figure 3-7 and Figure 3-8 compare the SDI 
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across the observed, simulated, and forecast for Atbara, Diem, and Khartoum respectively. 

The simulated and forecasted SDI at Atbara in many years did not have the same direction 

of the observed SDI, this is clear in years 1994, 1995, 2001, 2002, 2004, 2006, 2008, and 

2011. These results indicate that the hydrological model of Atbara should be calibrated and it 

is clear that the bad simulation of Atbara could be the reason for the poor results of the ESP 

used to calculate SWSI above.  

 
Figure 3-6 Seasonal values of SDI over the Atbara river during the period (1992-2011) 

 
Figure 3-7 Seasonal values of SDI over the Upper Blue Nile at Diem during the period (1992-2011) 

 
Figure 3-8 Seasonal values of SDI over the Blue Nile at Khartoum during the period (1992-2011) 

 
The results of the Blue Nile at Diem and Khartoum show that the observed SDI, Simulated 

and forecasted SDI have the same sign for most years. During the whole period (1992-
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2011), not a single year recorded DSI close to -2.0, which means that no extremely dry years 

occurred during the study period. Most years were near average or not dry, and in all drought 

years the SDI was > -1.5, i.e. drought years were only in the moderate drought range. 

 

3.4 CONCLUSION 

From the above results we can summarize the conclusion in these points: 

• The MWRI classification method has been successfully adjusted for the application to 

the selected sub-basins. However, the small flow range of the Atbara results in small 

bounds for the categories which makes it difficult to get the right drought 

characterization. 

• The hydrological model or forecasting parameters of the Atbara basin need to be 

revisited. A proper calibration is needed so as to study the drought situation for that 

basin. 

• The quality of SWSI Results depends on the accuracy of the forecasted flow and the 

length of record. 

• The SDI is an easy method to categorize the drought even for the observed or 

simulated stream flow time series. 

• The selected drought indices seem to be useful and applicable but the data and 

modelling need to be improved to obtain the right information about any coming 

drought. 

• Other drought indices need to be studied and compared before selecting the best 

index to characterize drought in the Eastern Nile region.    
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4. THE CONNECTIONS OF ENSO AND DROUGHT AND FLOOD OVER THE 
UPPER CATCHMENT OF THE BLUE NILE BY USING OBSERVATIONAL 
DATASET 

4.1 INTRODUCTION 

 

The Nile is the longest river in the world with a length of 6,650 km and it flows through ten 

countries Jury, (2004). The major two tributaries, the White Nile and Blue Nile form the main 

Nile in Khartoum, and the seasonal Atbara River joins the Nile approximately 500 km 

downstream. The Blue Nile originates from Lake Tana in Ethiopian Highland and contributes 

around 67% to the main Nile discharge. The Upper Blue Nile River Basin is 176 000 km2 in 

area (Conway, 2000). The rainfall regime follows the seasonal solar heating of the air above 

the Ethiopian Plateau, and the rainy season extends approximately from June to September. 

The Blue Nile (known as Abay River in Ethiopia) and its tributaries originate from the 

Ethiopian plateau, at elevations of 2000-3000 m.  The two main tributaries of the Blue Nile in 

Sudan are Rahad and Dinder.  The rainy season in Ethiopia from June to September known 

locally as Kiremt, Seleshi and Zanke (2004), and rainfall is highly variable both temporally 

and spatially, Gissila et al., (2004). 

The Blue Nile sustains the life of millions of people in Ethiopia, Sudan and Egypt. Rainfall 

has a great impact on the social and economic life in the region. Scarcity in rainfall leads to 

drought while excessive, intense rainfall may lead to floods. For example, during the 1984 

drought in Sudan, Khartoum received only 4.7 mm of rain between May and October, 

Eltayeb (2003). This led to crop failure and consequently a famine hit Sudan which in turn led 

to migration of people in search of food and water. Floods reflect the other extreme in rainfall 

fluctuations. There are many factors which affect the severity of the flood, such as terrain 

slopes, soil types and amount of water in the soil. On the 4th of August 1988, Khartoum 

received 216 mm of rainfall during a 24 hour-period. This situation became disastrous when 

the Nile level also rose around 7 m above normal, which led to wide-spread property 

damage. These two natural extreme disasters were associated with significant anomalies in 

the Pacific sea surface temperature (SST): El Niño (1983) and La Niña (1988) events.  

 

During the last few decades, there has been a wide recognition that natural oscillations in the 

state of the Pacific Ocean leave a significant impact on the patterns of weather and climate 

around the world, Amarasekera et al., (1997); Eltahir, (1999). The dominant among these 

oscillations is known as the El Niño – Southern Oscillation (ENSO) which has a return period 

of about 4 years. Though distant from Africa, ENSO is significantly correlated with rainfall 

variations over the eastern side of the African continent, but the signs of the correlations and 

their phase relative to the seasonal cycle vary from region to region, Camberlin et al. (2001). 

Eltahir, (1996) found that 25% of the natural variability in the annual flow of the Nile is 
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associated with El-Niño oscillations and proposed to use this observed correlation to improve 

the predictability of the Nile floods. Wang and Eltahir, (1999) recommended an empirical 

methodology for medium and long-range (~6 months) forecasting of the Nile floods using 

ENSO information. Amarasekera et al., (1997) showed that ENSO episodes are negatively 

correlated with the floods of the Blue Nile and Atbara rivers which originate in Ethiopia. 

Eltahir, (1996) showed that the probability of having a low (high) flood flow given a cold SST 

condition is 2% (49%). On the other hand, the probability of having a high (low) flood flow 

given a warm SST condition is 8% (58%). De Putter et al., (1998) made a study of decadal 

periodicities of the Nile River historical discharge of Roda Nilometer (Cairo, Egypt). He 

suggested that high frequency peaks could be linked to the ENSO. Abtew et al., (2009) 

analyzed monthly rainfall observations from a 32-rain gauge monitoring network in the Upper 

Blue Nile Basin. He found that high rainfall is likely to occur during La Nina years and low 

rainfall conditions are likely to occur during El Nino years. He also found that extreme dry 

years are highly likely to occur during El Nino years and extreme wet years are highly likely 

to occur during La Nina years.  

The Southern Oscillation Index (SOI) is a measure of air pressure difference between Tahiti 

in the east and Darwin, Australia to the west as compared to historical average of the same 

difference. Negative differences indicate El Niño conditions as lower pressure in the eastern 

Pacific is associated to warmer water and weakened easterly trade winds, and positive SOI 

corresponds to negative SST index and La Niña. Seleshi and Zanke (2004) reported that 

June to September rainfall of the Ethiopian highlands is positively correlated to the Southern 

Oscillation Index (SOI) and negatively correlated to the equatorial eastern pacific SST. 

Many studies tried to use oceanic and atmospheric variables as predictors in seasonal 

hydrologic forecasting over East Africa, but none of the studies had a focus on the June to 

September rainfall in Ethiopia (Mutai et al.1998; Hastenrath et al. 2004; Philippon et al. 2002; 

Yeshanew and Jury 2007; Mwale and Gan 2005; Williams and Funk, 2011; Williams and 

Funk, 2010). In this study, we analyze river flow, and rainfall observations, and we evaluate 

the impact of El Niño on the drought and flood in the upper catchment of the Blue Nile. We 

identify for the suitable seasonal SST conditions over the Pacific Ocean to be recommended 

as input to seasonal forecasting by water resources managers in the region. A successful 

seasonal forecasting system would have great economic and social value. 

 

4.2 DATA AND METHODS 
4.2.1 Observed data 

Discharge measurements between 1965 and 2011 from Eldiem station (Figure 4-1) was 

used in this study. This station is located at the border between Sudan and Ethiopia around 

120 km upstream from El Rosieres dam (Figure 4-1). The gauge station measures water 

level and discharge at the outlet of the upper catchment of the Blue Nile. The data at Eldiem 
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station from 1997 to 2001 was missing. These missing data points were filled by using the 

nearest station to Eldiem station, (Rosieres), with no contributing tributaries in between. The 

discharge data represents the catchment hydrology better than the rainfall data from 

scattered set of stations. Duethmann et al., (2012) concluded that the rainfall data has 

relatively large uncertainty due to errors in measurement, wind, and high spatial variability of 

precipitation in the mountainous region. The density of the rain gauges network is often low, 

and the gauges are often unequally distributed.   

For El Niño, Niño 3.4 index between 1965 and 2011 was downloaded from NOAA website 

(http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml). An 

El Nino event is identified if 5-month running mean of sea surface temperature (SST) 

anomalies in the Niño 3.4 region (5°N–5°S, 120°–170°W) exceeds 0.4°C for 6 months or 

more, Trenberth, (1997). Data from Niño 3.4 region was analyzed in relation to several 

observational datasets (GPCP rainfall and discharge flow).  

 
Figure 4-1: The topography and geography of cities in the region. 

 

A global dataset of monthly precipitation was selected. The Global Precipitation Climatology 

Project (GPCP) version 2.2 (Huffman et al. 2011) is available from January 1979 to 

December 2010 with a resolution of 2.5°.  

 

4.3 RESULTS AND DISCUSSION 

The discharge at Eldiem station and its association with El Niño and La Niña years is shown 

in Figure 4-2. El Niño years like 1972 and 1987 as shown in the upper panel are associated 

with low discharge, and La Niña years, for example 1988 as shown in the upper panel are 

associated with high discharge. The lower panel shows the whole time series of Eldiem 

station. In the lower panel the red colour in the time series represents El Niño months, the 

Blue colour represents La Niña months, and the green colour represents normal months. 

Sudan 

Ethiopia 

Egypt 

 Eldiem 

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml
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This confirms the results of previous studies that El Niño is associated with below average 

rainfall, and La Niña is associated with above average rainfall, (Eltahir, 1996); (Wang and 

Eltahir, 1999); (Amarasekera et al., 1997); De Putter et al., (1998); Camberlin et al. (2001); 

Abtew et al., (2009). 

 

 
Figure 4-2: The discharge of the Blue Nile at Eldiem station (1965-2009) and its association with El Niño 
and La Niña years. 

 
 
4.3.1 Teleconnections of Pacific SST and the discharge observation at Ediem station.   

 

The seasonal discharge anomalies for (June, July, August, and September) JJAS are shown 

in Figure 4-3. Some thresholds were assumed in this study: any discharge anomaly above 

6.813 km3 was considered as extreme flood which is 1 * standard deviation, and any 

discharge anomaly below – 6.813 km3 considered as a extreme drought, and any discharge 

anomaly between 3.407 km3 (0.5* standard deviation) and 6.813 m3 considered as flood, and 

El Nino 

La Nina 

El Nino 
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any discharge anomaly between – 3.407 km3 and – 6.813 km3 considered as a drought. 

Finally, any discharge anomaly between – 3.407 km3 and 3.407 km3 was considered 

normal. The normal event covers around 38 % of the normal distribution curve. Drought and 

flood cover from 38 % to 68 % of the normal distribution curve. The extreme drought and 

extreme flood cover the range of 32%. This classification is in line with observed floods and 

droughts in this region, and in line with the classification of the Ministry of Water Resources 

and Electricity of Sudan. For example, in Figure 4-3, nine extreme floods can be identified, 

and among them there are three at or close to record floods in 1988, 2006 and 2007. There 

are six extreme droughts, four floods, and ten droughts.  

