

Deltares

Analysis tool for passability of fish at weir complexes in river systems

A case-study for the Meuse river (NL)

Erik Ruijgh

Project in assignment of RWS

September 21, 2021

Fish migration in the Netherlands

Implementation of WFD in 2027.

Main rivers and large lakes

- Rhine and IJssel accessible
- Measures Haringvliet and Afsluitdijk
- Fish passages at barriers in Meuse river and Nederrijn

Regional water system

Many weirs, pumping stations

Weir complex Lith

Meuse: 7 weirs

Timeline

- Implementation of WFD 2027
- Replacement of weir Grave scheduled for 2028
- Replacement of weir Sambeek, Belfeld, Roermond, Linne scheduled for 2035
- Renovation of weir Borgharen and Lith scheduled for 2035

Huge opportunity to improve the passability of the weir complexes!

Table of contents / outline of the analysis tool

1. Discharge distribution weir complex

2. Migration characteristics

2. Migration characteristics

Combination of:

- discharge distribution at the weir compex
- and migration calendar of fish

to estimate the distribution of fish

assuming "fish follows flow".

passing the weir complex,

"Croze-Larinier".

3. Downstream losses at weir objects

DOWNstream	Eel (adult)	Salmon (smolt)	other
Weir underflow	1,0%	1,3%	3,0%
Weir overflow	1,0%	1,3%	3,0%
HPP	18,0%	9,4%	6,0%
Lock	0,5%	0,5%	0,5%
Natural bypass	0,4%	0,4%	0,4%
Fish passage	0,04%	0,04%	0,04%

3. Upstream losses at weir objects

UP stream	Eel (glass eel)	Salmon (adult)	other
Weir underflow	-	-	-
Weir overflow	-	-	-
HPP	-	-	-
Lock	0,5%	0,5%	0,5%
Natural bypass	0,4%	0,4%	0,4%
Fish passage	0,04%	0,04%	0,04%

3. Upstream losses at weir objects

- Losses in the fish passage and bypass are limited.
- Maintenance of fish passage is crucial.
- How to <u>find the entrance</u> of the fish passage or the natural bypass?
- How to design a fish passage for various species?

Deltares

4. Downstream and Upstream losses at weir complex

Salmon – Salmo salar

5. Migration in river system

Recommendations for weir renewal

Upstream migration

- Create next to each object in the weir complex a fish passage
- Increase the flow in the fish passage with water from the HPP or weir or lock
- Build weirs that can distribute the discharge over the width of the river (to guide the fish to the entrance of the fish passage)

Downstream migration

- Adjust the hydraulic conditions upstream of the weir to guide fish away from the entrance of the HPP
- Increase the size of the stilling basin to reduce turbulance
- Switch-off the HPP during migration peaks
- Only use "fish friendly" turbines in the HPP

River stretches

Improve habitats along the river (feeding, breeding, resting, shelter, etc.) to minimize losses.

Questions?

Contact

- erik.ruijgh@deltares.nl
- +31 6 20429862

- www.deltares.nl
- info@deltares.nl
- @deltares
- in linkedin.com/company/deltares
- f facebook.com/deltaresNL

