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SUMMARY

Understanding and quantifying the behaviour of river floods at extreme discharges has important
applications in design of civil structures such as river dikes. For design purposes, one is often
interested in return periods that are substantially larger than the observation period. These estimates
are often obtained using classical statistical methods. In this paper, a method based on Bayesian
statistics is presented. This approach enables us to use all available sources of information, and to
take statistical uncertainties into account as well.
Seven predictive probability distributions are considered for determining extreme quantiles of loads:
the exponential, Rayleigh, normal, lognormal, gamma, Weibull and Gumbel. The presented method
has been successfully applied to estimate extreme quantiles of discharges and their return periods.
Prior information based on historical floods is represented in terms of censored data and is then used
to determine informative prior distributions of the statistical parameters. This prior information can be
updated with actual data to determine the posterior information, and provides a rational basis for
extrapolation. As an example, a Bayesian analysis of annual maximum discharges of the river Rhine
at Lobith is performed to assess extreme quantiles such as the design discharge.
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1.  INTRODUCTION

Understanding and quantifying the behaviour of river floods at extreme discharges has important
applications in design of civil structures such as river dikes. For design purposes, one is often
interested in extreme events with larger return periods than the observation period. Extreme
discharges with very large return periods can be estimated by fitting various probability distributions to
the available observations. See for example DH and EAC-RAND (1993) and Castillo (1988).
Probability plots and goodness-of-fit tests, such as chi-square and Kolmogorov-Smirnov are commonly
used to select an appropriate distribution.
A major practical difficulty in fitting probability distributions is that there is often a limited amount of
observations for determining extreme quantiles and particularly extreme discharges. The associated
return period is large compared with the length of the observation period. In the Netherlands, observed
flood discharges are available for a period of 98 years only. Consequently, there is a large statistical
uncertainty involved in estimating discharges with large return periods when using these observations.
The maximum likelihood method has been recognized as one of the best parameter estimation
methods (Castillo, 1988; Galambos et al., 1994); but it is especially suitable when there is a large
number of observations. Furthermore, the method has the disadvantage that statistical uncertainties
cannot be taken into consideration.
One consequence of sparse data is that different probability distributions seem to fit the observations
and therefore only a few can be rejected. The different distributions involved usually lead to different
extrapolated values and the goodness-of-fit tests for selecting an appropriate distribution are often
inconclusive. The tests are more appropriate for the central part of the distribution than for the tail.
Recently, van Gelder (1999) presented an alternative based on a Bayesian approach for estimating
extreme quantiles while statistical uncertainties are taken into account. Statistical uncertainty mainly
occurs due to a lack of observations. This uncertainty can be subdivided into parameter uncertainty
and distribution-type uncertainty. Bayesian estimates and so-called Bayes weights can then be used



to account for parameter uncertainty and distribution-type uncertainty, respectively. Using Bayes
weights, it is possible to discriminate between different probability distributions and to quantify how
well a distribution fits the observations. The Bayesian approach was successfully applied by van
Noortwijk et al. (2001), Chbab et al. (2000) and van Gelder et al. (1999) for estimating extreme river
discharges. Different distributions were investigated and therefore weights were determined
corresponding to how well they fitted the observed data. In determining Bayes weights, so-called non-
informative Jeffreys priors were used. The main disadvantage of non-informative priors is that they are
often improper. Although this disadvantage can be overcome, the Bayesian approach is especially
useful for combining different sources of information and for using informative priors. 
This paper again addresses the Bayesian approach for estimating extreme river discharges. It differs
from the results in van Noortwijk et al. (2001) and Chbab et al. (2000) in the sense that informative
priors based on historical censored observations are used instead of non-informative priors. In Section
2 we briefly define statistical uncertainties. Bayes estimates of parameters and quantiles associated
with large return periods are examined in Section 3. Non-informative Jeffreys priors, as well as
informative priors based on historical censored observations are presented in Section 4. Bayes factors
and Bayes weights will be treated in Section 5. In Section 6 we examine the river Rhine as a case
study, and we end with conclusions in Section 7.

