

Rijkswaterstaat Ministry of Infrastructure and the Environment

indde

The sensitivity of hydrological model predictions to ecosystem adaptation in response to climate change

Laurène Bouaziz^{1,2}, Emma E. Aalbers^{3,4}, Albrecht H. Weerts^{2,5}, Mark Hegnauer², Hendrik Buiteveld⁶, Rita Lammersen⁶, Jasper Stam⁶, Eric Sprokkereef⁶, Hubert Savenije¹, Markus Hrachowitz¹

¹Delft University of Technology, ²Deltares, ³KNMI, ⁴Vrije Universiteit Amsterdam, ⁵Wageningen University and Research, ⁶Ministry of Infrastructure and the Environment, the Netherlands

Laurene.Bouaziz@deltares.nl

September 2021

If climate changes, how should we change our models?

Non-stationarity of hydrological system

"How can hydrological models be adapted to be able to extrapolate to changing conditions, including changing vegetation dynamics" Blöschl et al., 2019, Hydrol. Sci. J.

hypothesis

Changes in the **predicted hydrological response** as a result of **+2K global warming** in comparison to current day conditions are more pronounced when explicitly considering an **adapted root-zone storage capacity** to reflect changes in seasonality and magnitude of hydro-climatic variables as well as potential land-use changes.

Land use variability

Climate data

Simulated observed and +2K climate data Pseudo-global warming simulation (KNMI, Aalbers et al. 2021)

Hydrological model – wflow_FLEX-Topo

Distributed process-based wflow_FLEX-Topo model with three hydrological response units:

- Plateau
- Hillslope
- Wetland

Connected through their groundwater reservoir

Model scenarios

Scenario 2K_A
Stationary system: no changes in root-zone storage capacity and historical land use

• Scenario 2K_B

Adapted root-zone storage capacity in response to climate change and historical land use

• Scenario 2K_C

Adapted root-zone storage capacity in response to climate change and land-use conversion from coniferous plantations to broadleaved forest

• Scenario 2K_D

Adapted root-zone storage capacity in response to climate change and land-use conversion from broadleaved forest to coniferous plantation

Budyko framework

$$\frac{E_A}{P} = 1 - \frac{\boldsymbol{Q}}{\boldsymbol{P}} = 1 + \frac{E_P}{P} - \left(1 + \left(\frac{E_P}{P}\right)^{\omega}\right)^{1/\omega}$$

Zhang et al., 2004 (WRR)

Root-zone storage capacity from estimated future long-term runoff coefficients and storage deficits

Hydrological change evaluation – Root-zone storage capacity parameter

*S*_{R, max, A} *S*_{R, max, B} *S*_{R, max, C} *S*_{R, max, D}

Increase of root-zone storage capacity parameter (S_{R,max}) with approx. 34% due to more pronounced seasonality with drier summers under 2K global warming.

Model evaluation – historical climate data

Model reproduces daily and seasonal streamflow observations relatively well.

Hydrological change evaluation under +2K global warming and potential land-use change (4 scenarios)

Percentage change in annual hydrological response indicators between the +2K and historical model runs for the four scenarios

- Runoff coefficients increase (+3%) for the stationary system, while they are projected to decrease (-3%) for the nonstationary systems
- Stronger increase in median annual volume deficit for the non-stationary systems in comparison to the stationary systems

Hydrological change evaluation under +2K global warming and potential land-use change (4 scenarios)

Mean monthly percentage change between the +2K and historical model runs for the four scenarios

- More pronounced decrease in streamflow (-20%) between Sept and Nov for the nonstationary systems in comparison to the stationary system
- Actual evaporation is no longer reduced as a result of moisture stress in the non-stationary systems
- Groundwater recharge reduces (-5%) from Oct to Feb in the non-stationary systems, while it increases in the stationary system

Take home messages

- Ecosystems adapt to changing climate conditions (how fast?)
- Future climate projections to estimate how vegetation may adapt its root system
- Adapt vegetation parameters in response to climate change
- Altered hydrological response: decreased streamflow and groundwater recharge, increased evaporation

Thank you

More details in discussion paper: <u>https://doi.org/10.5194/hess-2021-204</u>