 
Figure 4-3: The discharge anomalies at Eldiem station averaged over JJAS (1965-2011), the red line 

represent the threshold for the extreme flood/ drought, and the dashed red line represents the threshold 
for drought/ flood. 

The negative correlation between the SST anomalies in Pacific Ocean in Nino 3.4 region and 

the discharge anomalies in Eldiem station during JJAS is evident in Figure 4-4. The right axis 

represents the SST anomalies during AMJ in the middle panel, and the left axis represents 

the discharge anomalies during JJAS. The upper panel represents SST anomalies during 

JFM, and the lower panel represent JAS.  The same plot was made with different SST 

anomalies for other seasons; FMA, MAM, MJJ and JJA (not shown here), and they showed 

less negative correlations compare to AMJ season. Figure 4-4 illustrates that the rainfall in 

the upper catchment is highly sensitive to the SST during AMJ. For example the big El Nino 

of 1987 associated with below average discharge and La Nina of 1988 associated with 

above average discharge. 
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Figure 4-4: The SST anomalies during (a) JFM, (b) AMJ, and (c) JAS in Nino 3.4 region and the discharge 

anomalies in Eldiem station. 
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The impact of start date of El Niño 
The impact of start date of El Niño on the drought of the upper catchment of the Blue Nile 

was investigated by evaluating the relationship between Niño 3.4 for different seasons, and 

the rainfall anomaly in the upper catchment of the Blue Nile during June to September 

(JJAS) for each year respectively.  The first column in Table 4-1 shows the starting season of 

El Niño, the second column indicates whether there was an extreme drought, the third 

column if there was a drought, and the fourth column if there is no drought in the upper 

catchment of the Blue Nile. The flow year column refers the start year of each El Niño event. 

The length column refers to the number of months during that El Niño.  

 
Table 4-1: The effect of the start date of El Niño on the drought of the upper catchment of the Blue Nile 

during JJAS of the same year. 

 
  

From Table 4-1 there are six events when El Niño started in AMJ. When El Niño started in 

AMJ, there was an extreme drought twice, 3 droughts and only one year with normal 

condition. When El Niño started in JJA, there was only 1 drought out of two events. The 

longest two El Niño events occurred when El Niño started in JAS. When El Niño started in 

JAS there was no drought on the same year, but the discharge was below average, and 

there was one drought event. When El Niño extends to the whole next year, there was one 

extreme drought (in 1987), and one normal year (in 1969). When El Niño started late in ASO, 

it tends to be relatively short, and there was no drought event (in the same year) for four 

times, among them one normal flood and one extreme flood. 
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From the above results and Table 4-1, we found that the upper catchment of the Blue Nile is 

very sensitive to El Niño events starting in AMJ. When El Niño started in AMJ, 5 out of 6 

cases there was a drought. When El Niño started in JJA or JAS, 50% of the cases there was 

a drought. If we look at these three seasons in total (AMJ, JJA and JAS), in 70% of the 

cases, there was a drought in the upper catchment of the Blue Nile, in 20% of the cases the 

discharge was below average, and only in 10 % of the cases no drought was observed. 

When El Niño starts late (ASO), there are no drought effects in the Blue Nile. 

This analysis is consistent with the hypothesis that El Nino impacts the global monsoon, Diaz 

and Markgraf, (2000). In addition, when El Nino starts in early (AMJ, JJA JAS) it has a big 

impact in East African monsoon and suppressed the rainfall in the upper catchment of the 

Blue Nile. However, when El Nino started late it has no impact in East African monsoon. 

 

The impact of start date of La Niña. 
La Niña is normally associated with floods in the upper catchment of the Blue Nile (Eltahir, 

1996); (Wang and Eltahir, 1999); (Amarasekera et al., 1997). In this section the start date of 

La Niña season will be explored, along with its effect on the flooding of the upper catchment 

of the Blue Nile in the same year. The first column in Table 4-2 shows the season of the start 

of La Niña. From Table 4-2, it is clear that La Niña events can last for up to three years, as in 

1973-1975 and 1998-2000.  

When La Niña started in AMJ of 1988, there was one extreme  flood (in the same year), 

when it started in  AMJ of 1973 and extended for 3 years ,there was no flood (in the same 

year), and one flood and one extreme flood in the following years. When La Niña started in 

JJA, there was no flood in 1970 and no flood in 2010, and there was an extreme flood in 

1998. When La Niña started in JAS of 2007, there was an extreme flood. When La Niña 

started late in ASO, there were no floods recorded, and in one event there was even a strong 

drought in 2011.  So, in general when La Niña started in AMJ, JJA and JAS, 50 % of the 

times there would be a flood or extreme flood. This result is in line with the result of impact of 

start of El Niño, the rainfall and the monsoon in this catchment is sensitive to AMJ, JJA and 

JAS SST in the Pacific Ocean.  

When La Niña extended for the next year, years or at least 9 months of the next year, there 

were no floods two times (all of them above average), two times there was a flood, and one 

time an extreme flood in 1975. That means if La Niña extends to the next year, there was no 

drought or even below average discharge. So, there is a low possibility to have a drought.  
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Table 4-2: The effect of the start of La Niña in the flood of the upper catchment of the Blue Nile. 

 
 

El Niño followed by La Niña events 
In the last 40 years when El Niño was followed by La Niña there were extreme floods records 

in the upper catchment of the Blue Nile in 1988, 1998 and 2007. When El Niño was followed 

by La Niña, in 50 % of the cases there were extreme floods as shown in Table 4-3.  The red 

box represents the end of El Niño period, and the blue box represents the start of La Niña. If 

we look at the period from the 1980s to present, it can be concluded that when El Niño is 

followed by La Niña, there is a 75% chance of extreme flood in the Blue Nile. 

In these 47 years there were 9 extreme floods, so the probability of having an extreme flood 

in any year is 19 %. If however we have additional knowledge about having a La Niña year, 

this probability of an extreme flood increases. Here we have 13 La Niña years, among them 

5 extreme floods were observed; hence the corresponding probability increases to 38 %. As 

shown above, when El Niño is followed by La Niña year the probability increased further to 

50 %. 

 

 
Table 4-3: El Niño followed by La Niña and extreme flood. 

  
 

 

Year DJF JFM FMA MAM AMJ MJJ JJA JAS ASO SON OND NDJ Remark
1970 - + Low flood
1973 - + Above average
1988 - + Extreme flood
1998 - + Extreme flood
2007 - + Extreme flood
2010 - + Below average
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The severity of El Nino and its impact on the upper catchment of the Blue Nile 
There were three strong El Niño in the last 50 years. We consider in this study any El Niño 

index from 2 and above as a strong El Nino. The strong ones were in 1972, 1982 and 1997. 

During the strong El Niño of 1972 and 1982 there were extreme droughts. During the strong 

El Niño of 1997 there was a normal drought. On the other hand, in the longest normal El 

Niño of 1987, there was extreme drought. In 1984 and 2011, there was no El Niño observed, 

but there was extreme drought.  Hence, it is also possible that there may be a strong drought 

without any El Niño, and this could be attributed to some local and regional process.  

 
4.3.2 The correlation between Nino 3.4 and the GPCP precipitation observations 

In the previous sections we evaluated the relations between Nino 3.4 and discharge at the 

upper catchment of the Blue Nile. Figure 4-5 shows the rainfall anomalies over the upper 

catchment of the Blue Nile during JJAS from 1982 to 2008, and the discharge anomalies at 

Eldiem station during JJAS. GPCP captures well the general trend of almost all the droughts 

and floods. However, GPCP overestimated the rainfall in 1989 and 1990, and did not capture 

the extreme floods in 2006, 2007 and 2008. 

  

 
Figure 4-5: Rainfall anomalies over Ethiopian Highlands during JJAS. 
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The correlation between the SST anomalies in Niño 3.4 during different seasons was 

calculated for all the years regardless of El Niño or La Nina years against the rainfall over 

Ethiopian Highland from the GPCP as shown in Figure 4-6. The correlation of SST with 

Eldiem discharge data is also presented in the same figure. The negative and lowest 

correlations by the GPCP were found during JFM season (-0.14), the negative correlation 

increased gradually until JJA (-0.72), and the correlation decreased gradually again until 

OND (-0.48). The GPCP shows almost similar trend like the discharge correlation. However, 

GPCP shows a higher correlation compared to the discharge data. 

 
Figure 4-6: Correlation between SST anomalies in Nino 3.4 region and the upper catchment of the Blue 

Nile in Ethiopian Highlands from 1982 to 2008. 

 
The 95% significant 2 tailed test was made for the correlation between the SST anomalies in 

Nino 3.4 and the GPCP rainfall in the upper Blue Nile and discharge at Eldiem as shown in 

Figure 4-7. The points below the red line represents the null hypothesis of no relationship 

(cannot be rejected). The values above the red line means the null hypothesis is rejected and 

the relationship exist between SST anomalies and discharge or GPCP rainfall. From Figure 

4-7, the correlation in JFM and FMA is not significant for GPCP and discharge, and the 

correlation in MAM is not significant only the discharge.  

The correlation is significant for MAM for GPCP and significant for AMJ, MJJ, JJA, JAS, 

ASO, SON and OND for the GPCP and discharge. 
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Figure 4-7: 95% significant test of the correlation for the GPCP and discharge. 

 

4.4 CONCLUSION 

Rainfall has a great impact on the social and economic life in the region. Scarcity in rainfall 

leads to drought while excessive, intense rainfall may lead to floods. Ethiopian rainfall is 

highly variable, both temporally and spatially, the rainfall seasonality varies greatly from one 

region to another, Gissila et al., (2004). The Blue Nile contributes around 67% of the main 

Nile discharge. The natural oscillations in the state of the Pacific Ocean leave a significant 

impact on the patterns of weather and climate around the world. The role of global sea 

surface temperatures in shaping the potential predictability of rainfall over tropical East Africa 

has been thoroughly assessed in both observational discharge at the mouth of the upper 

catchment of the Blue Nile and GPCP dataset, and inferring that ENSO exerts a significant 

influence to the upper catchment of the Blue Nile.  

The negative correlation between the SST anomalies in Pacific Ocean in Nino 3.4 region and 

the discharge anomalies in Eldiem station at the outlet of the upper catchment of the Blue 

Nile during JJAS is evident. Droughts in the Blue Nile are sensitive to El Niño, with 70% of 

drought cases when El Niño starts in AMJ, JJA and JAS. When El Niño starts in AMJ, 83 % 

of the cases resulted in drought. When El Niño ends early (DJF, JFM, FMA and MAM), there 

is almost no effect on the drought in the Blue Nile. When El Niño terminates late in MJJ (or 

after that) there is a high possibility of drought occurrence in the Blue Nile. This analysis is 
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consistent with the hypothesis that El Nino impacts global monsoon, Diaz and Markgraf, 

(2000).  

When La Nina started in AMJ, JJA and JAS, in 50 % of the cases there was a flood or 

extreme flood. There has to be an active event El Nino / La Nina during the season for 

development of the monsoon over Ethiopia (May to September), for this teleconnection to 

have an impact. 

