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1 Introduction  

Groundwater flow is the driving force behind the process that can lead to piping and thus to 

instability of a dike. The permeability of piping sensitive sand layers is an important parameter 

in the detailed safety assessment of dikes on piping. In current practice, the permeability of 

these layers is determined on the basis of grain distributions and/ or a number of in-situ 

permeability measurements in the sand layer. In this manner, the calculated permeability 

strongly depends on the used methods and formulas, which offer limited insight into the 

permeability of the entire water-bearing (sand) layer. 

 

To evaluate the risk of piping better, it is important to get insight in the variation of the 

permeability in the piping sensitive layer. Together with the thickness of the sand layer this 

determines the ability to let water through. It is difficult and costly task to evaluate the 

representative permeability of an aquifer due to several reasons: the heterogeneity of the 

subsoil, the limitations of current measurement techniques and the high costs for the 

conduction of permeability measurements and thus the limited amount of measurements. 

 

The cooperating partners (Waterboard Aa en Maas, Fugro and Deltares) investigated the 

subsoil permeability using different methods in combination with the Hydraulic Profiling Tool 

(HPT). This HPT-cone penetration was developed for the field environment in order to 

determine a continuous profile of the in-situ permeability. The application of this technique 

provides in-depth understanding of the permeability and structure of the soil. This may 

contribute to a more cost-efficient and better schematization (less uncertainty) of permeability 

in the piping safety assessment. 

 

In order to be able to make a comparison between HPT and more commonly used methods, 

the following methods will be used to determine the permeability of the piping sensitive sand 

layer for a specific case study: 

• Empirical correlations of the permeability derived from sieve curves. 

• Slug tests. 

• HPT test. 

• MPT test. 

• Permeability determination in laboratory (constant head tests). 

• Data available in DINO / REGIS. 

• Correlations based on soil description and literature. 

 

Given the relatively high cost and potential impact on the environment, conducting a pumping 

test is not part of the investigations. 

1.1 Scope of the project 

This pilot project roughly consists of three basic steps namely site selection, data collection 

and data analysis, which is carried out by Fugro in collaboration with Deltares and 

Waterboard Aa en Maas. After selecting a suitable dike section, Deltares developed the 

sampling scheme in order to analyze the spatial variability of the permeability considering 

prior knowledge of a literature study. The second step of the data collection is performed by 

Fugro, which consists of performing HPT tests, collecting available information on the 

expected permeability (including information on the permeability based DINO / REGIS and 

literature). Then there are analyses of the grain size distributions of the aquifer and slug tests 

in boreholes performed. Additionally, permeability measurements and classification tests in 
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laboratory are carried out. Next to these investigations, the HPT technology is used in order 

to set up a correlation between the various test methods. 

 

This report describes how to use these results in a detailed analysis of the heterogeneity, 

using different geostatistical and statistical approaches. This helps to translate the HPT 

measurements into a representative permeability for a piping assessment. 

 

The next two work packages are performed by Deltares and are described in this report.  

 

• Analysis of heterogeneity effects: The purpose of the heterogeneity analysis is to 

translate permeability measurements to a (for piping) representative permeability. In 

these analyses uncertainty and spatial variability play an important role. 

 

• Influence on the schematization and flood safety assessment regarding piping: 

This analysis quantifies the effects of considering the spatial uncertainty of subsoil 

permeability on the assessment of the risk of piping. The assessments are carried out at 

a detailed level using existing and the new piping rule Sellmeijer (2011). Herein, only the 

permeability of the sand pack as a parameter is varied. 

1.2 Goal of this report 

The goal of this report is to investigate the heterogeneity of the subsoil permeability based on 

various test methods for the permeability, compare the methods, and investigate how these 

findings can be translated to piping safety assessment. 

1.3 Structure of the report 

The structure of this report is as follows. First, it is focussed on the statistical analysis of the 

permeability measurement. The next chapter is on the quantification of spatial correlation of 

permeability measurements, including a brief explanation of the methods for quantifying the 

correlation length, the explanation of the sampling concept and the results for the vertical and 

horizontal correlation of the permeability. The next chapter covers the quantification of the 

effects of spatially correlated permeability measurements in the safety assessment regarding 

piping failure using semi-probabilistic and probabilistic methods. This report ends with a 

summary and conclusions. 
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2 Statistical analysis of the permeability measurement 
methods used in this project 

2.1 Introduction 

In this report the following different permeability measurement methods are used, which are 

described in detail in the report of Fugro [25].  

For the sake of completeness, we briefly state the difference in the hydraulic conductivity and 

the intrinsic permeability. Within this report we only investigate the hydraulic conductivity 

referred to as permeability in this document. The anisotropy of the permeability is not in the 

focus of the sequel investigations. 

 

• Empirical correlations of the permeability derived from sieving curves 

– Den Rooijen. 

– Ernst. 

– Hazen. 

– Kozeny-Carman. 

– Seelheim. 

– Seelheim (2). 

 

• Slug tests in mechanical borings 

– Bouwer-Rice lijn 1&3. 

– Hvorslev. 

 

• HPT test 

HPT stands for hydraulic profiling tool (HPT) and is based on a cone penetration test, 

which allows determine a continuous profile of the in-situ permeability. The relation of 

injected water (Q) during the penetration process of the HPT sonde and the pressure P 

are measured. The ratio of Q and P gives a measure of the permeability and the 

permeability differences. Fugro [25] derive a site specific transformation, in which C is 

given as Chpt=0.46 for the top aquifer layer at the investigated site. This site specific, 

empirical relation in equation (0.1) is used to derive for each HPT test the permeability 

profile, from which the top and bottom is visually identified and used for the calculation 

of the corresponding mean value and standard deviation as described in Appendix E.3. 

Note that the mean value of each profile is interpreted as representative values for each 

HPT measurement, which are used for the analysis of the spatial correlation. 

 

1

hpt

Q
k

PC
          (0.1) 

 

Note that the HPT tests and the corresponding relation in equation (0.1) results are 

made in a geologically coarse grained formation, which is not necessarily applicable in 

fine grained sediments. This site specific, empirical relation is not fully clear and asks for 

more investigation to underpin the outcomes. 

 

• MPT tests:  

MPT stands for mini-pumping test. It is the same principal as a pumping test, for which 

the HPT tool is used. A detailed description can be found in the report of Fugro [25]. 
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2.2 Statistical analysis 

All of the above described methods are statistically analysed. The values for permeability are 

plotted in histograms. The best fit for the lognormal distribution for four common methods 

(Hvorslev, Bouwer&Rice1, Hazen, Den Rooijen) is plotted by a red line, see Figure 2.1. The 

results for the HPT are shown in Figure 2.2. The mean value and standard deviations for four 

common methods (Hvorslev, Bouwer&Rice1, Hazen, Den Rooijen) are shown in the Figure 

2.1. The mean values and standard deviations of the permeability measurements show a big 

spread for the employed testing methods. The reasons for this are probably the test 

procedures and the limited size of the tested soil volume. The explanation of differences and 

background on the measurement results can be found in the corresponding report by Fugro 

[25]]. The results of all analyses are given in Appendix E. 

 
Figure 2.1 Histograms and fitted lognormal distribution for four common methods to determine permeability 

 
Figure 2.2 Histograms and fitted lognormal distribution for the HPT permeability values  
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2.3 Parameter selection from the measurement results 

When selecting the parameters from the measurement results, one has to consider the 

different testing conditions of the measurement methods.  

 

It is assumed that the soil volume, which is being tested by the different methods, is one of 

the main sources for the different permeability measurement results. Therefore, the 

measurement values have to be scaled to the same level. Fugro [25] proposes a scaling 

approach from [57], which is used to scale the measurement values. This approach is given 

in Figure 2.3. One can see that it is assumed that the permeability values of measurement 

methods, using only a small soil volume, results in a smaller permeability value than tests 

using a bigger soil volume. It can be also seen that the REGIS results are being influenced by 

a very large soil volume. This is logical because the values of REGIS are derived from 

pumping test and expert judgement. 

 

The derived relationship between the soil volume and the permeability can be described in 

equation (0.2). 

 

for

for

m

R
P P R

P

P P R

V
k V V

k V

k V V

  
     




         (0.2) 

 

Herein, the permeability k is describing the reference volume VR, and kp is describing the 

measurement volume Vp. This correlation has been derived by Fugro [25] and is underpinned 

by published approaches [57]. Fugro derived the [25] the exponent m by fitting m= 2.31. 

Using this empirical scaling relation, one implicitly assumes that the differences of the 

permeability measurement relates mainly on the soil volume being tested. If the volume is 

small (like case of the falling head test in the laboratory), the measured permeability is 

smaller compared to a method (e.g. a large scale pumping test), which is measuring a larger 

volume of soil. This can be related to the presence of heterogeneous parts with a higher 

permeability. Note that this used upscaling approach is an empirical relation between the 

permeability and the measured soil volume. It is not clear how this upscaling approach [25] is 

influencing the uncertainty of the upscaled permeability values. 
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Figure 2.3 Permeability (vertical axis) related to the volume of soil (horizontal axis) for each method from Fugro [25] 
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Table 2.1 provides a summary of the measurement results including mean value, standard 

deviation and measurement volume Vp.. The scaling rule described above is used to scale the 

measurement data and to derive from this the corresponding mean value and standard 

deviation, which are referring to the reference volume VR. 

 

Table 2.1. Raw measurement data and scaled permeability  

  
Number  

raw data VP  scaled permeabilities VR 

 of tests 

μraw σraw COV 
volume  
being 
tested 

μscaled σscaled COV Reference 
volume  

 
 

  
   

  
  

being 
scaled up to 

   
[m/day] 

 
[m/day] 

[%] 
m

3
 

[m/day] [m/day] 
[%] m

3
 

falling head test 20 0.0228 0.0231 101% 0.0015 15.5 15.7 101% 1000 

 
 

        
Bouwer Rice 3 lijn 20 0.3 0.2 67% 0.015 12.3 8.7 71% 1000 

Bouwer Rice 1 lijn 20 2.5 1.7 67% 0.015 97.3 71.5 73% 1000 

Hvorslev 20 0.4 0.3 64% 0.015 15.9 11.3 71% 1000 

 
 

        
Den Rooijen 20 11.2 5.2 47% 1000 11.2 5.2 47% 1000 

Ernst 20 21.5 10 47% 1000 21.5 10 47% 1000 

Hazen 20 15.8 8.7 55% 1000 15.8 8.7 55% 1000 

Kozeny-Carman 20 1.3 0.4 31% 1000 1.3 0.4 31% 1000 

Seelheim 20 16.5 6.1 37% 1000 16.5 6.1 37% 1000 

Seelheim2 20 18.8 8.4 45% 1000 18.8 8.4 45% 1000 

 
 

        
Parez Fauriel * 6 0.1 0.1 116% 0.0002 (4168)* (4170)* 

 
1000 

VanBaars VanDeGraaf 
* 

6 0.01 0.1 116% 0.0002 (417)* (417)* 
 

1000 

 
 

        
MPT - Meetreeks1 19 29.8 19.3 65% 0.02 29.8 19.3 65% 1000 

MPT - Meetreeks2 19 30 20.1 67% 0.02 30.0 20.1 67% 1000 

MPT - Meetreeks3 19 29.6 17.3 59% 0.02 29.6 17.3 59% 1000 

 
 

        

HPT data 12 13.18 1.86 14% 1000 13.18 1.86 14% 1000 

* These test results are significantly (bigger than a factor of 100!) lower than the other results of the permeability 

measurements. 
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3  Quantification of spatially correlated field data  

The measurement data of the permeability given in section 2.1 (are obtained by FUGRO [30]. 

It is described in detail in the corresponding report [30] how the different measurements are 

carried out and how the permeability is derived from the results. In this chapter the results of 

this are analysed with respect to their spatial correlation.  

 

At first, a brief introduction to spatial correlation including a description and explanation of the 

sampling scheme is provided. Then, the workflow for evaluating the vertical and horizontal 

correlation length of the permeability is explained.  

3.1 Scales of spatial correlation 

Many scientists have investigated the spatial variability of soil properties in different fields 

ranging from hydrology, soil sciences, reservoir engineering up to geotechnical engineering.  

 

It can be clearly seen in Figure 3.1 that there are different scales of variability, ranging from 

the micro level at the grain size scale to the geological scale of several tens and hundreds of 

meters. In this context, heterogeneity can be defined as the opposite of homogeneity and is 

further used as a synonym of spatial variability. The geotechnical level is between the 

specimen scale and the geological scale; therefore, it is important to keep in mind that there 

is not a single spatial scale, but multiple spatial scales contributing to soil variability. Of 

course, this plays a role in the evaluation of spatial variability of soil properties as well in the 

evaluation of the effects of soil variability. 