2. STATISTICAL UNCERTAINTIES

According to (amongst others) Slijkhuis et al. (1999) and Siu and Kelly (1998), uncertainties in risk
analysis can primarily divided into two categories: inherent uncertainty and epistemic uncertainties;
see Figure 2-1. Inherent uncertainties represent randomness or variability in nature. For example,
even in the event of sufficient data, one cannot predict the maximum discharge that will occur next
year. The two main types of inherent uncertainty are inherent uncertainty in time and inherent
uncertainty in space. It is not possible to eliminate inherent uncertainty completely. Epistemic
uncertainties represent the lack of knowledge about a (physical) system. The two main types of
epistemic uncertainty are statistical uncertainty (due to lack of sufficient data) and model uncertainty
(due to lack of understanding the physics). Statistical uncertainty can be parameter uncertainty (when
the parameters of the distribution are unknown) and distribution-type uncertainty (when the type of
distribution is unknown). In principle, epistemic uncertainties can be reduced as knowledge increases
and more data becomes available.

Inherent uncertainty in time Inherent uncertainty in space

Inherent uncertainty

Parameter uncertainty Distribution type uncertainty

Statistical uncertainty Model uncertainty

Epistemic uncertainty

Uncertainty

Figure 2-1: Types of uncertainty

3. BAYESIAN ESTIMATION

The only statistical theory that combines modelling inherent uncertainty and statistical uncertainty is
Bayesian statistics. The theorem of Bayes (1763) provides a solution to how to learn from data. In the
framework of estimating the parameters 1 d ( ,..., )θ θ=θ of a probability distribution l( x | )θ , Bayes’
theorem can be written as:
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with
l( | )x θ = the likelihood function of the observations 1 n( x ,....,x )=x  when the 

parametric vector 1 d ( ,..., )θ θ=θ  is given,



( )π θ = the prior density of 1 d ( ,..., )θ θ=θ  before observing data 1 n( x ,....,x )=x ,
( | )π xθ = the posterior density of 1 d ( ,..., )θ θ=θ  after observing data 1 n( x ,....,x )=x ,
( )π x = the marginal density of the observations 1 n( x ,....,x )=x .

The likelihood function l( x | )θ  represents the inherent uncertainty of a random variable X  when θ  is
given, whereas the prior density ( )π θ  and the posterior density ( | )π xθ  represent the statistical
uncertainty in θ . This statistical uncertainty in θ  is parameter uncertainty. Using Bayes’ theorem, we
can update the prior distribution to the posterior distribution as soon as new observations become
available. When more observations become available, the parameter uncertainty gets smaller. If a
random variable X  has a probability density function l( x | )θ  dependent on the parametric vector θ ,
then the likelihood function 1 nl( x ,...,x | )θ  of the independent observations 1 n( x ,....,x )=x  is given by:

(2)
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The marginal density ( )π x  is obtained by integrating the likelihood l( | )x θ  over θ . Note that the
maximum-likelihood estimate of the parameter vector θ  is defined as the estimate θ̂ , which
maximizes the likelihood function l( | )x θ  as a function of θ .
The cumulative distribution function and the survival function of the random variable X  are denoted
by F( x | )θ  and 1F( x | ) F( x | )= −θ θ , respectively. The posterior predictive probability of exceeding
a certain 0x  is given by:
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Besides representing parameter uncertainty on the basis of Bayesian statistics, distribution-type
uncertainty can also be taken into account using so-called Bayes factors or Bayes weights. This will
be treated in Section 5.

4. PRIOR CHOICE

To obtain Bayes estimates, a prior distribution of the parameters of the assumed likelihood function
and some observations (sample information) are required. The prior distribution and the sample
information contained in the likelihood function are then combined using Bayes’ theorem to determine
the posterior distribution of the parameters. The key question is how to choose the prior distribution.