In 50 % of the cases that El Niño was followed by La Niña there were extreme floods in the 

Blue Nile.  

The important conclusion is that JJAS rainfall in the upper catchment of the Blue Nile is 

highly sensitive to the SST in the early season of AMJ in Nino 3.4. This season is 

recommended by this study be used in the seasonal forecasting of the Blue Nile. 
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5. THE CONNECTIONS OF ENSO AND DROUGHT AND FLOOD OVER THE 
UPPER CATCHMENT OF THE BLUE NILE BY USING 9 AVERAGE 
MEMBERS 

5.1 INTRODUCTION 

During the last few decades, there has been a wide recognition that natural oscillations in the 

state of the Pacific Ocean leave a significant impact on the patterns of weather and climate 

around the world. The dominant among these oscillations is known as the El Niño – Southern 

Oscillation (ENSO) which has a period of about 4 years. (Eltahir, 1996) found that 25% of the 

natural variability in the annual flow of the Nile is associated with El-Niño oscillations and 

proposed to use this observed correlation to improve the predictability of the Nile floods. 

(Wang and Eltahir, 1999) recommended an empirical methodology for medium and long-

range (~6 months) forecasting of the Nile floods using ENSO information. (Amarasekera et 

al., 1997) showed that ENSO episodes are negatively correlated with the floods of the Blue 

Nile and Atbara rivers which originate in Ethiopia. (Eltahir, 1996) showed that the probability 

of having a low (high) flood given a cold SST condition is 2% (49%). On the other hand, the 

probability of having a high (low) flood flow given a warm SST condition is 8% (58%). The 

previous studies were conducted by using observational dataset. In this study, we analyze 

observational data sets also, and we evaluate the hypothesis whether a similar connection 

can be formed between droughts/ floods and Sea Surface Temperature in the Pacific Ocean 

by using a physically based model of the climate system (the Regional Climate Model 

(RegCM4.1.1)) (Giorgi et al., 2012). We simulate an ensemble of 9 members describing the 

regional climate to study the impact of El Niño on the drought and flood in the upper 

catchment of the Blue Nile. 

 

5.2 REGCM4 MODEL DESCRIPTION  

 

RegCM4.1  Elguindi et al., (2011)  reflects an evolution of the previous version, RegCM3, 

described by Fischlin et al., (2007). RegCM4.1 is a hydrostatic, sigma-p vertical coordinate 

model with multiple physics options. For this experiment we used the options described in 

Giorgi et al., (2012): modified CCM3 radiative transfer scheme Kiehl et al., (1996), modified 

Holtslag et al., (1990) planetary boundary layer scheme, SUBEX resolvable precipitation 

scheme Pal et al., (2000), mixed cumulus convection configuration utilizing the scheme of 

Grell, (1993) over land and that of Emanuel, (1991) over oceans and the 

biosphere−atmosphere transfer scheme Dickinson et al., (1993) land surface package. 

Therefore, the model uses forcing lateral BC only in the northern and southern boundaries of 

the domain, with no external forcing in an east−west direction. The horizontal resolution of 

the model is 125 km. In a north−south direction the domain extends from about 50° S to 50° 
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N, and a standard exponential relaxation procedure Giorgi et al., (1993a) are used in the 

southern and northern boundaries over a buffer zone with 12 grid points width. The model 

simulate processes over a latitudinal belt that extends for 360° around the earth. The model 

has 18 vertical sigma levels and a top at 50 hPa, as in its standard configuration.  

The initial and lateral boundary conditions for the RegCM4.1 simulations were obtained from 

the ERA-Interim 1.5° × 1.5° gridded reanalysis (ERAI, Dee et al. 2011) which is the third 

generation ECMWF reanalysis products. RegCM4.1 was forced with sea surface 

temperatures (SSTs) 1° resolution, and a weekly temporal resolution, obtained from the 

National Oceanic and Atmospheric Administration (NOAA) Optimum Interpolation (OI) SST 

dataset (Reynolds et al., 2007). The simulation period was from 1 January 1982 to 31 March 

2010.  

 

The data used for model validation was the Global Precipitation Climatology Project daily 

precipitation dataset (GPCP; Huffman et al. 2011) and the CRU dataset for precipitation, the 

CRU dataset for temperature, the NOAA Outgoing Long-wave Radiation (OLR) for outgoing 

long-wave radiation, and the ERAI dataset for wind. 

 

5.3 MODEL VALIDATION 

 
5.3.1 Rainfall climatology 

The spatial  patterns of seasonal precipitation have been validated in this part. Figure 5-1 

compares averaged JJAS CRU and GPCP precipitation (Figure 5-1a, b) with the 

corresponding RegCM4.1 field (Figure 5-1c). Also shown are the differences between the 

RegCM4.1 field and the two observational datasets (Figure 5-2a, b). In JJAS, the ITCZ 

approaches its northernmost location. Therefore, observed precipitation (CRU and GPCP) 

(Figure 5-1a, b) over the continent is mostly confined between 7°S and 18°N, while regions 

above and below these latitudes are predominantly dry. This pattern of precipitation is mainly 

associated to the occurrence of propagating the mesoscale convective system related to the 

dynamics of African Easterly Jet (AEJ), African Easterly Waves (AEW), and Tropical Easterly 

Jet (TEJ) (d’Amato and Lebel 1998; Jenkins et al. 2005). The CRU data exhibit two 

precipitation maxima around Cameroon Mountains, and Ethiopian Highlands which are 

associated with local orographic features, while GPCP shows less rainfall over the Ethiopian 

Highlands and Cameroon Mountains, probably because of its coarse resolution. The model 

captures the general patterns of the observed rainfall distribution, in particular the ITCZ 

position and intensity. However, precipitation over southern Sudan, Central Africa and the 

Ethiopian Highlands is overestimated due to the orographic effect and the high convergence 

over this region. Also, the monsoon rain belt appears narrower in the model than in the two 

observation datasets. Our RegCM4.1 simulation appears reasonable. We also note that the 
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performance of our model version appears in line with previous works performed using either 

the RegCM system in various configurations (Sun et al. 1999; Pal et al. 2007; Anyah and 

Semazzi 2007; Sylla et al. 2010b; Steiner et al. 2009; Zaroug et al. 2012) or other regional 

modeling systems (e.g., Vizy and Cook 2002; Nikulin et al. 2012; Paeth et al. 2005; Gallée et 

al. 2004; Flaounas et al. 2010; Druyan et al. 2008). 

 
Figure 5-1: Averaged precipitation (in mm/day) for JJAS 1982-2009: a) CRU, b) GPCP, c) RegCM. 
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Figure 5-2: Averaged precipitation bias (in mm/day) for JJAS 1982-2009: a) RegCM – CRU, b) RegCM – 

GPCP. 

 
5.3.2 Temperature climatology 

The seasonal average of JJA 2-m temperature for 1982 to 2009 is illustrated in Figure 5-3. 

The figure presents CRU observations (Figure 5-3a), RegCM4.1-simulated values (Figure 
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5-3b), and the difference between CRU and RegCM4.1 (Figure 5-3c) temperatures. In JJA 

(Figure 5-3a), the CRU observations place the lowest temperatures mostly over the 

mountainous areas of Cameron and Ethiopian Highlands, Tanzania and south Kenya. The 

warmest areas are confined between 15 °N and 27 °N with larger values located over the 

Sahara desert. RegCM4.1 (Figure 5-3b) reproduces well this spatial pattern but it shows a 

systematic cold bias of a few degrees in the convective regions in East Africa (Figure 5-3c), 

Nigeria, Algeria and Libya. This cold bias over tropical and equatorial Africa has been a 

persistent feature in RegCM3, as also found for example in the experiments of Sylla et al. 

(2010b), although the magnitude of the bias is somewhat reduced in our simulation. It should 

be stressed that the CRU observations are possibly affected by large uncertainties in this 

region due to the relative sparseness of observing stations, particularly in remote areas 

(Mitchell et al. 2004). In addition, surface temperature depends on many parameters, such 

as albedo evapotranspiration rates, location and height of the observing gauges, etc., which 

are also highly uncertain, and on the presence of dust and aerosols. Given all these 

uncertainties, we assess that a model bias of a few degrees is acceptable in this study.  

 

 
5.3.3 Outgoing long-wave radiation (OLR) 

 

In this section, the spatial pattern of seasonal (JJA) OLR is validated. The OLR is validated 

against observations from the above mentioned NOAA dataset. Figure 5-4 shows the 

averaged JJA NOAA OLR (Figure 5-4a) and the corresponding RegCM4.1 field (Figure 5-4b) 

along with their difference (Figure 5-4c). Both the model and the observations (Figure 5-4a, 

b) exhibit larger (lower) OLR values in North Africa and south of 5 °S (along the ITCZ) 

because of smaller (larger) amount of cloud cover. Consistent with the Total Cloud Cover 

(TCC) results, simulated OLR is underestimated over the Congo basin due to an 

overestimation of TCC (Zaroug et al. 2012). Nevertheless, the model manages to capture 

generally well the general features of the OLR pattern in both magnitude and spatial extent.  
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Figure 5-3: Averaged 2 m air temperature (in C) for JJAS 1982 – 2009: CRU, b RegCM, c RegCM minus 

CRU difference. 
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Figure 5-4: Averaged outgoing longwave radiation (in W/m2) for JJAS 1982-2009: a NOAA, b RegCM, c 

NoAA minus RegCM. 
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5.3.4 Climatology of dynamical features 
Low level circulation 

The spatial patterns of average JJA low level (925 mb) circulation is shown in Figure 5-5a for 

the ERA Interim reanalysis and Figure 5-5b for the RegCM4.1 simulation. Direct 

observations of the low level wind over the region is not available, and thus, we use here the 

driving reanalysis (which is the closest information to reality that we have available) for model 

validation. Overall, the model reproduces well the main features of the low level circulation, 

such as the low level monsoon flow over North Africa, the northerly flow over East Africa and 

the south-easterly flow over the Horn of Africa. Overall, Figure 5-5 indicates that RegCM4.1 

exhibits a good performance in the simulation of the low level circulation over the selected 

domain. 

 
Figure 5-5: The black arrows show the averaged 925 mb wind vector for JJA 1982 – 2009: a ERA-Interim, b 

RegCM. 

 

Tropical easterly jet (TEJ) 
The TEJ develops between 200 and 150 mb in the upper troposphere over India in response 

to a large meridional thermal gradient and settles during the northern summer Asian 

monsoon season between the Tibetan Highlands and the Indian Ocean (Fontaine and 

Janicot 1992; Koteswaram 1958; Chen and van Loon 1987). It stretches from the Indochina 

peninsula, across the African continent, to the tropical Atlantic (Wu et al. 2009), and it is 

linked to anomalous SSTs on a planetary scale (Chen and van Loon 1987). The TEJ is one 

of the planetary features that contribute to the northern African summer climate variability 

(Chen and van Loon 1987). Figure 5-6a shows the TEJ in the ERA Interim reanalysis 

confined between 3 °N and 17 °N with a core speed exceeding 15 m/s. The band of the jet 

decreases gradually from East Africa to West Africa. In fact, the highest wind speed of about 

18 m/s occurs over the Horn of Africa and the western Indian Ocean, while the lowest values 

of about 6 m/s are found over Niger. RegCM4.1 in Figure 5-6b reproduces well the structure 

of the TEJ shown in the ERA Interim reanalysis. It captures both the location and intensity of 
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the jet. However, it extends the core of the jet with winds further to Sudan. In addition, it 

extends also the 12 m/s and 9 m/s zone further west.  