 

The visualisation of spatial correlation in horizontal ( h ) and vertical direction ( v ) are shown 

in Figure 3.2 for no spatial correlation ( ,h v  >>), an isotropic correlation h v   and 

anisotropic correlation structure ( h v  ).  

 

Within a piping safety assessment, one distinguishes between primary piping erosion and 

secondary piping erosion. Simplified speaking, primary piping erosion process describes the 

starting of the piping erosion process, which is not covered by the Sellmeijer formulas (2006 

and 2011); secondary piping erosion is the erosion process in a given pipe, which is 

described by the Sellmeijer formulas (2006 and 2011). Small scale heterogeneity effects in 

permeability have less effect for secondary piping erosion process because the total flow that 

enters the pipe is the main driving force in the Sellmeijer method. Therefore, one is interested 

in the aquifer permeability, with dimension and spatial correlation ranging from h =10 to 100 

m in the horizontal direction within a piping safety assessment.Using the Sellmeijer formulas 

(2006 and 2011), large scales ( h >100 m) and the vertical spatial correlation of the 

permeability is captured via a schematisation into different layers and therefore not 

considered.  
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Figure 3.1 Illustration of the multi-scale nature of soil after Huber [34] 

 

 

 
 

(a) (b) (c) (d) 

Figure 3.2 Examples for a very small (a), an isotropic (b), an anisotropic (c) and a strong anisotropic correlation 

structure (d) 

3.2 Methods for the quantifying spatial correlation 

The spatial correlation of e.g. measurements can be mathematically described by means of 

geostatistics. Herein, one uses the mean value, the standard deviation and the correlation 

length to describe the spatial variability of e.g. measurement data. The correlation length is a 

measure to quantify the spatial dependence. The correlation length can be evaluated by 

various methods, of which two are applied in this study (variogram methodology and 

maximum likelihood method), which are given in the Appendix B including their mathematical 

background.  

 

The variogram methodology is a robust approach to quantify the correlation length.  As 

derived in detail in Appendix B.2, the variogram γ(τ) of a random function Z(X) can be 

computed using equation (0.3). The lag vector τ is generally a vector describing the mutual 

distance between the points and ( )m τ is the number of points for a given mutual distance τ .  

 

    
( )

2 2

1

1 1
ˆ( ) ( ) ( ) ( ) ( )

2 2 ( )

m

i

E Z Z Z Z
m




      
  

τ

i iτ X X τ X X τ
τ

   (0.3) 

 

The variogram does not require the knowledge of the mean of the random function Z(X) 

because the squared difference in equation (0.3) eliminates the mean value. The variogram 

approach is a robust approach to quantify the spatial correlation. Due to its simple 

mathematical definition it is also easy to apply it to measurement data without big 

0.001 0.01 0.1 1   10   (m)

“homogeneous” 
soil
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band

compacted 
zone

dilative 
zone

grain
scale
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geological
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programming effort. The variogram approach needs more or less equally spaced 

measurement data. In case of arbitrary or random samples this approach gives limited 

results. 

 

The Maximum Likelihood method (ML) of estimating the unknown autocorrelation parameter 

Θ  is a parametric method assuming that the distribution of the data is known. ML takes the 

value of Θ  as an estimate of the unknown parameters Θ  that provides the greatest 

probability of having measurements Z, as calculated from the joint probability distribution of 
the observations conditioned onΘ . The possible outcomes z(X) of the random function Z(X) 

with mean value Z and covariance matrix ZZC  are assumed to be described by a n-

dimensional multivariate normal distribution in equation (0.3). 

 

 
11 1

( ) exp ( ) ( )
2(2 ) | |

T

n
f Z Z



 
    

 
z ZZ

ZZ

z z C z
C

  (0.3) 

The covariance matrix ZZC contains the values of the auto-covariance function ( , )i jC Z Z  of 

each possible pair of measurements. Selecting the unknown parameters in a vector 

[ , , , ]T

r h vZ   Θ  the log-likelihood for Θ  is given in equation (0.3). 

 

 
11 1

( | ) ln(2 ) ln | | ( ) ( )
2 2 2

Tn
L Z Z      ZZ ZZΘ z C z C z   (0.3) 

 
By maximizing the likelihood, the optimal parameter set Θ  can be obtained by standard 

optimization strategies, for example the simplex method. The advantage of the simplex 

algorithm is that the results are independent of the initial parameters, hence only depending 

on data.  

 

The ML method is also a robust approach in estimating the mean value, standard deviation 

and spatial correlation at once. Moreover, it is not dependent on the sampling scheme as the 

variogram approach. Therefore, it is well suited for the nested sampling plan, as described in 

the sequel. 

3.3 Sampling theory 

3.3.1 Introduction  

If one evaluates the spatial correlation, one has to have an idea of the spatial variability in 

order to set up the design of experiments. If the grid of experiments is larger than the spatial 

correlation, the variogram methodology does not detect a spatial correlation. This drawback 

can be overcome by using the Maximum Likelihood method (ML). ML is a robust method, 

which can be employed to analyse the spatial correlation of arbitrary distributed variables. Via 

this, it is possible to analyse also nested or clustered data, which is favourable for the 

investigation of multiple scales of spatial variability. This also enables one to analyse the 

spatial correlation without knowing its quantity on beforehand. However, even though ML will 

give results, if the grid spacing is larger than the spatial correlation, the uncertainty around the 

estimate will be very large and results are less usable. 

 

According to Baecher & Christian [4], a sampling plan is a program of action for collecting 

data from a sampled population. Common plans are grouped into many types: for example, 
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simple random, systematic, stratified random, cluster, traverse, line intersects, and so on as 

summarized in Appendix D.2.  

 

The purpose of sampling is to obtain estimates of population parameters (e.g. mean value, 

standard deviation and correlation length). Without knowing the spatial correlation of 

measurement values beforehand, it is very difficult to design a sampling plan. If the sampling 

distance is too small, big correlation lengths will not be captures and vice versa. Therefore, 

we selected the nested sampling strategy in combination with the Maximum Likelihood 

method, as described in detail in Appendix B.3. This enables the identification of spatial 

correlation at multiple scales. 

3.3.2 Description of the sampling design in this case 
Within this project, a nested sampling plan is designed. Herein, the soil investigations have 
different distance classes ranging from few meters two more several hundreds of meters. The 
mutual distances are chosen in a simple way, following an arithmetic sequence of numbers 
using the following recursive definition. 
 

  (n 1) 2 2,4, ...     (0.3) 

 
Starting form a mutual distance of 2 m, the spacing is doubled. By employing this strategy, 
one can estimate the horizontal spatial variability efficiently. One has to be aware that this 
sampling scheme is influencing the results significantly. If the sampling scheme is too coarse, 
the derived correlation will be too big, if the sampling is too small, the larger spatial correlation 
might be overseen.  
 
In Figure 3.3 HPT stands for the HPT measurement together with MPT tests, DKMP for CPT 
measurement with pore pressure measurements and used for dissipation tests. MB stands for 
a mechanical boring. 

3.4 Horizontal spatial correlation of the permeability 

The results from the conducted test on the permeability (empirical correlations from the grain 

size distributions, slug test, piezo-cones and laboratory test) are used for the analysis of the 

horizontal variability. This sampling scheme is given in Figure 3.3. 

 

The analysis of the horizontal correlation length of the permeability for all measurement 

results is carried out using the Maximum Likelihood approach, which can handle also arbitrary 

spaced samples as obtained with the nested sampling approach. The variogram approach is 

not applicable for the chosen sampling scheme. 

 

The summary of the results of the ML analysis are given in Table 3.1 and in the Appendix E. 

The variability of the different permeability measurement techniques ranges from COV = 14% 

-116%. From the results in Table 2.1 and Table 3.1 one cannot derive reason from for the 

different ranges of the spatial variability. The correlation length is different for each 

permeability measurement, except for the HPT results, method and ranges from 31 m to 684 

m. Note that for the HPT results, the COV = 14 % and the θh  = 18.8 m are much smaller in 

comparison to the other methods. A reason for this could be the calculation of the 

permeability form the Q/P profile, which is basically an averaging over the Q/P measurements 

as briefly described in section 2. However, the COVθh.of the HPT measurement results is 

comparable to the other approaches.  
However, the uncertainty in the estimate of the correlation length is also very high with COVθh. 
The reason for the high COVθh can possibly be attributed to both the COV and to the 
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sampling scheme. However, due to the scarcity of investigations on COVθh in literature [14], it 
is difficult to draw conclusions from this. 

Table 3.1 Coefficient of variation (COV) of the variability and horizontal correlation lengths θh and COV of the 

correlation length COVθh of the subsoil based on all methods 

  
Number  

raw data 
 

 
 of tests 

COV 
Horizontal correlation length 

  [%] Mean value 
h

in m COV
h

 

falling head test 20 101% 31 102% 

 
 

   

Bouwer Rice 3 lijn 20 67% 81 101% 

Bouwer Rice 1 lijn 20 67% 69 102% 

Hvorslev 20 64% 79 101% 

 
 

   

Den Rooijen 20 47% 137 101% 

Ernst 20 47% 105 102% 

Hazen 20 55% 119 99% 

Kozeny-Carman 20 31% 684 103% 

Seelheim 20 37% 149 101% 

Seelheim2 20 45% 113 99% 

 
 

   

Parez Fauriel * 6 116% 41 99% 

VanBaars VanDeGraaf * 6 116% 36 99% 

 
 

   

MPT - Meetreeks1 19 65% 225 97% 

MPT - Meetreeks2 19 67% 322 101% 

MPT - Meetreeks3 19 59% 216 99% 

 
 

   

HPT data 12 14% 18.8 101% 

* These test results are significantly (bigger than a factor of 100!) lower than the other results of the permeability 

measurements. 

 
Figure 3.3. Sketch of the used sampling scheme for HPT test (HPT), mechanical borings (MP) and HPT test with 

MPT measurements at different depths (DKMP). 

 
POV Piping: Design of experiments 
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3.5 Vertical spatial correlation of the permeability 

The vertical spatial variability of the permeability is derived from the HPT test. Herein, the 

relation of injected water (Q) during the penetration process of the HPT sonde with the 

pressure P is employed as relative measure of the permeability. These results are compared 

to the analysis of the cone resistance values (CPT), which are analysed in the same manner. 

As described in the accompanying report of Fugro [30, 62], the Q/P relation represents the 

vertical changes in the permeability. Fugro [30, 62] translate the Q/P measurements into 

permeability of the soil layers. This has not been considered in the sequel. The Q/P relation is 

analysed in order to get the corresponding correlation length. Due to the fact that Q and P are 

continuously measured, Maximum Likelihood method and variogram approach are employed 

for the analysis of the spatial correlation. 

 

The basic steps of the analysis of the vertical correlation length are summarized in Figure 3.4. 

The first step is the engineering judgement on soil layering and setting up of preliminary 

boundaries. After this, the measurement data have to fulfil the homogeneity and stationarity 

criteria. Both criteria are verified by statistical tests such as the Bartlett statistics Bstat and 

intra-class correlation coefficient RI. In the presence of a significant trend of the data one 

cannot derive the spatial correlation. Therefore, one has to detrend the measurements inside 

each layer. Now each layer is analysed by the variogram approach and the Maximum 

Likelihood method (ML) to evaluate the correlation lengths. Of course, one has to check now 

the sensitivity of the correlation length inside each layer to the small changes of the layer 

boundaries. This is important because the subdivision of a soil profile into layers and the de-

trending inside each layer has a significant impact on the correlation length. Using this 

scheme, one can separate different scales of spatial variability (Figure 3.1) the large 

geologically based spatial variability are separated from the meso-scale phenomena, which 

can be investigated without injuring the basic assumptions of the theory described in detail in 

the appendix C.  

 

By looking at the measurement data Q/P in Figure 3.5, one can clearly indicate a trend of the 

measurements with depth, which can be described by equation (2.1), where m(z) is a 

deterministic function giving the mean measurement value at a depth z below the surface 

level; and ( )z  are the random residuals. 

 

 ( ) ( ) ( )Q/P z m z z    (0.4) 

 

In Figure 3.5 one can see the results of this analysis of the vertical spatial correlation length in 

the aquifer. The vertical correlation length is analysed by the variogram and the ML approach. 