4.1 Non-informative priors

The Bayesian approach is especially useful for combining prior subjective information with actual
observations. Prior information can be represented in terms of a prior distribution, which can be either
non-informative or informative. There might be situations in which we would like the observations to
‘speak for themselves’, especially in comparison to the prior information. This means that the prior
distribution should describe a certain ‘lack of knowledge’ or, in other words, should be as ‘vague’ as
possible. For this purpose, so-called non-informative priors have been developed. An advantage of
using non-informative priors is that it provides us with a methodology to perform statistical inference in
situations where ‘little is known a priori’. 
According to (amongst others) Box and Tiao (1973), Kass and Wasserman (1996) and van Noortwijk
et al., (2002), the best and most widely used method for determining non-informative priors is that of
Jeffreys (1961). This method chooses the non-informative prior to be proportional to the square root of
the expected Fisher information measure. In mathematical terms, the non-informative Jeffreys prior is
given by:

(4) [ ]1 2/J( ) ( )θ Ι θ∝  



where ( )Ι θ  is the expected Fisher information for a single observation of the probability distribution
involved; that is:

(5)
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The non-informative Jeffreys priors can be easily extended to the multivariate case. The Jeffreys prior
is then taken proportional to the square root of the determinant of the expected Fisher information
matrix for a single observation (Box and Tiao, 1973; van Noortwijk et al., 2002). An excellent overview
on the selection of non-informative priors is presented by Kass et al. (1996). The main advantage of
the Jeffreys prior is that it is always both invariant under transformations and dimensionless. 
A disadvantage of most non-informative priors is that they can be improper; that is, they often do not
integrate to one. This disadvantage can be resolved by focussing on the posterior distributions rather
than on the prior distributions. As a matter of fact, formally carrying out the calculations of Bayes’
theorem by combining an improper prior with observations often results in a proper posterior.

4.2 Informative priors

The Jeffreys priors considered in the previous section are useful in situations in which we would like
the observations to ‘speak for themselves’. This means that a non-informative prior distribution should
describe a certain ‘lack of knowledge’. On the other hand, an informative prior distribution is one that
reflects ‘subjective’ knowledge concerning the unknown statistical parameters.
For estimating extreme flood quantiles, a useful informative prior is a distribution based on historical
floods, which occurred before the period of systematic gauging. For the river Rhine this could be the
period 1800-1900. Although the real historical discharges are generally unknown and the river
geometry has changed, reference books on storm surges and river floods form a valuable source of
additional information. These books mention, for example, whether there was flood damage or even a
catastrophe occurred involving drowned people, dike bursts, flooded polders, dislodged houses and
collapsed bridges. Their main sources of information are old newspapers, chronicles, letters, diaries,
memories, legends, government or business records, and even folk songs (Chen et al., 1975). In
addition to these written records, man made high water marks and memorials, as well as
geomorphologic and botanical evidence of large and catastrophic floods can be used. As opposed to
the systematic gauging records, these floods are generally referred in the hydrological literature as
‘historical floods’ (see, e.g., Stedinger and Cohn (1986) and Hirsch and Stedinger (1987)). The main
aim is to approximately assess the number and magnitudes of the largest pregauge historical floods,
which occurred within a period, which is generally larger than the systematic record.
Let the random quantity X be defined as the annual maximum river discharge and let us consider a
time period of r  years. We propose to quantify historical information as follows: if historical references
do not mention any flood damage then 1X y≤ . If historical references mention flood damage but no
catastrophe, then 1 2y X y≤ ≤ . If historical references mention a catastrophe then 2y X< .
On the basis of expert judgement, the number of years falling in each of the above three categories
denoted by ir , i = 1,2,3 , must be assessed. 
The subjective estimates of the proportions of historical flood per discharge category can be regarded
as censored observations. An observation x  can be censored on the left, doubly censored and
censored on the right, when 1x y ,≤  1 2y x y< ≤ and 2y x<  respectively. For more details and
examples of data censoring, see Kaczmarek (1977).
When considering historical observations, the censoring is due to the absence of systematic
measurements, changes in river and meteorology, as well as unreliable reports of historical floods.
Under the assumption of the historical censored observations being independent, the likelihood
function can be formulated as:
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Given the likelihood function of the historical censored observations 1 2 3l( r ,r ,r | )θ and a non-
informative Jeffreys prior ( )π θ , Bayes’ theorem (1) can be used to obtain the posterior density