 

African easterly jet (AEJ) 
The AEJ results mainly from the vertical inversion (around 600–700 mb) of the meridional 

thermal gradient between the Sahara and equatorial Africa due to the existence of strong 

surface baroclinicity (Cook 1999; Steiner et al. 2009) associated with atmospheric deep 

convection (Thorncroft and Blackburn 1999; Sylla et al. 2010b). Figure 5-6c shows the ERA 

Interim zonal wind in JJA at 600 mb. It is confined approximately between 7° N and 20 °N 

extending from Chad to the Atlantic Ocean with a core speed ranging from 11 to 13 m/s 

located over West Africa (Zaroug et al. 2012). As for the TEJ, RegCM4.1 simulates 

reasonably well both the strength and location of the jet (Figure 5-6d).  

 
Figure 5-6: Averaged zonal wind (in m/s) for JJAS 1982 – 2009: a ERA Interim at 150 mb, b RegCM at 150 

mb, c ERA Interim at 600 mb, d RegCM at 600 mb. 
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5.4 RESULTS AND DISCUSSION 

 
5.4.1 The difference between La Niña and El Niño years in the model and in the GPCP 

observational data set 

 

Figure 5-7 shows the model domain and topography along with some sub-regions selected 

for more detailed regional analysis.  

 
Figure 5-7: The domain and the topography of the model. The red box in the Pacific Ocean illustrated 

Nino 3.4 region, and the red box in Ethiopian Highland illustrated the upper catchment of the Blue Nile. 

 

In this analysis we assess if the model (RegCM4.1) was able to capture the difference 

between La Niña and El Niño years. The 9 members were averaged for 28 years (1982-

2009), and then 5 La Niña years and 5 El Niño years were selected. In the upper panel of 

Figure 5-8, the average of 5 La Niña years (1988, 1998, 1999, 2007 and 2008) are shown, 

and in the middle panel the average of 5 El Niño years (1982, 1983, 1987, 1992 and 2002). 

The lower panel shows the difference between La Niña years and El Niño years, with rainfall 

differences in the Sahel region and in the upper catchment of the Blue Nile. The results of 

each ensemble member were calculated for each member (Figure 5-9 to Figure 5-17), there 

was a remarkable variability between different members. These model results agree with the 

previous analysis, confirming that La Niña years are associated with the above normal 

rainfall and El Niño years with below normal rainfall in the upper catchment of the Blue Nile. 

So, the model can capture the impact of El Niño/ La Niña.  
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Figure 5-8: The rainfall from 9 members during JJAS for  a) 5 La Niña years b) 5 El Niño years c) The 

difference between La Niña years and El Niño years. 

 

 

 member 

 member 

 member 
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Figure 5-9: The rainfall for member 1 during JJAS for  a) 5 La Nina years b) 5 El Nino years c) The 

difference between La Nina years and El Nino years. 
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Figure 5-10: The rainfall for member 2 during JJAS for  a) 5 La Nina years b) 5 El Nino years c) The 

difference between La Nina years and El Nino years. 

 

 member 

 member 

 member 
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Figure 5-11: The rainfall for member 3 during JJAS for  a) 5 La Nina years b) 5 El Nino years c) The 

difference between La Nina years and El Nino years. 

 

 member 

 member 

 member 
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Figure 5-12: The rainfall for member 4 during JJAS for  a) 5 La Nina years b) 5 El Nino years c) The 

difference between La Nina years and El Nino years. 

 

 member 

 member 

 member 
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Figure 5-13: The rainfall for member 5 during JJAS for  a) 5 La Nina years b) 5 El Nino years c) The 

difference between La Nina years and El Nino years. 

 

 member 

 member 

 member 
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Figure 5-14: The rainfall for member 6 during JJAS for  a) 5 La Nina years b) 5 El Nino years c) The 

difference between La Nina years and El Nino years. 

 

 

 

 member 

 member 

 member 
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Figure 5-15: The rainfall for member 7 during JJAS for  a) 5 La Nina years b) 5 El Nino years c) The 

difference between La Nina years and El Nino years. 

 

 member 

 member 

 member 
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Figure 5-16: The rainfall for member 8 during JJAS for  a) 5 La Nina years b) 5 El Nino years c) The 

difference between La Nina years and El Nino years. 

 

 member 

 member 

 member 
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Figure 5-17: The rainfall for member 9 during JJAS for  a) 5 La Nina years b) 5 El Nino years c) The 

difference between La Nina years and El Nino years. 

 

 
Figure 5-18 shows the same analysis in Figure 5-8. It shows a magnified picture for North 

Africa for 5 La Niña years minus 5 El Niño years. The model managed to capture very well 

the difference in rainfall along the ITCZ. The Sahel region is the most affected region by El 

Niño and La Niña. 

 member 

 member 

 member 
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Figure 5-18: The rainfall in North Africa from 9 members during JJAS for  a) 5 La Niña years b) 5 El Niño 

years c) The difference between La Niña years and El Niño years. 

 

In Figure 5-19 an assessment was made also for the observational dataset from GPCP to 

see if it also captures the difference between La Niña and El Niño years. The GPCP data 

was averaged also for 28 years (1982-2009), and then 5 La Niña years and 5 El Niño years 

were selected. In the upper panel of Figure 5-19, the average of 5 La Niña years (1988, 

1998, 1999, 2007 and 2008) are shown, and in the middle panel the average of 5 El Niño 
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years (1982, 1983, 1987, 1992 and 2002). The lower panel shows the difference between La 

Niña years and El Niño years, with rainfall differences exhibited in the Sahel region and in 

the upper catchment of the Blue Nile.  

 
Figure 5-19: The rainfall from GPCP during JJAS for  a) 5 La Niña years b) 5 El Niño years c) The 

difference between La Niña years and El Niño years. 
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The North African region is shown also in Figure 5-20. La Nina years were shown in the 

upper panel while El Nino years were shown in the middle panel. The lower panel showed 

the differences between La Nina years and El Nino years. The observational difference from 

GPCP extends further north up 18̊ N, unlike the model difference (Figure 5-18) which 

extends up to 15˚ N. 

 

 
Figure 5-20:  The rainfall in North Africa from GPCP during JJAS for  a) 5 La Niña years b) 5 El Niño years 

c) The difference between La Niña years and El Niño years. 
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5.4.2 Correlation between rainfall anomalies over Ethiopian Highlands and SST anomalies 

over the Pacific Ocean in Nino 3.4 region for 9 members 

 

 Figure 5-21 shows the correlation between the rainfall anomalies during JJAS and the SST 

anomalies during (JFM, FMA, MAM, AMJ, MJJ and JJA). The correlations are negative 

during all seasons. The lowest correlation was around 42 % in JFM and it increased 

gradually up to AMJ. The highest correlation was around 62% during AMJ. After that, the 

correlations decreased to 49% in JJA. In section 3.2 the river discharge showed the highest 

probability for drought events during AMJ (83 %). The model results also show the highest 

correlation during AMJ. These results support the use Nino3.4 in AMJ for a seasonal 

forecasting of drought in the upper catchment of the Blue Nile.  

The previous correlations were calculated for each member (Figure 5-22 to Figure 5-30). The 

best correlation was found when taking the ensemble mean. 

 
Figure 5-21: The correlation between rainfall anomalies over Ethiopian Highlands for 9 averaged members 

and SST anomalies over the Pacific Ocean in Nino 3.4 region. 
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Figure 5-22: The correlation for member 1 between rainfall anomalies over Ethiopian Highlands for 9 

averaged members and SST anomalies over the Pacific Ocean in Nino 3.4 region. 

 

 
Figure 5-23: The correlation for member 2 between rainfall anomalies over Ethiopian Highlands for 9 

averaged members and SST anomalies over the Pacific Ocean in Nino 3.4 region. 
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Figure 5-24: The correlation for member 3 between rainfall anomalies over Ethiopian Highlands for 9 

averaged members and SST anomalies over the Pacific Ocean in Nino 3.4 region. 

 

 
Figure 5-25: The correlation for member 4 between rainfall anomalies over Ethiopian Highlands for 9 

averaged members and SST anomalies over the Pacific Ocean in Nino 3.4 region. 
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Figure 5-26: The correlation for member 5 between rainfall anomalies over Ethiopian Highlands for 9 

averaged members and SST anomalies over the Pacific Ocean in Nino 3.4 region. 

 

 
Figure 5-27: The correlation for member 6 between rainfall anomalies over Ethiopian Highlands for 9 

averaged members and SST anomalies over the Pacific Ocean in Nino 3.4 region. 
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Figure 5-28: The correlation for member 7 between rainfall anomalies over Ethiopian Highlands for 9 

averaged members and SST anomalies over the Pacific Ocean in Nino 3.4 region. 

 
Figure 5-29: The correlation for member 8 between rainfall anomalies over Ethiopian Highlands for 9 

averaged members and SST anomalies over the Pacific Ocean in Nino 3.4 region. 
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Figure 5-30: The correlation for member 9 between rainfall anomalies over Ethiopian Highlands for 9 

averaged members and SST anomalies over the Pacific Ocean in Nino 3.4 region. 

 

 
The negative correlation between the SST anomalies in Pacific Ocean in Nino 3.4 region and 

the rainfall in the upper catchment of the Blue Nile during JJAS is apparent in Figure 5-31. 

The left axis represents the SST anomalies during AMJ, and the right axis the ensemble 

mean JJAS rainfall anomaly. Similar analyses for each ensemble member were made (not 

shown).  
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Figure 5-31: The SST anomalies during AMJ in Nino 3.4 region and the rainfall anomalies in the upper 

catchment of the Blue Nile for 9 averaged members. 

 
5.4.3 Correlation between rainfall anomalies over Ethiopian Highlands and the late season 

of SST anomalies over the Pacific Ocean in Nino 3.4 region for 9 averaged members 
 

The correlation was calculated also for the late season of SST with the rainfall from 9 

averaged members during JJAS as shown in Table 5-1, it reduced gradually. In JAS the 

correlation was – 0.44, in ASO it was – 0.41, in SON it was – 0.38 and OND it was – 0.347. 

This result is compatible with the observational data.  

  
Table 5-1: The correlation between the late season of SST anomalies in Nino 3.4 region and the upper 

catchment of the Blue Nile in Ethiopian Highlands 

SST anomalies Rainfall over Ethiopian 
Highland from 9 members 

Correlation 

JAS JJAS -0.44 

ASO JJAS -0.41 

SON JJAS -0.38 

OND JJAS -0.347 
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Regression analysis of DJF and JJA for Nino 3.4 index onto RegCM rainfall for 9 members 
(1982 -2009) 
 

In this section we present a regression analysis between Nino 3.4, in different seasons (DJF 

and JJA), and the GPCP and model rainfall. The upper panel of Figure 5-32 represents the 

regression of DJF Nino 3.4 index onto DJF GPCP rainfall from 1982 to 2009, while the lower 

panel of Figure 5-32 shows the regression of JJA Nino 3.4 index onto JJA GPCP.  