Herein, we evaluated also the uncertainty of the vertical correlation length using both 

approaches, which is given in Figure 3.5. The uncertainty of the correlation length for the 

variogram approach and for the ML approach is described by a lognormal probability 

distribution function By employing the Bayesian Model Averaging approach, we combine 

these two probability distribution functions, which are describing the uncertainty of the vertical 

correlation length. The result of this and the corresponding 68% confidence interval is 

visualized in Figure 3.5. The resulting vertical correlation length is θver = 0.59 m. This is in line 

with values often mentioned in literature. 
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Figure 3.4  Steps of evaluating the vertical correlation length, Huber [34] 

 

 

 
(a) (b) (c) (d) 

Figure 3.5 Analysis of the cone resistance of CPT 12 including the original data of the Q/P relation in black, the 

detrended data (dotted red) and layer boundaries (green) in (a), the Bartlett statistics in (b) and the 

intra-class correlation index in (c) and an indicative soil description derived from CPT (yellow = sand, 

green = clay, red = peat) 
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Figure 3.6 Vertical correlation length of the Q/P relation from the HPT using the variogram and ML together with 

the combined results 

 

3.6 Summary 

The different test results of the permeability of the aquifer are investigated by means of the 

variogram and the ML approach. The analysis results give a diverse picture. The horizontal 

correlation length show large differences for the different test types. The evaluated horizontal 

correlation lengths θ also show a large coefficient of variation COVθ,h. The vertical correlation 

length for the permeability is only derived from HPT tests. 

 

Note that the results of the horizontal correlation length are dependent on the sampling 

scheme, which is used in this study. Due to the design of experiments given in section 

Sampling theory 3.3, it is not possible to find smaller correlation lengths than the minimum 

mutual distance between the samples. 

68 % confidence interval of the combined model 
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4  Quantifying the effects of spatially correlated permeability 

4.1 Introduction 

This chapter describes the steps to quantify the effects of the evaluated horizontal spatial 

correlation of the permeability using a semi-probabilistic and probabilistic safety assessment. 

The employed piping approaches do not consider the vertical spatial variability of the 

permeability. The effects of the vertical correlation length of the permeability are assumed to 

be taken into account within the subsoil schematisation. Only the effects of the horizontal 

spatial correlation are investigated in this chapter. 

 

At first, the theoretical introduction for the quantification of effects the spatial correlation of soil 

properties is given. To analyse the effect of the different measures of permeability on the 

safety assessment, detailed safety assessments are elaborated for the failure mechanism 

piping. The permeability is varied on basis of the different test results and the analysis of 

heterogeneity. Firstly, the safety assessment method and failure mechanism are described, 

and then applied in a case study. 

 

If the horizontal correlation of soil properties is considered to evaluate the probability of failure 

of a dike, one has to be aware that only the combination of a large variance in combination 

with a relatively low spatial correlation will result in large length effects, shown in Figure 4.1. 

 

 
Figure 4.1 Concept of the small and large length effects 

 

4.2 Theoretical background on spatial averaging 

Amongst others, Vanmarcke [64] shows the relationship between small volume tests and 

large volume tests. Small volume tests show a higher scatter than large volume tests. 

Vanmarcke [64] explains this using spatial averaging. Therefore, the measured scatter has to 

be averaged over the soil volume, which is influenced by the mechanism (e.g. piping). 

Vanmarcke [64] presented simple relationships for the variance reduction using the 

correlation length in combination with different variance functions. Herein, he assumes that 

the variability of a soil property u is measured by the standard deviation σi and the standard 

deviation of the spatial average property uT is measured by σT. The standard deviation of the 

spatially averaged property is inversely proportional to the size of the averaging length or 

volume T, and the standard deviation reduction factor  u T  due to spatial averaging is 

defined in equation (0.5). Vanmarcke [64] derived the following relationship for the reduction 
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factor  u T  for a squared exponential correlation function. Herein is  the correlation 

length. 

 

  
2 2

2 exp 1T
u

i

T T
T

T



  

   
          

     

  (0.5) 

 

The reduction factors for different correlation functions (triangular, exponential, second-order 

autoregressive and squared exponential) are given in [63]. One can clearly see in Figure 4.2 

that the reduction factors for different correlation functions are comparable. 

 

From Equation (0.5) and Figure 4.2 (where  u T is depicted as  T ) one can clearly 

derive that the bigger the volume T, over which the property is averaged, the larger is the 

variance reduction factor  u T . Estimating the volume T is dependent on the piping 

mechanism. In the sequel case study, it is assumed that the whole aquifer has an impact on 

the piping phenomenon, which is assumed to be in the order T=1.000 m
3 

(1.000 m
3
=250 m *3.5 

m*1m=required seepage length*depth of the aquifer*1m-slice). Note that in case of a larger 

volume T, the reduction of due to spatial averaging is bigger.  

 

 
Figure 4.2  Different correlation factors for correlation function from [64] 

 

4.3 Consideration of the horizontal correlation length in the semi-probabilistic piping 

safety assessment 

Although it is not clear how uncertainty of the permeability values is influenced by the 

upscaling approach, it is assumed in this report that the upscaling approach is not influencing 

the uncertainty. Moreover, it is assumed that the upscaling approach of the permeability’s 

does not include the spatial averaging. These two assumptions need further investigation. 

  
In the semi-probabilistic safety approach the horizontal correlation length is considered by the 

variance reduction factor  u T . After upscaling, the measurement values, the variance 

reduction factor  u T  is used for each testing method to calculate an updated standard 

deviation. Note that the reference volume is assumed as VR=1000 m
3
 (1.000 m

3
=250 m *3.5 
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m*1m=required seepage length*depth of the aquifer*1m-slice) as given in 4.2. Finally, these 
updated standard deviation values are used to calculate the characteristic values for the each 
permeability testing methods. It can be clearly seen in Table 4.1 that the standard deviation is 
reduced through the spatial averaging approach, which leads to a smaller characteristic value 
of the permeability. Note that a low correlation length, such as for the HPT data, leads to 
spatial averaging, which reduces the corresponding standard deviation. As a consequence, a 
smaller standard deviation leads to a lower characteristic values and vice versa. Since it is 
not fully understood how upscaling, spatial averaging and the HPT permeability relate to each 
other, it could be that a full spatial averaging is not justified. Due to a lack of knowledge, full 
spatial averaging is applied as first step. 
 

Table 4.1 Horizontal correlation length, corresponding variance reduction factor and corrected permeabilities per 

method 

  raw data Vp  scaled permeabilities VR=T horizontal Variance corrected permeabilities 

  μraw σraw COV 

volume  
being 
tested μscaled σscaled 

CO
V 

volume 
being  

correlatio
n 

reductio
n  

function 
Г(T) μcorr σcorr 

                
scaled  
up to length θ     

 Г(T=1000 m
3
, 

θ) 

   [m/day]  [m/day] [%] m
3
 

[m/day
] 

[m/day
] [%] m

3
 [m] [-] 

 
[m/day]  [m/day] 

Bouwer  
Rice 3 lijn 0.3 0.2 67 0.015 12.3 8.7 71 1000 81.00 15% 12.3 1.3 

Hvorslev 0.4 0.3 64 0.015 15.9 11.3 71 1000 79.00 15% 15.9 1.6 

Den Rooijen 11.2 5.2 47 1000 11.2 5.2 47 1000 137.00 24% 11.2 1.2 

Hazen 15.8 8.7 55 1000 15.8 8.7 55 1000 119.00 21% 15.8 1.8 
MPT - 

Meetreeks1 29.8 19.3 65 0.02 29.8 19.3 65 1000 225.00 35% 29.8 6.8 

HPT data 13.18 1.86 14 1000 13.18 1.9 14 1000 18.80 4% 13.2 0.1 

 

4.4 Piping safety assessment  

The piping safety assessment is done for segment 36-5 where the measurements were 

carried out. The total length measures 17.6 km and the safety standard PT of the segment is 

1/10,000. According to the VNK approach, the considered (cross) section 36003003 has a 

length of 893 m and counts 4 “bodemvakken”, in which it is assumed that the sub-soil is 

similar. Per “bodemvak” there are 3 sub-soil schematizations scenarios with the 

corresponding probabilities of occurrence (scenarios 302, 303 and 305).  

 

For the semi-probabilistic calculations both the piping rule Sellmeijer (2006) rule and the 

Sellmeijer (2011) rule are employed in combination with VNK2-project data for sub-soil 

schematizations and soil parameters. The piping failure mechanism and the parameters 

(according to the VNK-2 project [65]) are included in Appendix F.  

4.4.1 Variables 

The measured permeability k (FUGRO [30]) and the d70 value, which is derived from the grain 

size distributions for this given site, are used in combination with the VNK2-data set. The d70 

value is lognormally distributed with a mean value of 3.1e-4 m and a standard deviation of 

6.9e-4 m. For the sake of completeness, it shall be stated that in the VNK2-data set has a 

lognormally distributed permeability with a mean value of 19.96m/d, a standard deviation of 

21.16 m/d and a correlation length of θ=600 m. These values represent the aquifer 

permeability and includes spatial averaging.  
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4.4.2 Semi-probabilistic assessment 

Semi-probabilistic calculations are made in accordance with “Ontwerpinstrumentarium 2014 

v3” [54], which is in line with the anticipated WTI2017 approaches for Dutch safety 

assessment method for checking the reliability of flood defences [54].  

In this novel approach the semi-probabilistic safety assessment considers multiple subsoil 

scenarios. The scenarios have to be combined through their probabilities. For this reason the 

safety factor is transformed to a probability as given in Figure 4.3.  

 

 
Figure 4.3. Scheme for combining subsoil scenarios in the semi-probabilistic safety assessment for piping 

 

For each random variable, a characteristic value is used (Table F.1). For each possible 

subsoil scenario (according to VNK2, shown in Figure 4.4) the safety factor is determined 

[71]. The results of the various semi-probabilistic calculations are different due to different 

measurements of the permeability; see Table 4.2. The possible sub-soil scenarios for the 

investigated site are shown in Figure 4.4. The results of semi-probabilistic calculations are 

different due to different measurements of the permeability; see and Table 4.2.  

 

Using the piping rule Sellmeijer (2011), the scenarios are combined per “bodemvak” that 

represents a length of 250 m according to the VNK2-project. First, the factor of safety is 

transformed into a probability by a reliability index β per scenario, according to OI2014 v3 

[54]. The schematisation theory [23] allows summing the probabilities of the scenarios with 

respect to the probability of the scenario given in equation (0.7) 

 

   ,0.8 2.4, ( )i f iSF P        (0.6) 

 , ,

1

( )
n

f bodemvak f i

i

P P P i


    (0.7) 

 

The weight of a sub-soil scenario differs per bodemvak, so the summation differs per 

bodemvak. The weights can be seen in Table 4.3. After taking the weighted sum of the 

probabilities, the failure probabilities are re-converted to a safety factor again.  

 

From the results in and it can be deuced that that the factor of safety is higher using the 

results from the given tests in combination with the VNK dataset. Since the lowest 

permeability is obtained using the Hvorslev method, the safety factor is the highest for this 

method.  

 

To put the results in context, the required safety factor per cross-section (SFT,cross T=target, 

cross=cross section) is calculated according to OI2014 v3 [54]. This is shown in equation 

(0.8). The target reliability per cross-section (including length-effect) is determined by the 

target reliability of the segment (PT) , the failure probability budget for piping (ω=0.24) and a 
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factor for the length-effect. Herein, a represents the part of the segment, which is sensitive for 

piping, and b is the length of an independent equivalent cross-section.  

 

  

4
7

,

1 7
,

.,

10 0.24
4.65 10

0.9 17600
11

300

4.65 10 4.91

0.80 2.4 1.53

T
T cross

segment

T cross

reqT cross

P
P

a L

b

SF










 

   
  
  

 
   

 


   

   

(0.8) 

 

Table 4.2 shows the calculated safety factors (SFcross) for each subsoil scenario, which are 

given in Figure 4.4. It can be concluded from the results in Table 4.2 that the safety factors for 

the segment 36-5 increase in all cases due to the lower characteristic values of the 

permeability. It can also be seen that the results using the Piping 2011 rule offers lower safety 

factors compared to the Piping 2006 rule. 

 

The subsoil scenario safety factors are combined using equation (0.8) and the weights for 

each “bodemvak” given in Table 4.3. Again, one can see that the combined safety factors for 

each “bodemvak” is higher when using the permeability measurement values compared to 

the VNK-2 data set. 