1 2 3( | r ,r ,r )π θ . This posterior can then be considered as the informative prior in a subsequent
Bayesian analysis for combining historical information with recent systematic uncensored and reliable
observations 1 n( x ,...,x )=x . The final result is the posterior density of θ  when both historical
censored and systematic uncensored and reliable observations are given: that is, 1 2 3( | r ,r ,r , )π xθ . 
In the absence of doubly censored historical observations, likelihood function (6) reduces to:

(7) 1 2
1 2 1 11r rl( r ,r | ) [ F( y | )] [ F( y | )]= −θ θ θ

According to Stedinger and Cohn (1986), Cohn and Stedinger (1987) and Hirsch and Stedinger
(1987), a record of historical flood peaks is generally of this form. To apply Eq. (7), we should be able
to define a time period of r  years, where 1 2r = r + r , and a threshold level 1y  such that over that
period floods greater than 1y  left a record which is still available today. Kaczmarek (1998) used Eq.
(7) in a maximum-likelihood analysis to fit a gamma distribution to historical and systematic annual
maximum discharges of the Polish river Warta.
When censored observations are used as an informative prior distribution, an important point is how
much information is contained in the sample of censored observations. In a Bayesian analysis, the
posterior density is formed as a combination of prior information on the one hand and actual
observations on the other hand. The more information is contained in the historical censored
observations, the more weight they get in comparison with the systematic uncensored observations.  

5. BAYES FACTORS AND BAYES WEIGHTS

The Bayesian approach to hypothesis testing originates from the work of Jeffreys (1961). He
developed a methodology for quantifying the evidence in favour of a scientific theory using the so-
called Bayes factors. This factor is the posterior odds of the null hypothesis when the prior probability
on the null is one-half. A recent overview on Bayes factors can be found in Kass and Raftery (1995).
Assume the data 1 n( x ,....,x )=x  to have arisen under one of the m  models kH , k = 1,...,m . These
hypotheses represent m  marginal probability densities k( | H ),π x  with prior probabilities kp(H ) ,
k = 1,...,m , where m

j=1 jp(H ) = 1∑  and m
j=1 jp(H | x) = 1∑ . These posterior probabilities can be obtained

using Bayes’ theorem as follows:
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is denoted by the Bayes factor. The marginal densities of the data under kH , k( | H ),π x  can be
obtained by integrating with respect to the probability distribution of the uncertain parametric vector

k 1k dk= ( ,...., )θ θθ with number of parameters d :

(10) k k k k k k( | H ) l( | ,H ) ( | H ) dπ π= ∫x x θ θ θ

where k k( | H )π θ  is the prior density of kθ  under kH  and k kl( | ,H )x θ  is the likelihood function of the
data x  given kθ  and kH .  
A difficulty in using non-informative improper priors for calculating Bayes factors is that the prior odds,
and thus the Bayes factors, may be undefined. The reason for this is that strictly speaking, the prior
probability kp(H )  is defined as:



(11) k k k k kp(H ) w(H )  J( | H ) d= ∫ θ θ

where the integral over the non-informative Jeffreys prior k kJ( | H )θ  is often infinite and kw(H ) is the
prior weight. However, according to Dawid (1999), this problem can be resolved by redefining the
posterior odds as:
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These posterior odds are well defined so long as both integrals in it converge, which will typically be
the case so long as the sample size n is large enough. For the seven probability distributions
considered in this paper, the marginal densities of the data do indeed converge (Chbab et al., 2000).
Using Eqs. (8) and (12), the posterior probability of model kH being correct can now be rewritten as:
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It remains to choose the prior weights kw(H ) . For formal model comparison, we propose to use equal
prior weights. Using the Bayes weights kp(H | )x , k = 1,...,m,  the weighted predictive probability of
exceeding 0x is defined by:

(14)
m

0 k k 0 k
k=1

Pr{ X x | H , } p(H | )Pr{X > x | H , }> = ∑x x x

where 0 kPr{X > x | H , }x  is the predictive probability of exceeding 0x  under likelihood model kH ,
k = 1,...m.

6. CASE STUDY: THE RIVER RHINE  AT LOBITH

Bayesian analysis has been applied to the annual maximum discharges of the river Rhine at Lobith
during the period 1901-1998. These observations have been corrected for non-homogeneities as
changes in river geometry and suchlike. A non-informative Jeffreys prior as well as an informative prior
based on historical censored observations in the period 1800-1900 was used. Statistical analysis of
the seven distributions based on the non-informative Jeffreys priors can be found in Chbab et al.
(2000) and van Noortwijk et al. (2001). In the former paper an approximate Jeffreys prior for the
gamma distribution was used, whereas in the latter paper the exact Jeffreys prior was used. The
Bayes weights corresponding to these seven distributions were determined. It was found that the
Bayes weights depend largely on the location parameter. For proper model selection we then
proposed to use the same location parameter for all seven distributions. On the basis of a statistical
analysis the location parameter was chosen to be equal to 2,125 m3/s for all the seven probability
distributions. This location parameter was derived by maximising the weighted marginal density of the
observations, where Bayes weights have been attached to the seven individual probability
distributions, see Table   6-1. The Rayleigh and Weibull distribution appeared to fit best with Bayes
weights of 57% and 32%, respectively. The Bayes estimate of the discharge with an average return
period of 1,250 years (the standard in the Netherlands) was 15,860 m3/s. 

Table 6-1: Prior and posterior Bayes weights (van Noortwijk et al., 2001)
Bayes Exponential Rayleigh Normal lognormal Gamma Weibull Gumbel
Weights
Prior 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429
Posterior 0.0000 0.5718 0.0481 0.0000 0.0072 0.3173 0.0555

New Bayesian calculations have been made using an informative prior for the parameters of the seven
distributions stated above, whereas the location parameter was still chosen to be equal to 2,125 m3/s.
The informative prior is based on historical censored observations in the period 1800-1900. Two



methods concerning data censoring, presented in subsection 4.2, have been used. They are indicated
as Method 1 and Method 2, respectively. More information about censored observations that was
used to define an informative prior is summarised in Table 6-2. The obtained Bayes weights of the
seven probability distributions can be found in Table 6-3. Again the Rayleigh and Weibull distributions
appear to fit best when an informative prior has been used.  The corresponding Bayes weights are
69% and 19% by Method 1 and 67% and 21% by Method 2, respectively. The Gumbel distribution
makes a score of circa 10% by both methods. The Bayes estimates of the discharge with an average
return period of 1,250 years are 15,290 m3/s by method 1 and 15,224 m3/s by method 2, respectively.
The difference is comparatively speaking, small.  