 
Figure 5-32: Regression of DJF and JJA of Nino 3.4 index onto DJF and JJA for GPCP rainfall for (1982-

2009). 

 
Figure 5-33 shows the same analysis in Figure 5-32. It shows a magnified picture for North 

Africa for the regression of Nino 3.4 onto the GPCP rainfall in North Africa for DJF and JJA. 

Kenya showed a positive signals of regression analysis as shown in Figure 5-33a, almost the 

whole ITCZ showed negative signals. The Ethiopian Highland showed the higher negative 

signals.  
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Figure 5-33: Regression of DJF and JJA of Nino 3.4 index onto DJF and JJA for GPCP rainfall for (1982-

2009) in North Africa. 

 

The same analysis was performed on the ensemble mean for the two seasons (DJF and 

JJA). The model results agree with the observational based regression, showing no effect on 

the rainfall during the low flow in the upper catchment of the Blue Nile as shown in the top 

panel of Figure 5-34. The lower panel of Figure 5-34 shows a negative signal of the 

regression in Ethiopian Highland during JJA (around -1). However the band and the length of 

the negative regression is small compare to the observational based results. 
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Figure 5-34:  Regression of DJF and JJA of Nino 3.4 index onto DJF and JJA rainfall for 9 averaged 

members for (1982-2009). 

 

Figure 5-35 shows the same analysis in Figure 5-34. It shows a magnified picture for North 

Africa for the regression of Niño 3.4 onto the 9 averaged members’ rainfall in North Africa for 

DJF and JJA. Part of Kenya, and part of Uganda and the Congo Basin showed positive 

signals during DJF as shown in Figure 5-35 a, the Ethiopian highland and central Sudan  

showed  negatives signals.  

 
5.4.4 Future ENSO 

 

The El Niño Southern Oscillation (ENSO) phenomenon plays an important role in medium to 

long range forecast for the Nile River (Wang and Eltahir, 1999). Monitoring and predicting 

ENSO can lead to disaster risk reduction through early warning. The orbital variations could 

affect the ENSO behaviour (Jansen et al., 2007) and the 11 year sun cycle can affect ocean 

temperatures associated with ENSO (Meehl et al., 2009). A study found that the long term 

changes in the behaviour of ENSO might happen without forcing from radiative changes 

(Wittenberg, 2009), wherea another study found that the change of the phenomenon could 

be stimulated by seasonal changes in solar insolation (Cane, 2005). Vecchi and Wittenberg, 

(2010) found that the variations in ENSO frequency and intensity are due to chaotic 

behaviour resulting from external radiative forcings. The Niño 3.4 region in the Pacific Ocean 
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(120 W, 170 W, 5 N, 5 S) has trend towards more frequent or stronger El Niño episodes over 

the past 50 to 100 years (Vecchi and Wittenberg, 2010).  

 
Figure 5-35: Regression of DJF and JJA of Nino 3.4 index onto DJF and JJA rainfall for 9 averaged 

members for (1982-2009) in North Africa. 

 
 

The tendency for recent SST El Niño episodes to be centred in the equatorial Pacific more in 

the central equatorial Pacific than in the east Pacific (Yeh et al., 2009), and increasing in 

intensity for these central Pacific episodes (Lee and McPhaden, 2010). These changes in El 

Niño episodes may explain the extreme drought in remote areas like Horn of Africa in the 

recent years.  

The effect of changes in greenhouse gases on the behaviour of ENSO over the past 50 to 

100 years is uncertain. Yeh et al., (2009) attribute the change of the behaviour of El Niño to 

the changes in the temperature which, associated with increases in greenhouse gases, 

whereas Power and Smith, (2007) suggest that changes in the El Niño behaviour is within 

the range of natural variability. 
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The IPCC AR4 report mentions that the projected behaviour of the ENSO variability differs 

between models; however, all the models exhibited continued ENSO interannual variability in 

projections through the 21st century (Seneviratne et al., 2012). 

The current limitation of  understanding the ENSO activity leads to lack of confidence to 

predict whether ENSO activity will be enhanced or damped due to anthropogenic climate 

change, or even if the frequency of El Niño or La Niña episodes will change (Collins et al., 

2010). This results in low confidence in projections of changes in the phenomenon. However 

there is some agreement by most GCMs in projecting increase of the frequency of central 

equatorial Pacific events (Seneviratne et al., 2012). 

 

 

5.5 CONCLUSION 

 

In this study we investigate the impact of ENSO on the upper catchment of the Blue Nile. 

Towards this purpose a series of 9 long simulations were made for a domain covering the 

entire globe between 43°S and 43°N, with only upper and lower boundary conditions from 

the ERA-Interim reanalysis. 

The RegCM4.1 is first evaluated against observations and the reanalysis. It is shown that the 

model performs reasonably well in reproducing the observed climatology of temperature, 

precipitation, outgoing long wave radiation and large scale atmospheric circulation features. 

For example, the model captures well the rain belt, as well as the peaks in Ethiopian 

Highlands, Guinea Highlands, and Cameroon Highlands. In general, the temperature biases 

are approximately between -2° C and 2° C. This new simulation outperforms the previous 

application of this model over the region (Sylla et al. 2010b, Zaroug et al. 2012). In addition, 

the lower level and large-scale circulation features affecting the monsoon (TEJ, AEJ) are 

realistically captured. 

The model (9 average members) was able to reproduce the negative correlation and showed 

the highest correlation also during AMJ (62%). So, this season could be used in the seasonal 

forecasting of the Blue Nile. 
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6. EARLY WARNING WITH A STATISTICAL SEASONAL FORECASTING 
MODEL FOR BLUE NILE SUMMER RUNOFF AT THE KHARTOUM 
STATION 

 

6.1 INTRODUCTION 

 

The task of this part of the deliverable is to present results from an analysis of the variability 

of hydrological drought. Improving understanding of drought variability in the case study 

region serves as a preliminary step for the following work on a statistical forecasting model. 

The statistical analyses results built the basis for the setup of statistical models of 

hydrological drought by providing the necessary information for the model setup. The 

genesis of hydrological droughts is complex with a long chain of causes and many factors. A 

hydrological drought can start with a shortage in precipitation but water management and 

water usage can often cause hydrological drought as well. The statistical approach here 

disregarded the management factors by relating runoff in the Blue Nile directly to 

atmospheric factors, hence circumventing the whole complex hydrological processes in the 

basin. Hence, the result can serve for two purposes: First, the pure atmospheric linkage can 

be analysed and second a baseline of drought forecasting can be produced. The statistical 

analysis investigated the complex relationship of drought in the Nile basin with climate 

anomalies. Since these atmospheric anomalies are known to cause drought they are the 

basis for various statistical methods of rainfall prediction and were employed here for early 

warning of hydrological drought. 

In this study three forecasting schemes were tested with different models to compare the 

methods. The results presented here are only for the Blue Nile station in Khartoum which has 

the annual peak flow in August and rainy season flow lasting from June to November (Figure 

6-1). The station Khartoum lays at the confluence of the Blue and White Nile (Figure 6-2). 

Hence, the first forecasting scheme was established for June to August at a one month lead 

time. The second scheme was forecasting the flow of September to November at a one 

month lead time. The last forecasting scheme forecasted the runoff of the whole rainy 

season at a three month lead time. 
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Figure 6-1: Boxplot of runoff at the stations in Blue Nile (DIEM, KHARTOUM, ROSEIRES, SENNAR) and 
Atbara (KILO3). 

 

 

 

Figure 6-2 : Runoff gauges (GRDC, NFC) at the Blue Nile and Atbara with data availability in this study. 
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6.2 DATA AND METHODS 

 

Table 6-1: Climate indexes used in correlation analyses 

Variable / 
Data set 

Covered 
period 

Source 

Southern 
Oscillation Index 
(SOI) 

01.1951 

- 

now 

Climate Prediction Center of NOAA: 

ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/soi 

ENSO indexes 
(ERSST) 

01.1950 

- 

now 

Climate Prediction Center of NOAA: 

http://www.cpc.ncep.noaa.gov/data/indices/ersst3b.nin

o.mth.ascii 

ENSO indexes 
(OISST) 

01.1982 

- 

now 

Climate Prediction Center of NOAA: 

http://www.cpc.ncep.noaa.gov/data/indices/sstoi.indic

es 

Darwin sea level 
pressure (SLP) 

01.1951 

- 

now 

Climate Prediction Center of NOAA: 

http://www.cpc.ncep.noaa.gov/data/indices/darwin 

Tahiti SLP 01.1951 

- 

now 

Climate Prediction Center of NOAA: 

http://www.cpc.ncep.noaa.gov/data/indices/tahiti 

North Atlantic 
Oscillation (NAO) 

01.1950 

- 

now 

Climate Prediction Center of NOAA: 

ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/nao_i

ndex.tim 

Indian Ocean 
Dipole Mode 
Index (DMI) 

11.1981 

- 

now 

Based on NOAA OISST Ver.2 

http://www.jamstec.go.jp/frcgc/research/d1/iod/DATA/

dmi.monthly.ascii 

Oceanic Nino 
Index (ONI) 

02.1950 

- 

now 

Based on ERSST.v3b of Climate Prediction Center of 

NOAA: 

http://www.cpc.ncep.noaa.gov/products/analysis_moni

toring/ensostuff/ensoyears.shtml 

Trans Nino Index 
(TNI) 

03.1870 

- 

now 

HadSST1.1 until Nov 1981 and NCEP NOAA OI after: 

http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/

Data/tni.long.data 

NINO3.4 
(HadSST) 

1871 

- 

2011 

http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/

Data/nino34.long.data 

http://www.cpc.ncep.noaa.gov/data/indices/ersst3b.nino.mth.ascii
http://www.cpc.ncep.noaa.gov/data/indices/ersst3b.nino.mth.ascii
http://www.cpc.ncep.noaa.gov/data/indices/sstoi.indices
http://www.cpc.ncep.noaa.gov/data/indices/sstoi.indices
ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/nao_index.tim
ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/nao_index.tim
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6.2.1 Wavelet Analysis 

Continuous Wavelet analysis was applied as described in (Torrence & Compo, 1998). 

Continuous Wavelet analysis is a common established tool for the analysis of variability in 

time series. It is particularly suited for signals which are caused by underlying non-stationary 

processes. It decomposes a signal locally (in time) into its frequency components. The signal 

decomposition is a powerful tool to understand the components present in a time series in 

which different frequencies overlay and in which frequencies change over time. Changes in 

the dominant frequencies can provide insight into the dynamics of a signal. 

 

The power of a frequency at a point in time resembles the strength of this frequency at this 

point in time. However, similar to the Heisenberg uncertainty principle there is a trade off 

between localisation in time or in the frequency domain. The analysis can be either accurate 

in the frequency domain or in the time domain. Furthermore, in this context it is essential 

what type of mother wavelet function is chosen. There are several options available, which 

have a certain advantage in either frequency or time detection. Wavelet bases such as the 

Mexican hat are more accurate in the temporal domain and less accurate in the frequency 

domain. Hence, the Mexican hat is appropriate for example in peak detection applications. 