 

scenario   

302       303       305   

 
 

 

 

Figure 4.4 Schematic view of sub-soil scenarios for piping 

 

Table 4.2 Calculated safety factors for the subsoil scenarios from the semi-probabilistic piping safety assessment 

using the scaled measurement values for permeability in combination with the VNK dataset 

 SFcross Piping 2006 SFcross Piping 2011 

 
VNK2 

data * 
Hazen Hvorslev 

Bouwer/ 

Rice 

Den 

Rooijen 

MPT 

Meetreeks 

1 

HPT 
VNK2 

data* 
Hazen Hvorslev 

Bouwer/ 

Rice 

Den 

Rooijen 

MPT 

Meetreeks 

1 

HPT 

Scenario 

302 
1.20 2.02 2.03 2.19 2.25 1.59 2.25 0.85 1.34 1.34 1.46 1.51 1.02 1.50 

Scenario 

303 
0.62 1.29 1.30 1.40 1.44 1.02 1.44 0.46 0.91 0.92 1.00 1.03 0.70 1.03 

Scenario 

305 
0.64 1.10 1.10 1.19 1.22 0.86 1.22 0.50 0.80 0.80 0.87 0.90 0.61 0.90 

* The VNK2 data set is used without any upscaling and without averaging. 
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Table 4.3  Combined safety factors from the semi-probabilistic piping safety assessment for each “bodemvak” in 

segment 36-5 

  bodemvak 1 - 250 m bodemvak 2 - 250 m bodemvak 3 - 250 m bodemvak 4 - 250 m 

 Scenario 302 303 305 302 303 305 302 303 305 302 303 305 

weights P(i) 17% 20% 63% 26% 33% 41% 26% 42% 32% 12% 33% 55% 

VNK2-data set*  0.52 0.53 0.53 0.51 

VNK + test data Hazen 0.85 0.89 0.91 0.86 

 Hvorslev  0.86 0.90 0.91 0.86 

 Bouwer/Rice  0.93 0.97 0.98 0.93 

 Den Rooijen  0.96 1.00 1.01 0.96 

 MPT-Meetreeks1 0.66 0.70 0.71 0.66 

 HPT 0.95 1.00 1.01 0.96 

* The VNK2 data set is used without any upscaling and without averaging. 

 

4.4.3 Interpretation of the results 

The results have to be seen as preliminary results with oversimplifications to show the 

applicability of the presented approach. Note that these results are derived on upscaled and 

locally averaged permeability values, which needs further investigation especially for small 

scale tests. Note that the estimates of the horizontal correlation length are very uncertain 

(COVθ~100%). This study is a successful proof-of-concept, however the results should be 

interpreted only relatively to each other and not in an absolute way.  

 

To support the interpretation relative to each other, the different results are compared by the 

required seepage length. This is closely related to the required length of the piping berm. This 

required seepage length is calculated both semi-probabilistically for each scenario. Herein, 

the piping rule Sellmeijer (2011) [58] is employed to analyse VNK-2 data and the measured 

d70 (mean value and standard deviation) and permeability (mean value, standard deviation 

and correlation length). These results are shown in Table 4.4 .  

 

The semi-probabilistic approach results in relatively more or less the same required seepage 

length, given in Figure 4.5 and Table 4.4 . Note that the required seepage lengths are defined 

as additional seepage length, which considers the given geometry with a berm of 69 meter. 

The MPT Meetreeks 1 results are higher compared to the other measurement values. By 

revisiting the corrected permeability values in Figure 4.1, one can see that the mean values 

and standard deviations show comparable values of the COV, but not the MPT meetreeks1 

results, which are higher. It can be concluded from these results that for all investigated 

permeability measurement results a significant reduction of the required seepage length can 

be derived. 

 

If there is no local averaging, there standard deviation is not reduced and therefore, the 

characteristic value of the permeability will be significantly higher. This will result in higher 

required additional berm length compared to the results given in Table 4.4 and Figure 4.5. 
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Table 4.4 Semi-probabilistic piping safety assessment for bodemvak 1: additional required seepage length [m] to 

comply to a safety threshold 

  Scenario 302 Scenario 303 Scenario 305 

VNK-2 data set*  129 261 248 

VNK2 + test data Hazen 79 121 147 

 Hvorslev 78 121 146 

 Brouwer/Rice 71 110 133 

 Den Rooijen 69 106 128 

 MPT – Meetreeks 1  105 163 199 

 HPT 69 107 128 

* The VNK2 data set is used without any upscaling and without averaging. 

 

 
Figure 4.5 Semi-probabilistic safety assessment of bodemvak 1: Required additional berm lengths to meet the 

safety standards. (Note that the  VNK2 data set is used without any upscaling and without averaging.)  

 

4.4.4 Sensitivity study on the influence of the uncertainty of the horizontal correlation length 

Additionally, the influence of the uncertainty of the horizontal correlation length of the 

upscaled and locally averaged permeability values is investigated. For this reason we vary 

the lognormally distributed correlation length (θh) between the lower and upper bound of a 68 

% confidence interval and evaluate the required additional berm length. The lower bound is 

defined by the 16 percentile value of the lognormally distributed correlation length and the 

upper bound the 84 percentile value. One can see in Figure 4.6 and Table 4.5 the effects of 

the uncertainty of the correlation length on the required additional berm length. Note that in a 

lognormal distribution with a high COV, the lower bound (16 percentile value) is closer to the 

mean value than the upper bound (16 percentile value). This related to the skewness of the 

distribution function. As a consequence, the differences of the additional required berm length 

using the lower bound and mean value of θh are smaller compared to the differences of the 

additional required berm lengths using the mean value and the 84 percentile value of θh. All 

investigated cases result in required additional berm lengths, which are smaller than the VNK-

2 results. Moreover, the sensitivity the calculation results on the uncertainty of the spatial 

correlation can be derived. Note that the low COV for the HPT leads to a very small sensitivity 

of the additional required berm lengths, although the COV of the correlation length is high. 

This may be linked to the evaluation of the HPT permeabilities, as described in in section 2. 
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Figure 4.6 Semi-probabilistic safety assessment of bodemvak 1: Influence of the horizontal correlation length of 

the permeability  for the lower and upper bound of the 68 % confidence interval of the lognormally 

distributed horizontal on the required additional berm lengths. (The VNK2 data set is used without any 

upscaling and without averaging.) 

 

Table 4.5 Sensitivity study on the influence of the uncertainty of the horizontal correlation length on the required 

additional berm lengths for scenario 303 and for bodemvak 1 

 

Required additional berm lengths for 

 Correlation 

length 

 

 

Lower 

bound Mean value Upper bound 

Lower 

bound Mean value 

Upper 

bound 

Horizontal correlation length is  

16 

percentile 

value  

84 percentile 

value 

16 

percentile 

value  

84 

percentile 

value 

 

[m] 

 

[m] 

 

[m] 

 

 [m] 

 

 

VNK-2 data set* - 194 -  600  

Hazen 116 121 145 37 119 192 

Hvorslev 116 121 149 24 79 127 

Brouwer/Rice 105 110 135 25 81 131 

Den Rooijen 102 106 124 42 137 221 

Meetreeks 151 163 192 72 225 365 

HPT 106 107 108 6 18.8 174 

* The VNK2 data set is used without any upscaling and without averaging. 

 

4.5 Bayesian Updating of the VNK-dataset with the measurement values 

In order to investigate the effects of the spatial correlation, an additional case study is carried 

out. Herein we update the probability density function (pdf) of the VNK-2 data set with the pdf 

of the measurement results using the Bayesian theorem. Note that we use the upscaled 

permeability values in Table 2.1. In this context, the VNK-2 data set is called prior distribution 

of parameters, which is updated with measurement data using a so-called likelihood function. 

The resulting pdf is called posterior distribution. The single steps of Bayesian updating are 

given in Appendix G. The basic idea of the Bayesian principle is the combination of two 

upper bound of the 68% confidence interval 

lower bound of the 68% confidence interval 
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probability density functions. This combination is leading to a significant reduction of the 

standard deviation. Note that we only updated the mean value and the standard deviation of 

the permeability using upscaled permeability values and not the correlation length. 

 

Appendix G provides all steps in updating the VNK-2 data set with the mean value and 

standard deviation of the test results from Hazen Hvorslev, Bower-Rice-lijn1, Den Rooijen 

MPT and HPT. The characteristic values of the prior pdfs and of the likelihood pdfs are given 

in Table 4.6. In Table 4.7 one can see the effects of the Bayesian updating. Comparing the 

characteristic values in Table 4.6 and Table 4.7, one can see that the Bayesian Updating is 

resulting in lower values of the permeability. However, the characteristic value of the MPT test 

is much higher than for the other methods. 

 

The effects of these lower characteristic values are depicted in in Figure 4.7. Herein we show 

the required berm lengths. Assuming the same spatial correlation as the VNK dataset, the 

permeability’s from the Hazen, Hvorslev, Bouwer/Rice-lijn 1, Den Rooijen and HPT results 

comparable required additional berm lengths, which are significantly lower than the berm 

length resulting from the VNK2 data set. Additionally, one can see that the MPT-Meetreeks1 

test is resulting in a slightly higher required additional berm length due to its higher 

permeability value given in Table 4.7. 

 

Comparing the results in Figure 4.6 and Figure 4.7, one can see that the results of both 

approaches are nearly the same. The Bayesian updating approach offers slightly longer 

required additional berm length than the spatial averaging approach for this investigated 

case. 

 

From this it can be deduced that Bayesian updating of the mean value and standard deviation 

of the permeability has a major effect on the characteristic permeability and as a 

consequence also on the resulting design of required berm length compared to an improved 

estimation of the permeability using one method including also the spatial correlation of the 

parameters. The investigated cases show that also the testing method has a less significant 

approach. However, it is not clear how this can be related to the findings in section 4.4. 

Therefore it is recommended to study this in additional case studies. 

 

Table 4.6 Lognormal distribution (mean value m, standard deviation s) and corresponding characteristic values of 

the upscaled permeability of the prior distributions (VNK) in m/day and of the pdfs of the likelihood functions 

(Hazen, Hvorslev, Bouwer/rice-lijn1, Den Rooijen and MPT Meetreeks 1) in m/day 

 
VNK2 data* Hazen Hvorslev Bouwer/Rice-lijn 3 Den Rooijen 

MPT 
Meetreeks 1 

HPT 

m in m/day 19.96 15.8 15.9 12.3 11.2 29.8 13.8 

s in m/day 21.16 8.7 11.3 8.7 5.2 19.3 1.86 

COV 106% 55% 71% 71% 46% 65% 13 % 

95%-quantile in m/day 57.3 32.4 37.2 28.7 21.1 66.4 17.1 

* The VNK2 data set is used without any upscaling and without averaging. 

 

Table 4.7 Lognormal distribution (mean value m, standard deviation s) and corresponding characteristic values of 

the posterior distributions of the permeability (Hazen, Hvorslev, Bouwer/rice-lijn1, Den Rooijen and MPT 

Meetreeks 1) in after Bayesian updating in m/day 

 
Hazen Hvorslev Bouwer/Rice-lijn 3 Den Rooijen MPT Meetreeks 1 HPT 

m in m/day 13.8 12.98 10.1 10.2 24.7 13.7 

s in m/day 1.6 2.1 1.4 1.0 4.7 0.5 

COV 12% 16% 14% 10% 19% 4% 

95%-quantile in m/day 16.8 16.8 12.8 12.0 30.8 14.6 
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Figure 4.7 Required additional berm length for scenario 303 to meet the safety standards using semi-probabilistic 

piping safety assessment using Bayesian updating of the VNK data with measurement values  
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5 Summary and recommendations 

In this report various permeability measurement results are analysed by means of statistical 

analysis. Additionally, the spatial correlation of the measurement data is quantified in vertical 

and horizontal direction. These findings are used to evaluate the effects in the piping safety 

assessment using the semi-probabilistic approach. 

 

The findings are as follows: 

  

• This study results in important insight into the interpretation of permeability 

measurements. Within this, the HPT sonde results are found to be a useful tool to 

measure aquifer permeability’s. 

 

• Parameter selection from permeability measurements 

It is necessary to relate the results of permeability measurements to the corresponding 

soil volume being investigated. These results have to be scaled to the volume of the 

aquifer, which is used in a piping safety assessment. This scaling can be done using 

simple approaches, as proposed by Fugro [25]. However, this upscaling approach 

needs further investigation and analysis of its effects on the derived parameter 

uncertainty. 

Using the upscaling approach of Fugro [25], the upscaled permeabilities of a given soil 

type can be related to each other. Within this, the HPT and MPT methods show good 

agreement with the other investigated permeability measurements.  

 

• Quantification of spatial correlated permeability: 

The Maximum Likelihood methodology is found to be effective and versatile tool for the 

calculation of the correlation length, which is a measure of the spatial correlation of 

measurement data. Therefore, the Maximum Likelihood method is used to evaluate the 

horizontal spatial variability of the permeability measurements, which are used for a 

case study.  