Table 6-2: Subjective estimates of the number of historical floods of the Rhine River spread over two
or three discharge categories

Period r 1r 2r 3r 1y  [m3/s] 2y  [m3/s]
Method 1 1800-1900 100 75 20 5 7,000 10,000
Method 2 1800-1900 100 75 25 - 7,000 -

Table 6-3: Prior and posterior Bayes weights with informative prior based on censored observations.
(Posterior 1 and Posterior 2 correspond with Method 1 and Method 2, respectively).
Bayes Exponential Rayleigh Normal lognormal Gamma Weibull Gumbel
Weights
Prior 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429
Posterior 1 0.0000 0.6929 0.0040 0.0000 0.0148 0.1870 0.1012
Posterior 2 0.0000 0.6688 0.0089 0.0000 0.0144 0.2143 0.0937

Figures 6-1 and 6-2 show both the empirical exceedance probabilities, based on complete and
censored observations, and the predictive exceedance probabilities. In these figures asterisks indicate
the censored observations.

Figure 6-1: Predictive exceedance probability of annual maximum river Rhine discharge using
censored observations by Method 1.



Figure 6-2: Predictive exceedance probability of annual maximum river Rhine discharge using
censored observations by Method 2.

7. CONCLUSIONS 

A method, based on Bayesian approach, for estimating extreme values of river discharges is
presented in this paper. The method deals with inherent uncertainties as well as statistical
uncertainties. Bayesian parameter estimates and Bayes weights can be used to account for parameter
uncertainty and distribution type uncertainty, respectively.  Using Bayes weights, it is possible to
discriminate between different probability distributions and to quantify how well a distribution fits the
data. For formal distribution comparison, either non-informative or informative priors can be used.
Furthermore, the present paper explores the use of informative priors, which are determined using
historical censored floods. These floods occurred before the period of systematic gauging.
A Bayesian analysis is carried out on the river Rhine to determine the discharge at station Lobith with
an average return period of 1,250 years. From the analysis with both historical floods from the period
1800-1900 and reliable and homogeneous observations from the period 1901-1998, we conclude that
a Bayesian approach seems to be very promising. However, we remark that the use of informative
priors based on historical floods, instead of non-informative priors results in a lower discharge with a
return period of 1,250 years. It is not known yet whether this is due to unreliable information about
historical floods, which are generally not homogeneous, or to an actual lower occurrence rate of these
floods. Furthermore, it must yet be investigated what perception thresholds can best be chosen in
order to classify historical floods.  



8. REFERENCES

Bayes, T. (1763): An essay towards solving a problem in the doctrine of chances. Philosophical
Transactions of the Royal Society of London, 53:370-418. London

Box, G.E.P., and Tiao, G.C. (1973): Bayesian Inference in Statistical Analysis. New York: John Wiley
& Sons. New York

Castillo, E. (1988): Extreme Value Theory in Engineering. New York: Academic Press. New Yrok

Chbab, E.H., et al. (2000): Bayesian frequency analysis of extreme river discharges. In Frank
Toensman and Manfred Koch, editors, River Flood Defence, Proceedings of the international
Symposium on Flood Defence, Kassel, Germany, 2000, pages F51-F60. Kassel: Herkules Verlag
Kassel. Germany

Chen, J.Q. et al. (1975): The important role of historical flood data in the estimation of spillway design
floods. Scientia Sinica, 18(5): 669-680. China

Cohn, T.A., and Stedinger, J.R. (1987):  Use of historical information in a maximum-likelihood 
framework. Journal of Hydrology, 96:215-223. London

Dawid, A.P. (1999): The trouble with Bayes factors. Research Report No. 202, Department of
Statistical Science, University College London.

DH and EAC-RAND (1993): Toetsing uitgangspunten rivierdijkversterkingen; deelrapport 2:
Maatgevende belastingen [Investigation of basic principles of river dike improvement; Supporting
Volume 2: Design loads, Delft Hydraulics (DH) & European American Center (EAC) for Policy
Analysis/RAND, Delft, The Netherlands.