Though, detection of events was of minor interest in this study, but rather the detection of 

frequencies present in the runoff signal. Thus, in the present analysis the common Morlet 

wavelet base was applied, for it is an excellent compromise between time and frequency 

detection. Furthermore it has a good resemblance to the standardized time series. 

In the result and discussion section 6.3 the analysis results of the Blue Nile Standardized 

Runoff Index (SRI) based on the Khartoum station is presented in a wavelet power spectrum. 

The plots show the wavelet power which is the squared amplitude for a specific frequency 

and time.  

In statistical prediction models external predictors are used. The relation to external factors 

can be complex and non-stationary. The relation and similarity of two variables can be 

analysed using Wavelet coherence analysis (Grinsted, Moore, & Jevrejeva, 2004). The 

method analyses common signal properties in the time and frequency domain. Hereby, the 

relative phase lag between the two time series is analysed, too. Wavelet coherence plots are 

similar to the wavelet analysis plot. They differ in that the Wavelet coherence plots show the 

frequencies that both time series have in common over time. Wavelet coherence can be 

interpreted as a localized correlation coefficient in time frequency space (Grinsted et al., 

2004). Wavelet analysis algorithms require complete records and cannot deal with missing 

data. The analysis was focused on records without long gaps. In some cases, gaps were 
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filled with zeros after SRI was calculated. It is indicated in the figure captions when time 

series are presented, which had to be manipulated in this way. 

The analysis was performed in R using the packages “dplR” and “biwavelet”. 

 
6.2.2 Statistical forecasting 

The statistical forecasting approach followed here employed two different methods: multiple 

linear models (MLM) and artificial neural networks (ANN). All these methods have in 

common that they are able to relate multiple predictors (input) to one predictand (output) 

variable1. Hence, the first step was to identify potential predictors for drought in the Blue Nile 

basin. Second, best predictors were chosen. Third, the models were set up with these 

predictors and drought forecasting performance was compared. 

For the identification of potential predictors a number of climate and circulation anomaly 

indices were compiled. In addition, teleconnected sea surface regions were selected based 

on composites analysis. For example, composites were calculated for conditions during the 

12 months preceding drought in early rainy season (JJA) and late rainy season (SON). See 

Table 6-2 for an overview of the applied composite definitions. Here, the analysis was 

focused on the main peak in runoff at station Khartoum, which lasts from June to November. 

Droughts were defined as moments in time, where the Blue Nile SRI was below a threshold 

of -0.5, which equals the 31 % lowest periods (Pstandardnormal(q< -0.5)).  

 
Table 6-2: Selection criteria for the composites: the Blue Nile SRI threshold regarded as drought (SRI < -
0.5), the temporal resolution of a composite (time resolution), the relation of composite time to drought 

occurrence time (time relation), which can be contemporary or with lead time. 

N◦ SPI time resolution time relation 

C1 SRI1< −0.5 all contemporary 

C2 SRI1< −0.5 monthly contemporary 

C3 SRIJJA,SON< −0.5 JJA, SON preceding twelve months 

(August-1 to July and November-1 to 

October) 

 

The set of predictors contained several non-independent variables. Hence it was affected by 

collinearity. For example, this was the case for the different predictors related to the El-Niño 

phenomenon (ENSO regions). Therefore, predictors had to be selected carefully and models 

had to be validated to check for overfitting. We followed a widely established approach which 

has also been applied by Diro, Black & Grimes (2008) for seasonal forecasting of Ethiopian 

rainfall. The approach is to build a multiple linear model by a stepwise selection of predictors 

from the set of potential predictors. The algorithm as it is implemented in the “stats” package 

                                                
1 ANN can also be adapted to more than one output variable 
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for the statistical programming environment R (R Development Core Team, 2012) was 

applied in a manner as follows. In the first step all potential predictors were added to 

individual models. For every model the Akaike information criterion (AIC) was calculated. It 

evaluates the model depending on the number of predictors in use. Of all the models the 

best was chosen based on AIC and then in the second step the remaining potential 

predictors were added individually to the model. Again, the predictor which gave the best AIC 

score was kept for the next round. This selection procedure was continued until no potential 

predictor lead to an improvement to the model. The resulting linear model was then further 

validated by analysing significance of predictors and the calculation of the root mean squared 

error (RMSE). The selection of predictors was analysed using a routine by Lindeman et al. 

(1980). Hereby the importance of the different predictors is compared by estimation of the 

contributed explained variance. When this is calculated from a linear model the explained 

variance for each predictor is biased by the set order of the predictors. The method by 

Lindeman et al. (1980) does approach this issue by averaging over different orders of the 

predictors. This gives an estimation of the explicative contribution by the predictors. 

The general purpose of the seasonal forecasting is to improve drought early warning by 

supplying additional information to managers and decision makers involved in water resource 

management. Ideally, operational early warning systems would issue a warning when a 

forecast is likely to fall below a specific threshold. The warning would then trigger mitigation 

actions or other action improving preparedness. Therefore, the thresholds have to be set 

carefully in advance by local early warning experts in respect to the envisaged actions. 

Hence, the information needed for the early warning system consists of a warning threshold 

and a related probabilistic forecast. In this study we set the drought warning threshold of the 

standardized runoff index to -0.5. In order to make use of a multiple linear model forecast for 

early warning, we estimated the average error from the residuals of the calibration data set. 

Following the assumption inherent to multiple linear models we assumed normally distributed 

residuals with a standard deviation equaling the residual standard error. This normal 

distribution was applied to calculate the probability for droughts for the forecasted values. In 

this way it is possible to transform the deterministic discrete MLM forecast to a probabilistic 

categorical forecast (Diro, Grimes, & Black, 2011). 

Multiple linear models and linear discriminant analysis have one major shortcoming, which is 

their inability to model non-linear processes. However, atmospheric processes are very likely 

to be non-linear (Mwale et al., 2007). Hence, Mwale et al. (2007) successfully applied 

artificial neural networks for the prediction of summer rainfall in southern Africa, since ANN 

are capable of representing more complex non-linear relationships between variables. Here, 

we applied artificial neural networks, which were trained with the genetic algorithm (ANN-

GA). As input layer the predictors from the MLM were chosen. This step of the model 

development shows if the inclusion of non-linearity can improve the model fit. The artificial 
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neural networks as they were employed here consisted of three layers: one input layer, one 

hidden layer and one output layer. Each layer contained a number of neurons, which had to 

be predefined before the training procedure. The input layer contained as many neurons as 

there are variables in the predictor data set. Every neuron handled the data of one of these 

variables. The number of neurons in the hidden layer determined the complexity of the 

model. When networks are designed with a high number of neurons, they also have many 

parameters, which generally increase the risk of overfitting. However, Lawrence et al. (1997) 

found that ANN are not very prone to overfitting even when set up with a higher degree than 

necessary. Nevertheless, here the available data was small, so chances of overfitting are 

high. In order to check the influence of the number of neurons, two different designs were set 

up: one ANN with three and one ANN with 10 neurons in the hidden layer. The output layer 

contained one neuron only which was the predictand. Prior to the training procedure all input 

and output data was scaled to the range 0 to 1.  

The algorithm employed for network training is called “genetic algorithm” and it applies the 

principles in genetic evolution for training of neural networks. The algorithm used here is 

implemented in the R package “ANN” (Roy-Desrosiers, 2012). The principle of the training 

algorithm is that a population of neural networks moves from one generation to the next, a 

process during which survival of the fittest, mutation and crossover (gene transfer) apply. 

Initially, a population of neural networks is created, where all parameters (weights and 

biases) are set at random. Here, the initial population size was set to 3000. The fitness of the 

networks is measured by the sum of squares of the residuals. The mutation rate was set to 

5% and crossover rate was set to 0.8. 

From each generation 5% were kept unaltered for the next generation. The least fittest 5% of 

a generation are removed and replaced by mutated –randomized – individuals in the next 

generation (mutation rate). For the rest of the individuals a one-point crossover representing 

a gene transfer is processed by randomly selecting a parameter within two networks which 

are exchanged between the two parents to create the two children networks for the next 

generation. 

Following the calibration and training, the models were validated. The fit of any given model 

was evaluated by the coefficient of determination (R²), the mean squared error (MSE) and 

the root mean squared error (RMSE). When calculated based on the training data, these 

measures indicate the quality of fit of a model. However, the ability to represent the training 

data does not lead directly to good generalization performance by the model. In order to test 

the generalisation ability a leave-one-out cross validation scheme was applied. With this 

approach, both MLM and ANN-GA were analysed, for it was an applicable way to validation.  

Cross validation provides an estimate of the model error for independent data. For a dataset 

of length n it does so by splitting the calibration data set in n parts and train the model n 

times by excluding one value in each turn. Then, each model is validated with the single 
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independent value. The resulting MSE is then averaged for all runs to obtain MSEcv. It is 

possible then to compare the RMSE based on the complete calibration data with the RMSEcv 

from the cross validation. A perfect model would result in no difference between the two 

errors. Although normally, there is a difference, and the more RMSEcv exceeds RMSE, the 

weaker is the generalisation performance of a model. Reasons for this can be overfitting or 

unsuitable predictors.  

The models compared here were evaluated in an early warning setting. As already 

mentioned (see above) this involves the selection of a threshold for a warning. For 

demonstration purpose in the report the threshold was set to SRI < -0.5, which approximates 

31 % of the driest values. By application of the threshold the observation time series was 

transformed to a binary variable, which indicated drought and non-drought events. A warning 

is issued when the forecasted probability for the value is high to fall below the threshold. If 

warnings are issued at very high drought probabilities only, then on the one hand most 

warnings would be correct, on the other hand it would be likely that some drought events are 

missed. In contrast, if warnings are issued at low probabilities already, then more events 

would be detected early but at the price of a higher false alarm rate.  

Missed events and false alarms both lower the credibility of an early warning system. 

Decision makers can set the alarm triggering probability depending on the importance of hits 

versus false alarms. Depending on the circumstances of the decision maker or the early 

warning institution false alarms are regarded differently. Here, we analysed the early warning 

systems performance of models with receiver operating characteristics (ROC), which is a plot 

that displays the hit rate vs the false alarm rate depending on different levels of forecast 

probability. Hereby, the plot eases the definition of the early warning trigger. The diagonal 

resembles a random forecast of no skill since hit rate and false alarm rate are always equal 

and independent of the probability trigger threshold. If a forecasting model has any value 

then the curve is higher than the diagonal. ROC analysis also offers the so called ROC score 

to compare different models. The ROC score is the area below the curve and ranges 

between 0 and 1. The no skill diagonal already reaches an area of 0.5 so that models have 

skill only when they have ROC scores higher than 0.5.  