 

The resulting spatial correlation lengths vary for the different approaches. Empirical 

correlations of the permeability derived from sieving curves (Den Rooijen, Ernst, Hazen, 

Kozeny-Carman and Seelheim) show correlation lengths that are bigger than a factor of 

2 compared to the slug test in mechanical borings (Bouwer-Rice lijn 1 & 3 and Hvorslev) 

and compared to the falling head test. The correlation lengths of the permeability’s 

derived from HPT test data have the smaller correlation length, whereas the MPT test 

results show the largest correlation length. However, there is large uncertainty in the 

correlation length estimate, indicating a weak spatial correlation, which limits the 

applicability of the results. 
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• Quantification of the effects of spatially correlated permeability 

The semi-probabilistic approach is employed to quantify the effects of the permeability 

measurements in the piping safety assessment. The spatial correlations of the upscaled 

measurement data are considered by using spatial averaging theory, which is reducing 

the standard deviation of the measurement data. These updated data are used for the 

piping safety assessment of a given cross section and the results are compared to 

those of the VNK-2 dataset. The results show that the improved knowledge of the 

spatial variability of the permeability leads to smaller additional required berm length 

compared to the VNK-2 data. However, the upscaling and spatial averaging seem to be 

related to each other. Because of this possible relation, full spatial averaging is not 

necessarily justified. Therefore, the positive effect of smaller additional required berm 

lengths might be smaller than in the investigated case. Additionally, it is also not fully 

clear why the correlation length, which has a high variability (COV ~ 100 %), has only 

limited effects on the additional required berm lengths. The large COVs of the 

correlation length leave room for interpretation. 

 

• Bayesian Updating of the VNK-dataset with measurement results 

Additionally, the Bayesian approach is used to update mean value and standard 

deviation of the VNK-2 permeability with the mean value and standard deviation of the 

different permeability measurements. Note, that the spatial correlation length of the 

permeability from the VNK-2 data set is used. Using this updated mean value and 

updated standard deviation of the permeability shows a big effect on the additional 

required berm lengths. However, this Bayesian approach is not incorporating the 

available knowledge and measurement on geology and heterogeneity. It has to be 

determined, if this approach is justified.  

 
 

The following recommendations for next further investigations can be made on basis of this 

report: 

• Additional investigations are recommended in order to understand in detail how to 

interpret locally average permeability measurements. It would be very interesting to 

gain more insight, if the employed approach for upscaling of measurements is 

including a local averaging. 

 

• Additional investigations are recommended to investigate, if the spatial averaging is 

justified for methods. 

 

• Additional test sites are required to underpin the upscaling approach of the 

permeability measurements with permeability of an aquiver. Herein, the anisotropy of 

the permeability should be addressed. These investigations shall also contribute to 

quantify also the uncertainty of this upscaling approach, as well as spatial averaging, 

which is not yet completely understood. 

  

• Additional field test using the HPT sonde in combination with other testing methods 

are necessary to derive the correlation between the Q/P measurements and the 

permeability for different sites. Additionally, also the model uncertainty should be 

investigated in this context. Moreover, this should also be used to study the spatial 

correlation of the derived permeability. 

 

• Additional tests should be employed to study the combination of different 

measurement methods for the statistical description of the permeability at one 
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given site. This contributes to a more effective use of the measurement data and can 

possibly lead to a more cost effective design of measures against piping failure. 

 

 The effectiveness of different sampling schemes for permeability measurements 

should be investigated in order to reduce the uncertainty of the correlation length. 

 

• Moreover, it is recommended to validate the effectiveness of the Bayesian approach 

in an additional study, given in section 4.5, which is updating the mean value and 

standard deviation of the VNK-2 set with measurement results. 
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A  Introduction to statistics 

A.1 Moments of a distribution function 

Every distribution function can be characterized by different moments listed below. 

 

First moment of distribution & mean value 

 

 ( ) [ ]x f x dx E X



    (0.8) 

 

Second moment of distribution & variance 

 

 2 2 2( ) ( ) ( )x f x dx E X  



        (0.9) 

 

Coefficient of variation 

 

 COV



   (0.10) 

 

Third moment of distribution & skewness 
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Fourth moment of distribution & excess kurtosis 
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A.2 Distribution functions 

Looking into statistical textbooks like Sachs [56] or Abramovich & Stegun [1], one can find a 

vast number of different probability distribution functions. According to Remy et al. [53], a 

distribution function should account for all information available; it provides all that is needed 

to quantify the uncertainty about the actual outcome of the variable x. 

 

For example: 

• probability intervals can be derived as 

 

  ( , ) ( ) ( ) ( ) .
b

a
Z a b b a f z dz    Prob F F   (0.13) 

 

• quantile values can be derived such as the 0.10 quantile or the 1st decile: 

 

 
1
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A-2 

Phoon [49] as well as Baecher & Christian [4] point out the normal and the lognormal 

distribution function as widespread probability distribution functions in geotechnical 

engineering, which are explained in detail afterwards. 

A.2.1 Normal distribution function 
The location of the distribution function is controlled by the mean value  the shape is 

defined by the variance 2 . A normal distribution with 2( 0, 1)   is called the standard 

normal. Function f(x) is unimodal and symmetric around the point x  , which is at the same 

time the mode (peak value of the distribution function that occurs most frequently), the 

median (middle value and location parameter separating the lower and upper half of the 

distribution) and the mean of the distribution. The inflection points of the curve occur one 
standard deviation away from the mean (i.e. at x     and x    ). The n-th derivative is 

given by ( )( ) ( 1) ( ) ( )n n

nx H x x    , where ( )nH x  is the Hermite polynomial of order n. 
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  (0.15) 

 

The cumulative distribution function (CDF) describes probability of a random variable falling in 

the interval ( , ]x . The CDF of the standard normal distribution   can be computed as an 

integral of the probability density function: 

 

 

2
2

2

1 1 ( ) 1
( ) ( ; , ) exp

22 2

x x x
x f x

 
 

    

   
        

  
   (0.15) 

 ( ; , )
x

F x


 


 
  

 
  (0.16) 

A.2.2 Lognormal distribution function 

In probability theory, a log-normal distribution is a continuous probability distribution of a 

random variable whose logarithm is normally distributed. If X  is a random variable with a 

normal distribution, then exp( )Y X  has a lognormal distribution; likewise, if Y  is log-

normally distributed, then log( )X Y  is normally distributed. 

 

A variable might be modelled as log-normal if it can be thought of as the multiplicative product 

of many independent random variables each of which is positive. In a lognormal distribution

X , the parameters denoted   and   are the mean and standard deviation, respectively, of 

the variable' s natural logarithm (by definition, the variable' s logarithm is normally distributed), 

which means using Z  as a standard normal variable.  

 

 
ZX e    (0.17) 

 
On a non-logarithmised scale,   and   can be called the location parameter and the scale 

parameter respectively. The probability density function of a lognormal distribution is as 

shown in the following equation. 
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
 

 

 
  

 
  (0.18) 

The cumulative distribution function of a lognormal distribution is 

 

ln
( ; , )X

x
F x


 



 
  

 
 

(3.1) 

 

A.3 Multivariate normal distribution 

The multivariate normal distribution of a k-dimensional random vector 1 2[ , ,..., ]kZ Z Zz  of the 

random variables Z  can be written in the following notation: 

 

 ( , ) k ZZz μ COV   (0.19) 

 

with a k - dimensional mean vector 

 

  1 2[ ], [ ],..., [ ]kZ Z Z  E E E   (0.19) 

 
and a k k  covariance matrix 

 

 , , , ,..., ; , ,...,      ZZ i jCOV COV Z Z i 1 2 k j 1 2 k   (0.19) 

 

The main diagonal gives the variance and the off-diagonals are symmetrical covariances. The 

covariance matrix is not singular and definite. In case of a singular covariance matrix, the 

corresponding distribution has no density. 

 
The probability density function ( )f z  can be written in the following form. 

 

  
1/22

( ) 2 exp[ 1/ 2 ( ) ( )]
k Tf 


   ZZ ZZz COV z μ COV z μ   (0.19) 

 

According to Sachs [56], no analytical expression exists for den cumulative density function. 

 

Table A.1 Summary of the lognormal distribution Table A.2. Summary of the normal distribution 
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B  Mathematical description of spatial correlation 

This appendix provides a brief introduction into the mathematical description of spatial 

variability. 

 

B.1 Introduction 

Soils are geological materials formed by weathering processes and, save for residual soils, 

transported by physical means to their present locations. They have been subjected to 

various stresses, pore fluids, and physical and chemical changes. Thus, it is hardly surprising 

that the physical properties of soils vary from place to place within resulting deposits. Scatter 

observed in soil data comes both from this spatial variability and from errors in testing. By 

assuming a statistically homogeneous continuum without a trend, this can be mathematically 

described in a smooth way by using random variables and random functions. In comparison 

to this, a deterministic variable can just model one outcome; this outcome is either known or 

unknown leaving no flexibility for uncertainty. Conversely, a random variable is an 

independent variable that can take a series of possible outcomes, each with a certain 

probability or frequency of occurrence. A random variable is typically denoted with the capital 

letter Z and its possible outcomes are denoted with the corresponding small case letter zi, i = 

1, ..., n. Most applications of geostatistics involve mapping, which is the joint consideration of 

variables at several locations in space and/or time. For this reason, random functions can be 

used to describe the joint spatial distribution of variables. A random function Z(X) is a set of 

dependent random variables, each marked with a coordinate vector x. The variable X = (x, y, 

z) can involve space coordinates, but also both space and time as e.g. atmospheric pressure, 

in which case X = (x, y, z, t), which is rather unusual in geotechnical engineering in 

comparison to other sciences like earth sciences or meteorology [14, 15]. 

 

Using well known means of univariate statistics, one can describe these measurements using 

a mean value μ and the standard deviation σ, a coefficient of variation COV = σ/μ and a 

probability density function, as described in Appendix A.3. Univariate statistics is not able to 

describe the spatial structure of the data.  

 

As stated by several authors [6, 14, 28, 29, 38], the simplest way of describing spatial 

variability is to choose the multi-Gaussian way. Within the multi-Gaussian approach, a 

random process or random field can be described by a mean value μ, a standard deviation σ 

and a covariance function C. For n pairs of a random variable Z of two different locations iX  

and jX , the covariance ( , )C i jX X  of the random function Z(Xi) and Z(Xj) is given by 

equation (0.19). Herein, E denotes the expected value, as described in detail in the Appendix 

A.3. 

 

   ( , ) ( ) ( ( ) ( ) ( ( ))C Z Z Z Z 
 i jX X X X X Xi i j jE -E -E   (0.19) 

 

It has to be pointed out that the means of univariate statistics are not influenced by the 

covariance function. The probability density function can follow e.g. a normal distribution or a 

lognormal distribution whether or not the investigated data have a spatial correlation. In the 

case of a multivariate distribution, all random variables are linked through a covariance 
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matrix, as defined in Appendix A.3. The basic assumptions for the description of spatial 

variability are as follows:  

• STATIONARITY is defined as when the mean value μ and the standard deviation σ are 

constant over the whole domain. Moreover, the covariance C(τ) is only dependent on 

the separation τ and not on the absolute position [68]. 

• HOMOGENEITY is defined as stationarity of the variance statistically spoken [48], which 

is closely linked to the definition of the stationarity. 

• ERGODICITY is also closely related to stationarity. A random process is said to be 

ergodic, when the moments of the single observable realization in space approach 

those of the ensemble as the regional bounds expand towards infinity. According to 

Webster & Oliver [68], it is of mainly theoretical interest rather than of practical value 

because the regions studied in geotechnical engineering are finite. 

B.2 Variogram approach 

According to Phoon [49] and Baecher & Christian [4], the most common method of estimating 

spatial variability is the variogram. Herein, the statistical moments of the observations (e.g. 

sample means, variances and covariances) are used as estimators of the corresponding 

moments of the population being sampled. The variogram approach is a non-parametric 

approach, which means that no assumptions are needed about the mathematical shape of 

the autocovariance function; there is only a need to assume that the second moments exist. 

The moment estimator is consistent and asymptotically unbiased. Therefore, it is a desirable 

method as stated in [4, 5, 14, 36].  

 

The semivariance γ(τ) of a random function Z(X) can be computed using equation (0.20)

,which is also called the empirical variogram. The lag vector τ is generally a vector describing 

the mutual distance between the points. The lag vector τ becomes a scalar τ = | τ | in case of 

an isotropic variogram. The isotropic variogram describes the spatial correlations as being the 

same in all directions, for which ˆ( ) τ  can be computed only at integral multiples of the 

sampling interval. 