The analyses in this report used hydrological and sea surface temperature data of the HAD 

ISST1.1 data set (Rayner, 2003). Runoff data sources analysed here are from the Global 

Runoff Data Centre (GRDC, http://www.bafg.de/GRDC), and provided by the DEWFORA 

partner NFC (Nile forecast center). Runoff data was available for the stations Khartoum, 

Sennar, Roseires and El Diem in the Blue Nile (Figure 7-2). Furthermore, metadata such as 

catchment boundaries and rivers were taken from the free HydroSHEDS data set 

(http://hydrosheds.cr.usgs.gov/). Country boundaries were used from the Global 

Administrative Areas database version 2.0 (GADM, http://www.gadm.org/) or as available in 

http://www.bafg.de/GRDC
http://hydrosheds.cr.usgs.gov/
http://www.gadm.org/
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the R package “maps” which builds upon the CIA World Data Bank II 

(http://www.evl.uic.edu/pape/data/WDB/). 

The available runoff for the stations did not cover the complete available period in either of 

the data sources; hence runoff timeseries were created by combining the GRDC and the 

NFC data. Then, the Standardized Runoff Index (Shukla & Wood, 2008) was calculated for 

the runoff time series. See DEWFORA deliverable 4.6 (Seibert and Apel, 2012) for details on 

the preprocessing procedure. The station Khartoum was focused since it had highest data 

coverage. 

 

6.3 WAVELET ANALYSIS: VARIABILITY ANALYSIS OF STANDARDIZED RUNOFF INDEX 

Runoff in the Blue Nile naturally shows seasonality which was presented in Figure 6-1. 

Droughts are anomalies during which runoff is lower than the longtime averages. The 

strength of these anomalies was calculated by the standardized runoff index (SRI). The SRI 

series is normally distributed and shows the runoff anomaly at a monthly aggregation. We 

focused the analysis of runoff variability on the anomalies in the runoff signal at the station 

Khartoum. From the start of the time series in 1900 until 1920 the SRI signal showed power 

on three bands: periods 1, 2-3 and the 5-8 year (Figure 6-3). From 1920 on the wavelet 

power decreased which was caused by lower variability with the effect that only few regions 

in the wavelet power spectrum were still significant. Until 1950 periods of 10 years were still 

significant at the 95% level. However, over the complete record power in the range of 5 to 10 

years was still high and from 1970 on the wavelet power increased again up to a significant 

level. The power on the band 2-3 years which was strong until 1920 was still high until 1950. 

From 1950 on the power was only present for short periods. Periods of one year were also 

only significant for short periods with an extended gap from 1930 to 1950.  

The signal properties are characterized by non-stationarity with a decreased variability from 

1920 to 1980. However, the presence of 5-10 year periods throughout the whole signal 

indicated that factors of variability were very stable and should be predictable. The ENSO 

signals also had frequencies in that range so it is likely that the wavelet power on these 5 -10 

years band are caused by the connection to El Niño as was depicted in sections 5 and 6.  

The relationship of ENSO to precipitation in Ethiopia is relatively strong and the wavelet 

analysis of the SRI signal indicated this as well. During El Niño events the sea surface 

temperature is elevated in the NIÑO regions of the Pacific and precipitation is lower than 

normal. 

http://www.evl.uic.edu/pape/data/WDB/
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Figure 6-3: Khartoum (Blue Nile): Standardised runoff index time series (upper), wavelet power spectra 

(lower) and the global wavelet spectrum (right); contours show significance at 0.05 level. 

 

 

 
Figure 6-4: Khartoum (Blue Nile): Standardized runoff index and Oceanic NINO Index (ONI) time series 

(upper), wavelet coherence plot (lower) and global power spectrum (right); contours show significance at 
0.05 level. 
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The signal properties of the ENSO and the Khartoum SRI can be compared using wavelet 

coherence analysis to highlight common properties. The Oceanic Niño index is a modified 

index of the NIÑO3.4 SST in the equatorial Pacific which is available since 1950 with good 

reliability and consistency in the data basis. The wavelet coherence indicated common signal 

properties in the 2-4 year band during two time spans of ca. 10 years (Figure 6-4). The 

coherent wavelet power was significant from 1965 to 1975 and from 1990 to 2000. During 

the first period one of the strongest El Niño events occurred and coincided with one of the 

major and extended droughts (1973/1974). The signal coherence was high since the 

dynamics of the event were very similar with a similar duration. Approximately 10 years later 

in the early 80’s a very strong El-Niño event developed rapidly. At the same time the low SRI 

values indicated a long period of hydrological drought. However, the dynamic of the two 

signals did not match well and caused the absence of wavelet coherence in the 80’s. The 

wavelet coherence on longer decadal periods of ca. 16 years was strong though and 

developed since the late 60’s. These examples demonstrate the complexity of the 

relationship between ENSO and the runoff signal.  

 

 

6.4 POTENTIAL PREDICTORS 

 

Seasonal prediction of Ethiopian precipitation was presented in several publications (Diro et 

al. (2008)) which employed the relationship to El-Niño in the region. Hence, the attempt 

presented here also included the El-Niño southern oscillation indices (ENSO) and a number 

of other indices which are presented in Table 6-1 (NAO, DMI). These climate anomalies are 

propagated through the atmosphere and influence the regional atmospheric dynamic (Diro et 

al., 2011). The impact on precipitation anomalies is then established by changes in the 

atmospheric moisture transport trajectories or atmospheric moisture content. The most 

important oceanic moisture sources for the Horn of Africa are the Red Sea, the 

Mediterranean Sea and the Indian Ocean (Gimeno et al., 2010). Additionally, the Congo 

basin is an important continental moisture source. Sea surface temperatures in the oceanic 

moisture source regions influence the local evaporation and then the available moisture in 

the atmosphere. Hence, the list of potential predictors was extended by several predictors 

based on Ocean regions that were related to droughts in the Blue Nile basin. These regions 

were defined by analyses of composites.  
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Figure 6-5: Composite (1) of sea surface temperature 
anomalies for hydrological drought in the Nile basin 

(Khartoum), significant anomalies displayed, only. 

6.4.1 Teleconnections with Indian Ocean and Atlantic sea surface temperature 

 

Sea surface temperature composites of 

drought in the Blue Nile basin were 

calculated to identify Ocean region with 

significant anomalies. Droughts occurred 

generally when temperatures in the 

northern Indian Ocean were higher than 

normal (Figure 6-5 to the right). In the 

composite of all droughts (composites 1) 

the temperature anomalies in the Atlantic 

were close to normal or slightly below zero. The conditions during droughts differ depending 

on the time of the season. In order to analyse this aspect, composites were calculated for 

every month of the year separately (Figure 6-6). There was a well pronounced difference in 

sea surface temperature anomalies between the months April, May, July and the rest of the 

months. The majority of months had positive temperature anomalies in the Indian and 

Atlantic Ocean. Spots with highest anomalies lay in the northern Indian Ocean, along the 

eastern African shoreline, the southern Indian Ocean and the southwestern Atlantic. From 

March to August, these anomalies are much weaker and even absent due to non-

significance in April, May and July. In May the coastal region from the Gulf of Guinea to the 

Angolan Coast had colder than normal temperatures. From June to August the sea surface 

temperatures in the Mediterranean and Red Sea were colder than normal. Even though the 

Red Sea is an important source of oceanic moisture for the Ethiopian highlands, the sea 

surface temperature in the Red Sea only showed very few significant anomalies. In addition 

to the cold anomalies in July and August there were positive anomalies in January and 

October.  

The results of the composites consecutive to hydrological drought conditions are surprising. 

During the peak runoff season from June to November the SST anomaly patterns change 

very much and do not show consistent temperature anomalies. Reasons may be either very 

complex atmospheric processes which cannot be represented by composites or the period of 

monthly composites may be too short since runoff may depend on longer lasting anomalies. 
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Figure 6-6: Composite (2) of sea surface temperature anomalies for months in 
hydrological drought in the Nile basin (Khartoum), significant anomalies displayed, 
only. 
In order to focus the composites analysis on the forecasting approach in this study, 

composites class no. 3 was calculated for the preceding 12 months of droughts early in the 

rainy season (JJA) and late in the rainy season (SON). Hereby, regions with potential 

predictive capability could be extracted. Preceding to hydrological droughts for June to 

August SRIJJA the northern Indian Ocean was warmer than normal (Figure 6-7). From 

January to June the Atlantic showed a positive anomaly at the Coast of Angola in the 

Southern Atlantic. Cold anomalies were present in the Mediterranean and Red Sea, although 

not consistently. Droughts in the second half of the rainy season (September to November) 

were also preceded by positive SST anomalies at the Angolan shore and by negative 

anomalies in the Mediterranean Sea and the Red Sea (Figure 6-8). The complete list of 

selected regions is presented in Table 6-3 and Figure 6-9 presents the position of the 

regions. 
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Figure 6-7: Composite (3) of sea surface temperature anomalies for the 12 months preceding a 

hydrological drought from June to August in the Nile basin (SRIJJA in Khartoum), significant anomalies 
displayed, only. 

 
Figure 6-8: Composite (3) of sea surface temperature anomalies for the 12 months preceding a 

hydrological drought from September to November in the Nile basin (SRISON in Khartoum), significant 
anomalies displayed, only. 
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Table 6-3: Potential predictors for precipitation variability in the Blue Nile basin, detected by composites 
analysis. Parameters are sea surface temperature (SST), the types of the reference composites (see Table 

6-2) are indicated in the last column with the months and respective lead time. 

Ocean Region 

Latitude 
(min, 
max) 

Longitude 
(min, 
max) 

Composite (lead 
time) Abbreviation 

Atlantic Angola shore -18 -3 -2, 10 

C2J,F,O,N,D, C3JJA(2-6), 

C3SON(2,1) AngolaCoast 

 

Brasilian 

shore -15, -26 -20, -46 

C2J,F,N, C3JJA(1-8), 

C3SON(5-8) BCoast 

 

Northern 

Atlantic 33, 41 -30, -46 C3JJA(0), C3SON(1-0) NAtl 

Indian Ocean Horn of Africa 2, 13 45, 65 

C2J,F,A,S,O,N,D, C3JJA(0-

10), C3SON(8-9) HoA 

 

western 

equatorial -5, 5 52, 67 

C3JJA(0,8,9), 

C3SON(0-5) weqIO 

 

Mozambique 

shore -28, -15 40, 45  Moz 

 

Tansanian 

shore -15, 4 40, 45  TanC 
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Figure 6-9: Teleconnected regions established by correlation and composites analysis. 
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6.5 STATISTICAL MODEL SETUP 
6.5.1 Predictor selection 

Here, the results of the parameter selection and model setup are presented for Khartoum in 

the Blue Nile at different lead times. The first forecast scheme was a forecast of the early 

rainy season at one month lead time. This means that a forecast for June to August runoff 

(JJA) was made in May based on the data of April. The second forecasting scheme was a 

forecast of the late rainy season at one month lead time, which is in detail a forecast for 

September to November runoff (SON) in August based on the data of July. The last 

forecasting scheme presented here was a forecast of the late whole rainy season with a 

three month lead time, so that June to November runoff (JJASON) was forecasted in April 

based on the data of February. The selection of predictors from the list of potential predictors 

was performed with stepwise selection for multiple linear models. The selection is a process 

which is sensitive to the selection criteria. When selection was performed with the Akaike’s 

information criterion (AIC) the resulting models had a higher coefficient of determination than 

with the Bayes information criterion (BIC). The BIC is more conservative than the AIC since 

the penalty for the number of parameters is higher. As a result, less parameters are selected 

and the coefficient of determination is lower. In cases where this effect is strong it is likely, 

that some of the parameters only contributed little additional model skill. For all Forecasting 

schemes the AIC selected model not only reached the highest coefficient of determination, 

the models also had good generalization properties. For these models interaction between 

factors was also tested and subjected to the same parameter selection procedure as before. 

Of the three models the one for the late rainy season had the highest coefficients of 

determination (Table 6-4). The multiple linear model reached 0.52 and the ANN improved 

upon this up to a value of 0.8. Interaction between the model parameters did only play a 

minor role as shown by the small difference in the coefficients of determination. The 

explained variance in the model for the early rainy season forecast was low with only 0.24. 

The parameters and their importance will be discussed in the following paragraph. 

 
Table 6-4: Coefficients of determination for the multiple linear model without (MLM), with interaction 

(MLM-i), the artificial neural network with 10 (ANN-10) and 3 hidden layers (ANN-3) for the forecasts at one 
month leadtime (lead1) and three months lead time(lead3) of runoff in JJA (SRI3Aug), SON (SRI3Nov) and 

JJASON (SRI6Nov). 

Forecast MLM MLM-i ANN-10 ANN-3 

SRI3Aug_lead1 0,24 0,26 0,39 0,35 

SRI3Nov_lead1 0,52 0,55 0,80 0,72 

SRI6Nov_lead3 0,35 0,35 0,75 0,54 

 

All models included one predictor related to ENSO, but all models picked different 

combinations (Figure 6-10). The estimated explicative contribution presented in Figure 6-10 



DEWFORA Project Report <WP6-D6.2>  

130 

 

for all parameters and models is an indicator for the importance of each predictor. In the 

early rainy season forecast model the Oceanic Niño index was selected, but was only in 

second place in explicative contribution to the model. The Red Sea SST anomaly did have a 

higher importance. In model for the late rainy season the NINO 3.4 region was selected and 

was far most important for the model. In contract to model one the SRI at the time of 

prediction was selected as well. This indicates that hydrological drought early in the rainy 

season persists to the late rainy season. The model for forecasting the whole rainy season 

runoff at 3 month lead time was built with the Niño 4 region index. In this model almost all 

parameters had equally low explicative contribution of ca. 0.06. The SST of the shore of 

Angola (SST_KongoCoast_f1) was selected for the late rainy season model and the model 

for the whole rainy season. Though, the explicative contribution was low in both models. All 

three interactive models had one interactive parameter. In the model of the whole rainy 

season this parameter replaced the SST temperature of the ocean region in the western 

Mediterranean Sea.  

 
Figure 6-10: Multiple linear models: Estimated explicative contribution of predictors for the three 

forecasts without interaction and with interaction (“i” appended). 

 
6.5.2 Model validation 

In the previous section the predictor selection results and model fit performances were 

presented. In Figure 6-11 to Figure 6-13 results of the fitted models are presented. For all the 

stations the artificial neural network with 10 neurons in the hidden layer reached the best fit. 

Particularly, extreme events were captured much better by the ANN than with the linear 

model (AIC selection, AMJ predictors). The simulations of all models were missing 

parameters for the time before 1950 which is why no forecasts were calculated for these 

months. 
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Figure 6-11: One month lead time forecast of early rainy season runoff (SRIJJA) at station Khartoum: 
Model fits of multiple linear model (MLM) and artificial neural networks (ANN) with two degrees of 

complexity, one with 3 neurons (ANN3) and the other one with 10 neurons (ANN10) in the hidden layer, 
first half of the observation period could not be fitted due to missing input data. 

 

 
Figure 6-12: One month lead time forecast of late rainy season runoff (SRISON) at station Khartoum: Model 

fits of multiple linear model (MLM) and artificial neural networks (ANN) with two degrees of complexity, 
one with 3 neurons (ANN3) and the other one with 10 neurons (ANN10) in the hidden layer, first half of the 

observation period could not be fitted due to missing input data. 
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Figure 6-13: Three months lead time forecast of rainy season runoff (SRIJJASON) at station Khartoum: 

Model fits of multiple linear model (MLM) and artificial neural networks (ANN) with two degrees of 
complexity, one with 3 neurons (ANN3) and the other one with 10 neurons (ANN10) in the hidden layer, 

first half of the observation period could not be fitted due to missing input data. 

 
The simulations at all station were improved with the artificial neural networks. The ability for 

non-linear relationships was capable of representing the extreme values much better than 

the linear models. However, these results did not give any reliable indication of the 

generalisation performance of the models. This issue was addressed by applying leave-one-

out cross validation. Using cross validation the root mean squared error (RMSE) for 

independent data can be estimated which gives a good estimation of the forecasting 

performance of a model. Models for which the RMSE of the cross-validation is much higher 

than the RMSE of the calibration have only low skill and have weak generalisation 

performance. As expected from the discussed results so far, the RMSE of the MLM is higher 

than for both ANNs (Table 6-5). However, the cross-validation showed that for all models the 

cross-validated RMSE increases by far more in the ANN than for the MLM. The resulting 

RMSE for the MLM was lowest for the forecast of late rainy season with only 0.60 (interaction 

MLM). The cross-validated RMSE was highest for the model of the whole rainy season. 

However, in all three forecasting schemes the MLM with interaction showed a comparatively 

low cross-validated RMSE. The generalisation was particularly good for the late rainy season 

forecast. These model errors are very high in regard of the standard deviation of one in the 

standardised runoff data. 
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Table 6-5: Root mean squared errors from calibration data (ALL) and from leave-one-out cross validation 
(CV) for the multiple linear model without (MLM), with interaction (MLM-i), the artificial neural network with 

10 (ANN-10) and 3 hidden layers (ANN-3). 

Forecast run MLM MLM-i ANN-10 ANN-3 

SRI3Aug_lead1 ALL 0,90 0,72 0,78 0,81 

 

CV 0,91 0,81 0,83 0,93 

SRI3Nov_lead1 ALL 0,76 0,60 0,47 0,55 

 

CV 0,80 0,60 0,85 1,06 

SRI6Nov_lead3 ALL 0,88 0,75 0,51 0,69 

 

CV 0,93 0,84 1,08 1,26 

 
6.5.3 Model performance for drought Early Warning 

Several types of statistical methods were developed, of which the multiple linear models with 

interaction exhibited the best generalisation performance. For drought early warning it was 

necessary to calculate probabilities for drought and flood based on the forecasting models. In 

accordance to tercile forecasts the thresholds for drought and flood were set to -0.5 and 0.5 

and the respective probabilities were calculated. In Figure 6-14 to Figure 6-17 the results are 

presented with a simulated warning for the class with highest probability.  

The early warnings of one month lead time forecast of early rainy season runoff did forecast 

all extreme drought events correctly but many false warnings were issued. In one case there 

was even a drought warning issued and a flood occurred. The ROC score of the presented 

MLM with interaction was the same as for the MLM without interaction, which shows that the 

models early warning performance is the same (Figure 6-16, left). With a ROC score of 0.78 

the skill is low. 

The linear models for the late rainy season early warning at one month lead time had better 

skill and reached a ROC score of 0.85, both (Figure 6-16, right). In this case this mean that if 

the early warning threshold would be set to a drought probability of 50%, then the false alarm 

rate would be lower than 30 %. This is still a high proportion but the best result of all the 

statistical models in this study.  

The linear models for the seasonal early warning with a lead time of 3 months showed the 

lowest skill with ROC scores of 0.72. Even though many droughts were early warned 

correctly, there were several floods where the early warning would have been issuing a 

drought warning. These kind of false warnings are lethal to the credibility of a warning system 

and the issuing organization and are hence critical for operational use. Even when the early 

warning probability thresholds would be set to a high value like 0.5, the false alarm rate 

would be higher than 0.3 (Figure 6-18). 



DEWFORA Project Report <WP6-D6.2>  

134 

 

 
Figure 6-14: One month lead time forecast of early rainy season runoff (SRIJJA) at station Khartoum: Early 
warnings of the multiple linear model with interaction. Above: simulation (grey line) and observed values 

(black line) with early warnings one month ahead for class with highest probability (coloured points). 
Below: Probabilities for flood (dark blue), normal (bright blue) and drought (orange). 
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Figure 6-15: One month lead time forecast of late rainy season runoff (SRISON) at station Khartoum: Early 
warnings of the multiple linear model with interaction. Above: simulation (grey line) and observed values 

(black line) with early warnings one month ahead for class with highest probability (coloured points). 
Below: Probabilities for flood (dark blue), normal (bright blue) and drought (orange). 

 

 
Figure 6-16: Receiver operating characteristic curves of drought early warning with the linear models with 

and without interaction of one month lead time left for early rainy season runoff (JJA) and right for late 
rainy season runoff (SON), values next to the model names in the legend show ROC scores. 
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Figure 6-17: Three months lead time forecast of the whole rainy season runoff (SRIJJASON) at station 

Khartoum: Early warnings of the multiple linear model with interaction. Above: simulation (grey line) and 
observed values (black line) with early warnings three months ahead for class with highest probability 
(coloured points). Below: Probabilities for flood (dark blue), normal (bright blue) and drought (orange). 

 

 
Figure 6-18: Receiver operating characteristic curves of drought early warning with the linear models of 

three month lead time rainy season runoff (JJASON), values next to the model names in the legend show 
ROC scores. 
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6.6 CONCLUSION 

 

The influence of El Niño anomalies on the drought occurrence in Ethiopia and the Blue Nile 

is known but the relationship is highly complex. By analysis of the signal properties of runoff 

and the Oceanic Nino index we showed that the two time series share signal properties of 

longer periods of ca. 16 years. Shorter periods are also common to both series but non-

stationary. Both signals are linked but the non-stationarity is an obstacle for statistical 

seasonal prediction, since statistical models are not able to account for this degree of 

complexity. The statistical approach presented here was followed to investigate the 

forecasting quality which can be achieved by building solely upon teleconnections of sea 

surface temperatures to model runoff in the Blue Nile at the station in Khartoum. The 

statistical models used several predictors amongst which was the relationship to El Nino, sea 

surface temperature at the Atlantic shore of Angola, the Red Sea, the Mediterranean Sea 

and the Indian Ocean.  

Three different forecasting schemes were set up with statistical models for the Blue Nile 

station in Khartoum. The best forecasting skill was achieved for one month ahead forecasts 

of runoff in the late rainy season from September to November. Forecasts for the early rainy 

season at one month lead time had lower skill and so did the forecasting models of the whole 

rainy season at three month lead time. The two latter forecasting schemes reached equally 

low skills even though they differed in the leading time by two month. This indicated that the 

predictability does depend on the leading time but also on the time of the season. The 

predictability for June to August runoff was lower than for September to April in this study. 

Due to the low forecasting performance the statistical approach presented here is not suited 

for operational early warning for the public and can only serve well for specialists and 

academia. There are two potential reasons for the low prediction performance. First, there 

are other statistical methods which might be able to reach higher performances. Second, it is 

possible that for runoff forecasts the hydrological processes cannot be discarded even at the 

longer time scales. This could be assessed by comparing the statistical forecasting results to 

a dynamic physical based model approach. 
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