 

    
( )

2 2

1

1 1
ˆ( ) ( ) ( ) ( ) ( )

2 2 ( )

m

i

E Z Z Z Z
m




      
  

τ

i iτ X X τ X X τ
τ

  (0.20) 

 

The variogram does not require the knowledge of the mean of the random function Z(X) 

because the squared difference in equation (0.20) eliminates the mean value. Moreover, 

small variations are filtered out [14]. It has to be pointed out that the variogram approach 

describes the spatial dependence as an integral of the whole distribution of parameter values. 

The spatial correlation of the extreme values of the random function Z(X) cannot be 

investigated separately. 

B.2.1 Variogram calculation 

The simplest case for calculating the variogram is an equally spaced dataset as shown in 

Figure B.1 (a). First, the squared differences between neighbouring pairs of values 1z  and 

2z , 2z  and 3z  are determined for each position and averaged. If there are missing values at 

some locations, then there will be fewer neighbouring pairs as indicated in Figure B.1 (b). 

 

If data are irregularly scattered then the average semivariance of a particular lag can be 

derived only by grouping the individual lag distances between pairs of points, as depicted in 
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Figure B.1 and as shown in equation (0.20). In typical geostatistical literature [7, 21], the 

classical equation of determination of the semi-variogram is 

 

 
1 2ˆ( ) [ ( ) ( )]

2 ( )
( ) ( )

Z Z
i jN

ij R

  



τ X X
τ

τ

  (0.20) 

where 

 

  ( ) / 2 ( , ) / 2s i jR w d u u w    τ τ τ   (0.20) 

 

( , )S i jd X X  is the spatial distance between the spatial point sets ,i jX X , ( )N τ  is the number 

of pairs in ( )R τ  and w  is the width of the spatial distance class as shown in Figure B.2. The 

bigger the w becomes, the smoother is the semi-variogram because this filters out the very 

high and low values. 

 

The variograms of second-order stationary processes reach upper bounds, at which they 

remain constant after their initial increases as shown in Figure B.3.  

 

A variogram may reach its sill at a finite lag distance, in which case it has a range, also known 

as the correlation length; since this is the range at which the autocorrelation becomes 0 

(Figure B.3). This separation marks the limit of spatial dependence. Places further apart than 

this are spatially independent. For practical purposes their effective ranges are usually taken 

as the lag distances at which they reach 95 % of their sills [14, 21, 39, 66]. 

 

 
Figure B.1.  Comparison for computing a variogram from a regular sampling on a transect (a) with a complete set of 

data, indicated with • and (b) with missing values indicated by ◦ from Huber [34]. 

 

 

 
Figure B.2. The geometry for discretizing the lag into bins by distance and direction in two dimensions from [34] 
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B.2.2 Theoretical variogram 

It is necessary to know the variogram ˆ( ) τ  at any value of τ , if one wants to use the 

variogram in terms of geostatistical simulation or interpolation. For this reason it is necessary 

to fulfil the continuity, the differentiability condition and the conditional positiveness as shown 

in detail in Chiles & Delfiner [14]. Amongst others, Gascuel-Odoux & Boivin [26] specify 

several sources of error: firstly only one realization is generally available in nature and it is 

considered as representative; also errors in the experimental variogram due to sampling and 

measurement must be considered; secondly, errors may result from the choice of the model 

and estimation of the theoretical variogram. The semivariogram has to be approximated to be 

able to simplify further work like e.g. performing a stochastic simulation or interpolation 

between measurements. For this reason, the behaviour of the variogram model has to be 

defined at the origin and over the entire range. Different theoretical variogram-models can be 

classified, according to [190], into models with a sill (bilinear model equation (0.21)), spherical 

variogram (linear behaviour at the origin, equation (0.22)), exponential variogram (linear 

behaviour at the origin, (0.23)), Gaussian variogram (parabolic behaviour at the origin, 

equation (0.24)), models without a sill (power functions, fractal model, logarithmic variogram). 

Other models like the cubic model, generalized Cauchy models, K-Bessel model, power-law 

model, pentaspherical model, Matern model or logarithmic model can be found in standard 

geostatistical textbooks [79, 190, 401, 403]. 

 

 
/

( )
a

a



 



τ τ
τ

τ

for a  

for a  
  (0.21) 
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

    
    

     



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τ

τ

τ

for a

for a

  (0.22) 

 ( ) 1 exp
c


 

   
 

τ
τ   (0.23) 

 

2

2
( ) 1 exp

d


 
   

 

τ
τ   (0.24) 

 

To compare different theoretical variogram models, it is necessary to fit theoretical variogram 

models in a standard way and automatically to the sample variogram in order to avoid 

judgement errors. In the course of a detailed geostatistical analysis, an automatic fit rarely 

provides definitive results. Chiles & Delfiner [14] as well as Deutsch & Journel [21] point out 

that this can be only the first step of a manual fit. Generally, we look for a variogram ( ; )j τ b

where b represents a vector of the parameters of the variogram (e.g. range, sill, nugget 

effect, ...) of n available pairs of data. This vector b can be evaluated by minimizing the 

following equations. A compromise between efficiency and simplicity is the weighted least 

squares, namely the minimization of Q(b):  

 

 
2

2

1

ˆ( ) ( ) ( ; ))
n

j j

j

Q w  


   b τ τ b   (0.24) 

 

Herein, w is the weight, which can be the reciprocal of the number of pairs at each lag, as 

proposed by Matheron [240] or also the variance at each point, [14, 46]. The variance-

covariance matrix V in equation (0.24) can be used to calculate the variance of the variogram. 
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The expression (0.24) tells us that the uncertainty in the variogram at a distance τ  is the 

average covariance between the pairs of the pairs used to calculate the variogram for that 
particular lag τ assuming a multivariate Gaussian distribution of the variables.  

 

 

    

( ) ( )

2
1 12 ( )

22 2

1
( ) / ( )

ˆ( ) ( ) ( ) ( ) ( ) 2 ( )
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Z Z Z Z





 

 

        


τ τ

τ

j

w τ τ

V τ X X τ x X τ τE

  (0.24) 

 

Herein, ˆ( )j τ  is the vector of the empirical variogram, V  is the variance-covariance matrix 

of ˆ( ) τ . The calculation of the variance covariance matrix is rather complicated as highlighted 

by Ortiz & Deutsch [46]. There are different approaches for choosing the weights w. Cressie 
[87] shows that for equally spaced Gaussian variables, the variance of the estimates can be 
approximated by equation (0.24):  

 

 
2

( )

ˆ2 [ ( ) ]

N




τ
w

τ
  (0.24) 

 

where ˆ( ) τ  is the value of the theoretical variogram and N( τ ) is the number of pairs at a 

mutual distance of τ . It is argued by several authors [14, 18, 47] that this estimation is too 

crude to construct confidence intervals. McBratney & Webster [44] redefined this further:  

 

 
3 2ˆ ˆ( ) / ( ) ( )m w τ τ τ   (0.24) 

 

where ˆ( ) τ  is the observed value of the semivariance at τ . This is usually desirable for 

kriging, though it might be less desirable if the aim is to estimate the spatial scale of variation. 

The process of fitting must iterate even where all the parameters are linear because the 

weights in the two schemes depend on the values expected from the model. 

B.2.3 Model selection using the AKAIKE Information criterion 

The selection of the most appropriate model is done via the AKAIKE INFORMATION 

CRITERION. (AIC) [2], which is defined for a finite sample set n:  

 

 2 2 ln( )AIC k L    (0.24) 
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Figure B.3 Theoretical variogram functions (a) and comparison of the semivariance function  

and autocorrelation function (b) 

 

 
where k is the number of parameters in the statistical model, and L is the maximum value 

of the likelihood function for the estimated model. The first term is a measure of the 
quality of fit of a model and the second is a penalty factor for the introduction of additional 
parameters into the model. AIC is a measure of the loss of information incurred by fitting 

an incorrect model to the data. Therefore, given a set of different models for the data, the 
preferred model is the one with the minimum AIC value. Hence AIC not only rewards 

goodness of fit, but also includes a penalty that is an increasing function of the number of 
estimated parameters. This penalty discourages overfitting. The preferred model is the 
one with the lowest AIC value. Assuming that the model errors are normally and 
independently distributed, the AIC can be rewritten for a fitting by least squares. Herein, 
the residual sum of the squares (RSS) are defined:  

 

 

1

2 [ ln( 2 / ) 1]

n

i

i

AIC k n RSS n

RSS






  


  (0.24) 

 

where k is the number of parameters in the statistical model, and L is the maximum value of 

the likelihood function for the estimated model. The first term is a measure of the quality of fit 

of a model and the second is a penalty factor for the introduction of additional parameters into 

the model. One can clearly see by looking at equations (0.24) that for a big sample size n the 

AIC is independent of n. Alternatively, different information criteria amongst others like BIC or 

KIT can be used for small sample sizes or other boundaries, which is described in detail in 

literature [3, 11, 68]. 

B.3 Maximum likelihood method 

The Maximum Likelihood (ML) method of estimating the unknown parameters Θ  is a 

parametric method assuming that the distribution of the data is known. ML takes the value of 

Θ  as an estimate of the unknown parameters Θ  that provides the greatest probability of 

having measurements Z, as calculated from the joint probability distribution of the 
observations conditioned on Θ . The possible outcomes z(X) of the random function Z(X) with 

mean value Z and covariance matrix ZZC  are assumed to be described by a n-dimensional 

multivariate normal distribution in equation 2.13. 
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  (0.24) 

 

The covariance matrix ZZC contains the values of the auto-covariance function ( , )i jC Z Z  of 

each possible pair of measurements. Selecting the unknown parameters in a vector 

[ , , , ]T

r h vZ   Θ  the log-likelihood for Θ  is given in equation (0.24). 

 

 
11 1

( | ) ln(2 ) ln | | ( ) ( )
2 2 2

Tn
L Z Z      ZZ ZZΘ z C z C z   (0.24) 

 
By maximizing the likelihood, the optimal parameter set Θ  can be obtained by standard 

optimization strategies, for example the simplex method. The advantage of the simplex 

algorithm is that the results are independent of the initial parameters, hence only depending 

on data.  

De Groot & Baecher [90] state that the maximum likelihood estimator parameters Θ  are 

asymptotically jointly normally distributed: 

 

 
1ˆ ~ ( , )

Θ Θ B   (0.24) 

 

where the information matrix B can be obtained as 

 

 ( , )
Z

B ΘB Bdiag   (0.24) 

 

where [ , , ]T

r h v  Θ  is a vector containing the parameters of the theoretical variogram 

model. The entries of the information matrix are given in [90] as follows: 
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  (0.24) 

 

where 1 is a unit vector of length n. Using the information matrix B, the accuracy of the 

obtained parameters is estimated. 

B.4 On the correlation length 

Within the description of spatial variability one has to distinguish between the correlation 

length and its related model parameters. The definition of the correlation length was 

introduced by Vanmarcke [63], which is referred to by other authors [5, 12, 24, 32, 37, 51, 72]. 

They often call it scale of fluctuation. 

 
Vanmarcke [63] defines the correlation length   as distance within which points are 

significantly correlated (i.e. by more than about 10 %) by the correlation function ( ) τ , which 

can be e.g. an exponential decaying function. Conversely, two points separated by a distance 
more than   will be largely uncorrelated. 

 

 
0

( ) 2 ( )d d   
 
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The correlation length is defined without the factor of 2 shown to the right-hand side of 

equation (0.24) especially in the geostatistical literature e.g. Journel & Huijbregts [39]. 

Another consequence for the application in engineering sciences as well as in earth sciences 

is that the correlation function is only meaningful for strictly non-negative correlation functions. 

B.5 Uncertainty of the correlation length 

In [14, 68], the uncertainty of the correlation length is connected with the application e.g. 

spatial interpolation or (geostatistical) simulation. Within the concept of interpolation, cross-

validation is used to investigate the influence of the correlation length, as described in detail 

in Webster & Oliver [68]. 

 

As mentioned above, different sources like measurement and modelling errors (statistical 

model, nested structures, ... etc.) cause an uncertainty of the evaluated correlation length. 

Focusing on the variogram approach, the main source of uncertainty is the definition of the 

distance and direction classes. In the case of too wide classes, the resulting variogram will be 

smoothed too much, whereas in the other case the variogram will be too noisy. As pointed out 

above, several authors express the uncertainty of the correlation length via the experimental 

variogram ˆ( ) τ to calculate the variance and the correlations of the values of the experimental 

variogram ˆ( ) τ . Herein, they use an approximation of the variance-covariance matrix of the 

experimental variogram by assuming a normal distribution for the variance-covariance matrix, 

which is difficult to verify in any application. The variances of ˆ( ) τ can be used as weights for 

fitting the theoretical variogram to the values of the experimental variogram. This offers also a 

link to the uncertainty of the correlation length.  

 

In the Maximum Likelihood approach, the assumption of normal distributed variables is 

governing the whole evaluation of the correlation length. The estimation of the uncertainty of 

the evaluated spatial correlation is a by-product of the ML procedure as shown in equation 

(1.14). Via these equations it is possible to estimate the error of the estimated variogram 

model-parameters and consequently also of the correlation length. 

B.6 Anisotropy of the correlation length 

Following the introduction to geostatistics presented in Chiles & Delfiner [14], Deutsch & 

Journel [21] and Wackernagel [66], one will encounter the anisotropy in the spatial correlation 

of measurement data. Anisotropy, being defined as the ratio of horizontal θhor and vertical 

correlation length θver, can be classified in zonal and horizontal-to-vertical anisotropy. 

Zonal anisotropy is related to stratification. This implies that the sill value of the horizontal and 

vertical variogram are different, which can attributed to different sample distributions. Deutsch 

[96] points out the importance of the conceptual geological model to describe this in detail. 

Horizontal-to-vertical anisotropy can be related to the geological processes which formed the 

investigated statistically homogeneous layer. Different anisotropy ratios from literature [5, 14, 

21, 20, 34, 39, 41, 72, 66] are summarized in Table B.1. Most of these sources are from 

geostatistics as well as from petroleum engineering. Therefore, the names of the different 

categories in table 2.5 come from engineering geology and petroleum engineering. It can be 

deduced from table 2.5 that the bigger the geological process is the bigger will be the 

anisotropy ratio θhor/θver. The anisotropy ratios range from θhor/θver = 10:1 up to 1,000:1. 

Therefore, it can be concluded that it is of major importance to set up a conceptual geological 

model before working on the spatial variability.  
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Table B.1. Typical ratios of the horizontal θhor and vertical correlation lengths θver collected from literature [5, 14, 21, 

20, 34, 39, 41, 72, 66]. 
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C  Theoretical background on the evaluation of the vertical 
spatial correlation 

This section provides the theoretical background for the evaluation of the vertical spatial 

correlation.  

 

To apply the theory to evaluate the spatial variability, one has to check the basic assumptions 

of this theory in order to use the variogram and the ML approaches. If a trend is not removed 

from the measurement data, the evaluation of the correlation lengths is more difficult or even 

impossible. Therefore, a selection of techniques to identify and test measurement data on 

stationarity and homogeneity are presented in this section. 

 

Stationarity can be defined by a constant mean value and variance within the test data. 

Various authors have proposed techniques for detecting the stationarity of the data. Only 

some are enlightened in this section. More background can be found in literature like [9, 10, 

37]. 
In the present study we tested the significance of a trend using he Mann-kendalls’  , which is 

a smooth way to detect stationarity of measurements within a non-parametric method [42]. 

The Mann-Kendall test is based on the statistics S. Each pair of observed values  ,i jy y i j  

is inspected to find out whether i jy y  or i jy y . Let the number of the former type of pairs 

be P, and the number of the latter type of pairs be M. Then S is defined as 

 
 -S P M    (0.25) 

 

For n>10, the sampling distribution of S is as follows. Z follows the standard 

normaldistribution, where 
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  (0.26) 

 

The null hypothesis that there is no trend is rejected if the computed Z value is greater than 

/2Z  in absolute value. Herein, the significance 1  % is chosen according to [50]. After 

identifying the trend via the described approaches, the least squares method [8] is used to fit 

a linear trend to the data as recommended by [4, 49].  

 

After removing the trend of the measurement data by fitting a linear function by least squares, 

one has to check the data on homogeneity. This can be done be expert judgement; but also 

statistical can support this judgement on a mathematical basis. 
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Homogeneity can be defined as stationarity of the variance as presented in [48, 56]. The 

intra-class correlation coefficient and the Bartlett statistics are used herein for checking the 

homogeneity of the measurements. 

C.1 Intra-class correlation coefficient 

The intra-class correlation coefficient RI is reported as a useful statistical method for detecting 

layer boundaries using CPT soundings, Wickremesinghe [69]. The RI profile is generated by 

moving two continuous windows containing m data points each over a measurement profile 

and computing the following index at the centre of the double window. 

 

 
 

2 2 2

1 2 1 1

1
1/ 1

ˆ ˆ ˆ ˆ( 1) / / 2 / ( )
RI

m m s s 

 
  
     

  (0.27) 

 

Basically, ergodicity of the mean value and the variance within the moving window is 

assumed. This is only valid for symmetric distributions according to various authors [73]. 

The critical RI value RIcrit is estimated according to Hegazy et al. [31]. The boundaries are 

identified quantitatively at locations where RI exceeds the empirical relationship of the mean 

μRI and standard deviation σRI of the RI profile: 1.65crit RI RIRI    ; it is recommended to 

check the computed results visually and to judge the evaluated soil layer. The critical critRI  

according to Hegazy et al. [31] is slightly higher than the recommendation of Zhang & Tumay 

[73] 0.70critRI  , which is also an empirical rule. Others [31, 73] also point out that the choice 

of critRI  does not seem to depend on the underlying correlation structures of the profile, which 

is also discussed by Phoon et al. [48]. 

C.2 Bartlett statistics 

This classical test is used to test the equality of multiple sample variances for independent 

data sets.  

This has not to be taken into account in this case study because a normal distribution function 

can be fitted to the residuals of the CPT/HPT measurements.  

 

For the case of two sample variances, 
2

1s  and 
2

2s , the Bartlett test statistic reduces to:  

 

 
 

2 2 2

1 2

2.30295 ( 1)
2log (log log )

1 2 / 1( 1)
stat

m
B s s s

m


     

  (0.28) 

 

where m  is the number of data points used to evaluate 
2

1s  and 
2

2s . The total variance 
2

2s  is 

defined as:  

 

 
2 2

1 2

2

s s
s


   (0.29) 

 

While using the Bartlett statistics, one has to keep in mind that this procedure is very sensitive 

to non-normally distributed and skewed variables. According to Sachs [56], he implies that in 

the case of a small deviation from the symmetric normal distribution, the procedure will not 

offer reliable results. Especially in the presence of a skewness 2 3

1 0( ) kN/m   and an 
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excess kurtosis 2 4

2, 0 ( ) kN/mexcess  , which can be observed very often in the case of 

measurement data. 

 

A continuous Bartlett statistic profile can be easily generated by moving a sampling window 

over the simulated soil profile. Campanella et al. [12] as well as Wickremesinghe [70] 

recommend a window width of approximately the scale of fluctuation in the layer.  This is also 

pointed out by Phoon et al. [48]. This implies an iterative approach. The sampling window is 

divided into two equal segments and the sample variance 2

1s  and 2

2s  is calculated from data 

points lying within each segment.  

 

The Bartlett statistic basically indicates the difference between the sample variances in these 

two adjacent segments. As shown in equation (2.5), the Bartlett statistic is zero, if 2

1s  and 2

2s  

are equal. Phoon et al. [48] offer a critical value critB  under the framework of the modified 

Bartlett statistics taking into account the spatial correlation using an exponential model. 

Herein, 1 /  I n k  ranges between 5  and 50  and 2 / I m k  where k is the number of points 

in one scale of fluctuation; n is the total number of points in the entire soil record and m is the 

number of points in one sampling window.  

 

 , 1(0.23 0.71) log( ) 0.91 0.23stat critB k I k      (0.30) 

 

This critical value critB is calculated for every layer to take the different correlation lengths into 

account. The lowest critical value critB  is used for the whole CPT profile. In Figure 3.5 the 

detrended measurement data are used to evaluate the RI as well as the Bartlett statistics. 

The width of the sampling window is chosen as big as the correlation length. The critical 

values critRI  and critB  indicate the boundary between both soil layers. 

C.3 Comparison of the intra-class correlation coefficient and the Bartlett statistics 

Both concept are described in literature to detect the soil layer boundaries. However, by 

studying Figure 3.5, one can see that the Bartlett statistics (Figure 3.5 b) shows better 

agreement with the indicative soil classification (Figure 3.5 d) than the intra class correlation 

coefficient, which is also reported by Huber [34]. 

C.4 Bayesian model averaging 

One can clearly see in Figure C.1 and Figure C.2 that the variogram and ML approaches offer 

comparable results. This can be deduced from the nearly symmetric distribution of the 

residual values shown in in Figure C.1 and Figure C.2 because there is only a very small 

skewness of the measurement data. These two probability density functions of the variogram 

and ML approaches are equally probable and can be merged by using the so called Bayesian 

model averaging (BMA) scheme [33, 52], which is based on the Bayes' theorem. 

 

The Bayes' theorem updates a subjective, prior probability distribution ( )f   with a likelihood 

function L 1 2( | , ,..., )nz z z , which is the conditional probability function of 1 2, , ...,   nz z z  e.g. 

measurement values. 

 

 1 2 1 2( | , ,..., ) ( ) ( | , ,..., )n nf z z z f z z z   L   (0.31) 
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The resulting posterior pdf 1 2( | , ,..., )nf z z z  of the variable of interest   is conditioned on the 

prior probability ( )f   and on the Likelihood function L 1 2( | , ,..., )nz z z , [13, 61, 27].  

 
If   is the quantity of interest, then its posterior distribution given data D is 

 

 
1

( | ) ( | , ) ( | )P P P
K

k k

k

D M D M D 


    (0.32) 

 

This is an average of the posterior distributions under each of the models considered, 

weighted by their posterior model probability. In equation (0.32) 1 2, , ... ,    kM M M  are the 

models considered. The posterior probability for the model kM  is given by 

 

 

1
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P P
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l

D M M
M D

D M M






  (0.33) 

 

where 

 

 ( | ) ( | , ) ( | )P P P dl k k k k kD M D M M      (0.34) 

 

is the integrated likelihood of model ,k kM   is the vector of parameters of model kM , 

( | )P k kM  is the prior density of k under model kM , is the likelihood and ( )P kM  is the prior 

probability that kM  is the true model under the assumption that one of the models 

considered is true. All probabilities are implicitly conditional on the set of all models being 

considered. 

 

Hoeting et al. [33] report that BMA presents several difficulties: the specification of the prior 

distribution over competing models has to be carried out with attention. Another fundamental 

task is to choose the models over which the averaging can be performed; one of the most 

challenging tasks is the evaluation of the integral in equation (0.34). Within [13, 33, 52, 61], it 

is recommended to use Markov Chain Monte Carlo methods to evaluate this integral for the 

very general combination of different functions. In the simple case of the combination of two 

(log)normal distribution functions equation (0.34) can be solved by numerical integration, [61]. 

 

The combination of the two distribution functions using BMA is shown in Figure C.1 and 

Figure C.2. The resulting distribution function has a lower variance as well as a lower mean 

value of the correlation length. Via BMA all information from the two different models 

(variogram and ML) have been incorporated and this higher level of information is leading to a 

significant reduction of the coefficient of variation of the combined pdf. In addition to the 

probability density functions, also the lower and upper bound of the 95% confidence interval 

are given, which shall help the reader to get a feeling for the presented results. 

 



 

 

 

1209637-000-GEO-0008, 2 February 2016, final 

 

 

Analysis of permeability heterogeneity and its implications in piping assessment 

 
C-5 

 
Figure C.1 Vertical correlation length of the CPT cone resistance using the variogram and ML together with the 

combined results 

 
Figure C.2 Vertical correlation length of the Q/P relation from the HPT using the variogram and ML together with 

the combined results 

68 % confidence interval of the combined model 

68 % confidence interval of the combined model 





 

 

 

1209637-000-GEO-0008, 2 February 2016, final 

 

 

Analysis of permeability heterogeneity and its implications in piping assessment 

 
D-1 

D Sampling plans 

This appendix summarizes the findings of a literature study on sampling concepts of 
measurement data, which are spatially correlated.   

D.1 Introduction 
Many books are available on sampling theory, and more complete discussions are available 
in [4, 14, 16, 17, 19, 43, 55, 60]. According to [4], an estimator is a sample statistic that can 
be used to estimate true population parameters. It can be chosen on different probability 
density functions, but individual estimators seldom satisfy all the desired criteria 
simultaneously. An estimate is the realization of a particular estimator for a specific set of 
sample observations. Estimates are not exact. Uncertainty is reflected in the variance of their 
distribution about the true parameter value to be estimated. This variance is, in turn, a 
function of both the sampling plan and the sampled population. By knowing this variance and 
making assumptions about the distribution shape, confidence limits on true population 
parameters can be set. 
 
A sampling plan is a program of action for collecting data from a sampled population. 
Common plans are grouped into many types: for example, simple random, systematic, 
stratified random, cluster, traverse, line intersects, and so on. Three typical sampling 
schemes are shown in Figure D.1. In deciding among plans, or in designing a specific 
program once the type plan has been chosen, one attempts to obtain the highest precision for 
a fixed sampling cost or the lowest sampling cost for a fixed precision. 

D.2 Common spatial sampling plans 
The characteristic property of simple random sampling is that individual observations is 
chosen at random from the sampled population, and each element of the sampled population 
has an equal probability of being observed. 
 
In systematic sampling the first observation is chosen at random, and subsequent 
observations are chosen periodically throughout the population. For example, grid sampling is 
a systematic plan. 
 
A heterogeneous population can sometimes be divided into subpopulations that are internally 
homogeneous. For each homogeneous subpopulation, usually called a stratum precise 
estimates of stratum characteristics can be obtained by random sampling. Estimates of the 
total population characteristics can then be made by combining the individual stratum 
estimates. For certain populations, stratifying before sampling is more efficient than taking 
samples directly from the total population. Sampling plans that specify a simple random 
sample in each stratum are called stratified random sampling plans.  
 
In cluster sampling, aggregates or clusters of elements are selected from the sampled 
population as units rather than as individual elements, and properties of the clusters are 
determined. From the properties of the clusters, inferences can be made on the total sampled 
population. Plans that specify to measure every element within clusters are called single-
stage cluster plans, since they specify only one level of sampling; plans that specify that 
cluster properties be estimated by simple random sampling are called two-stage cluster 
plans, since they specify two levels of sampling. 
 
The literature addressing statistical aspects of estimating autocovariance functions or 
variograms from data is not extensive. Most texts on geostatistics quickly pass over the 
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estimation of the spatial correlation based on intuitive plotting of sample moments and quickly 
move on to Kriging and other applications of the variogram. The question here is how to 
design a sampling plan for estimating the spatial correlation. The answer follows the results of 
Baecher & Christian [4]. They carried out a series of simulation experiments to investigate the 
properties of maximum likelihood estimators of the spatial correlation being quantified by the 
correlation length. 
 
In comparing different sampling plans, at least two criteria of optimality might be considered: 
the quality of the estimates of trend and autocovariance function, and the quality of 
interpolations using e.g. Kriging. 
 
Olea [45] studied this as well and concluded that for spatial interpolation with known 
variograms, systematic spatial samples were superior to other sampling plans in the sense of 
minimizing the variance of interpolations, and that cluster plans fared the worst. However, 
Baecher & Christian [4] conclude that for estimating the spatial correlation either nested or 
cluster plans fared better, and gridded plans fared less well. These findings are supported by 
other researchers as well [35, 67, 68]. Additionally, Webster & Oliver [68] investigated a 
special type of clustered sampling schemes called hierarichal sampling.  
 

 
(a)                                                      (b)                                                          (c) 

Figure D.1 Examples for a systematic (a), a random (b) and a clustered sampling plan from [68] 
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E Statistical properties and correlation length of the 
permeability measurements 

E.1 Introduction 

This appendix gives the results of the statistical analysis (mean value, standard deviation, 

coefficient of variation, horizontal correlation length and coefficient of variation of the 

horizontal correlation length) as tables and as figures. The Maximum Likelihood is used to 

estimate mean value, standard deviation and horizontal correlation length. 

 

E.2 Empirical correlations from 20 sieve curves 

Permeability Den Rooijen Ernst Hazen Kozeny-Carman Seelheim Seelheim2 

μ [m/day] 11.2 21.5 15.8 1.3 16.5 18.8 

σ [m/day] 5.2 10.0 8.7 0.4 6.1 8.4 

COV 47% 47% 55% 31% 37% 45% 

h  in m 137 105 119 (648) 149 113 

COV h  [-] 101% 102% 99% 103% 101% 99% 
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E.3 HPT results 

The 12 HPT measurement results are postprocessed in the following way. After identifying 

the upper aquifer in the soil profile in a first step, one has to cut off the boundaries on the top 

and bottom of this aquifer. After this, one can derive the mean value and standard deviation 

of the permeability, which is approximated by the formulae, given by Fugro [30, 62]. It relates 

the Q/P ratio to the permeability of the layer using kHPT=Q/P*1/Chp. Fugro [30, 62] 

recommends to use Chpt=0.46 for this special layer. The measurement results of the 12 HPTs 

are used to derive the mean values and standard deviation of the top aquifer layer, was given 

in Figure E.1. We used for the derivation of the mean values, standard deviation and 

horizontal correlation length only the mean values of the permeability of the top aquifer layer. 

This implies that we neglect the standard deviations in the vertical direction assuming that 

they are negligible. 
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Figure E.1 Schematic Workflow for the evaluation of the HPT permeability 
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permeability HPT 

μ [m/day] 13.18 

σ [m/day] 1.86 

COV 14% 

h  in m 18.8 

COV h  [-] 101% 
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E.4 MPT 

permeability Meetreeks1 Meetreeks2 Meetreeks3 

μ [m/day] 29.8 30.0 29.6 

σ [m/day] 19.3 20.1 17.3 

COV 65% 67% 59% 

h  in m 225 322 216 

COV h  [-] 97% 101% 99% 
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E.5 Dissipation test 

 Parez-Fauriel Van Baars-Van De Graaf 

μ [m/day] 0.1 0.0 

σ [m/day] 0.1 0.0 

COV 116 % 106 % 

h  in m 41 36 
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E.6 Slugtests 

 
Bouwer_Rice3lijn Bouwer_Rice1lijn Hvorslev 

μ [m/day] 0.3 2.5 0.4 

σ [m/day] 0.2 1.7 0.3 

COV 67% 67% 64% 

h  in m 81 69 79 

COV h  [-] 101% 102% 101% 
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E.7 Falling Head Test 

 
Falling_Head_test 

μ [m/day] 0.0228 

σ [m/day] 0.0231 

COV 101% 

h  in m 31 

COV h  [-] 97% 
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F Background on Piping 

This section provides an overview of the limit state, which we investigate using semi-

probabilistic and full probabilistic methods within this report. 

 

Piping, concerns backward internal erosion under dikes with pre-dominantly horizontal 

seepage paths. Two calculation methods are used: Sellmeijer original and Sellmeijer revised. 

[58] The limit state function is given in equation (0.35).  

 
 ( )p p c river exit cZ m H h h r d      (0.35) 

 

Piping models are based on average gradients between the entry and exit point. Together 

with the seepage length L, this leads to a critical head difference Hc [m], given by equations 

(0.37) (Sellmeijer (2006)) and (0.38) and (0.38) (Sellmeijer 2011) which can be compared 

with the actual head difference. 
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The variables in the limit state equation are given in Table F.1. The values for probabilistic 

analyses are derived from the VNK-2 project [65]. For semi-probabilistic calculations, the 

characteristic value for each parameter is used according to the percentile. Per subsoil 

schematization, multiple values or distributions can be present. 
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Table F.1 

. 

Symbol Unit Description Upl

ift 

Heav

e 

Pipi

ng 

Distribution 

type 

Values from  

VNK-2 [65] 

Usual 

characte

ristic 

value 

mu - Model factor for uplift x   log μ 1.0 ,σ 0.10 1 

γsat,cover [kN/m
3
] Saturated volumetric 

weight of the cover layer 

(blanket) 

x   norm μ 14.0 ,σ 1.54 5% 

rexit - Damping factor at exit x x  log μ 0.7 ,σ 0.07 5% 

ic,h - Critical heave gradient  x  log μ 0.7 ,σ 0.10 0.5 

d [m] Total thickness of the 

cover layer 

x x x log μ 1.25 ,σ 0.19 5% 

hexit [m+NAP] Phreatic level at the exit 

point 

x x x norm μ 0.7 ,σ 0.10 5% 

mp - Model factor for piping   x log μ 1.0 ,σ 0.12 1 

h [m+NAP] Outside water level x x x Hydra-Ring  Design 

water 

level 

rc - Reduction factor   x - 0.3 - 

L [m] Seepage length, from 

entry point to exit point 

  x log μ 69.0 ,σ 0.69 5% 

γsub.particles [kN/m
3
] Submerged volumetric 

weight of sand particles 

  x norm μ 16.5 ,σ 0.17 16.5 

η - White’s drag coefficient   x - 0.25 - 

d70 [m] 70%-quantile of the grain 

size distribution of the 

piping-sensitive layer 

  x log μ 2E-4 ,σ 2E-5 5% 

k [m/s] Darcy permeability   x log μ 2.3E-4 ,σ 2.4E-4 

μ 5.0E-4 ,σ 4.8E-4 

μ 3.1E-4 ,σ 2.0E-4 

95% 

νwater [m
2
/s] Kinematic viscosity of 

water 

  x - 1.33 x 10
-6
 - 

g [m/s
2
] Gravitational constant   x - 9.81 - 

D [m] Thickness of aquifer   x log μ 3.55 ,σ 0.58 

μ 14.5 ,σ 5.1  

μ 42.3 ,σ 5.3 

95% 

d70.m [m] Mean value of the d70 in 

small scale tests 

  x - 2.08 x 10
-4
 - 

θsellmeijer.revi

sed 

[ 
o
 ] Bedding angle of sand 

grains for the revised 

Sellmeijer rule (Sellmeijer 

2011) 

  x - 37 - 

θsellmeijer.ori

ginal 

[ 
o
 ] Bedding angle of sand 

grains for the original 

Sellmeijer rule 

  x - 43  
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G  Bayesian evaluation procedure for characteristic values 

G.1 Calculation of the characteristic values for normal and lognormal distributed data  

The sequel steps describe the calculation of the determination of characteristic values for 

normally and log-normally distributed random variables. 

G.1.1 Variables with Normal distribution 

 

If a random variable is normally distributed with mean μ and standard deviation σ, then the 

characteristic value of this variable, based on the 5%-quantile, is equal to: 

 

 characteristic value= 1.65    (0.39) 

 

and, based on the 95%-quantile, it is equal to: 

 

 characteristic value 1.65     (0.40) 

G.1.2 Variables with Log-normal distribution 

 

If a random variable is log-normally distributed with mean μ and standard deviation σ, then the 

characteristic value of this variables, based on the 5%-quantile, is derived as follows: 
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ln
2

M M       (0.42) 

 

 characteristic value exp( 1.65 )M M      (0.43) 

 

and, based on the 95%-quantile, it is equal to: 

 

 characteristic value exp( 1.65 )M M      (0.44) 

G.2 Theoretical background on Bayesian updating 

Bayesian inference is a method of statistical inference in which Bayes' theorem is used to 

update the probability for a hypothesis as evidence is acquired.  

Statistically spoken, Bayesian inference derives the posterior probability as a consequence of 

two antecedents, a prior probability and a "likelihood function" derived from a statistical model 

for the observed data. Bayesian inference computes the posterior probability according to 

Bayes' theorem: 
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Herein, “|” denotes a conditional probability; more specifically, it means given. H stands for 

any hypothesis whose probability may be affected by data (called evidence below). Often 

there are competing hypotheses, from which one chooses the most probable. E stands for the 

evidence and corresponds to new data that were not used in computing the prior probability. 

 

• P(H) the prior probability, is the probability of H before E is observed. This prior 

probability is described by the mean value M and the standard deviation τ.  

•  

• P(E|H) is the likelihood function, which is the probability of observing E given H.  This 

likelihood function is described by the mean value μ and σ.  

 

• P(E) is termed the marginal likelihood; it can be seen as a scaling factor, which ensures 

that the resulting pdf of the product of P(E|H) and P(H) is 1. 

 

• P(H|E) , the posterior probability, is the probability of H given E, i.e., after E is observed. 

This tells us what we want to know: the probability of a hypothesis given the observed 

evidence. The mean value and standard deviation of the posterior probability can be 

calculated by the following equations. 
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G.3 Calculation of the characteristic values using Bayesian Updating 

At first the lognormal distribution parameters are transformed into distribution parameters of 

the underlying normal distribution: from lognormal distribution to the underlying normal 

distribution parameters μlnx and σlnx: 
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  (0.48) 

 

Then the Bayes theorem is applied on this underlying normal distribution and transformed into 

lognormal parameters μx and σx: 
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