Galambos, J. et al. (1994): Extreme Value Theory and Applications. Dordrecht: Kluwer Academic
Publishers. The Netherlands

Hirsch, R.M. and Stedinger, J.R. (1987): Plotting positions for historical floods and their precision.
Water Resources Research, 23(4):715-725. London

Jeffreys, H.J. (1961): Theory of probability; Third Edition. Oxford Clarendon Press. Oxford

Kaczmarek, Z. (1998): Uwagi krytyczne w sprawie metod oceny zagrożenia powodziowego [Critical
remarks on the question of estimating reliable loads]. In L. Starkel and J. Grela, editors. Powódź w
dorzeczu górnej Wisły w lipcu 1997 roku [The flood in the upper Wisła river basin in July 1997], pp
219-232. Kraków: Polska Akademia Nauk Oddział w Krakowie.

Kaczmarek, Z. (1977): Statistical Methods in Hydrology and Meteorology. Warszawa: Foreign
Scientific Publications Department of the National Center for Scientific, Technical and Economic
Information. Warszawa

Kass, R.E. and Raftery, A.E. (1995): Bayes factors. Journal of the American Statistical Association,
90(430):773-795. New York

Kass, R.E., and L. Wasserman (1996): The selection of prior distributions by formal rules. 
Journal of the American Statistical Association, 91(435):1343-1370. New York

Siu, N.O. and Kelly, D.L. (1998): Bayesian parameter estimation in probabilistic risk assessment.
Reliability Engineering and System Safety, 62:89-116.

Slijkhuis, K.A.H. et al. (1999): On the lack of information in hydraulic engineering models. In G.I.
Schuëller and P. Kafka, editors, Safety and Reliability, Proceedings of ESREL ’99 – The Tenth
European  Conference on Safety and Reliability, Munich-Garching, Germany, 1999, pages 713-718.
Rotterdam: Balkema



Stedinger, J.R. and Cohn, T.A. (1986): Flood frequency analysis with historical and paleoflood
information. Water Resources Research, 22(2):369-375. London

van Gelder, P.H.A.J.M. (1999): Statistical Methods for Risk-Based Design of Civil Structures. PhD
Thesis, Delft University of Technoloy, Delft, The Netherlands.

van Gelder, P.H.A.J.M. et al. (1999): Selection of probability distributions with a case study on extreme
Oder river discharges. In G.I. Schuëller and P. Kafka, editors, Safety and Reliability, Proceedings of
ESREL ’99 – The Tenth European Conference On Safety and Reliability, Munich-Garching, Germany,
1999, pages 1475-1480. Rotterdam: Balkema.

van Noortwijk, J.M. et al. (2001): The use of Bayes factors for model selection in structural reliability.
8th International Conference on Structural Safety and Reliability (ICOSSAR), Newport Beach,
California, U.S.A., June 17-21, 2001. California

van Noortwijk, J.M. et al. (2002): Bayesian Statistics for Flood Prevention. Institute for Inland Water
Management and Wastewater Treatment (RIZA) and HKV Consultants, Lelystad. The Netherlands.

9. APPENDIX

This appendix contains the probability distributions, which are considered in the statistical analysis of
the annual maximum discharges, as well as their non-informative Jeffreys priors.

Distribution Probability density function Jeffreys prior
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r rexp ( x m) ( x ),     r > 0Ι
π ∞

−   −  
   

1
2

J(m,r )
r

=

Lognormal 1
2 2

0
1

2 2 ( , )
r rexp (log( x ) m) ( x ),     r > 0

x
Ι

π ∞

−   −  
   

1
2

J(m,r )
r

=

Gamma
{ }1

0

a
a

( , )
b x exp bx ( x ),    a,b > 0
(a)

Ι−
∞−

Γ

1a (a)
J(a,b)

b
ψ ′ −

=

Weibull 1

0 0
a a

( , )
a x xexp ( x ), a,b
b b b

Ι
−

∞

     − >         

1
6

J(a,b)
b

π
=

Gumbel 1 x a x aexp exp exp ,    b > 0
b b b

−  −    − −    
    

2
1

6
J(a,b)

b
π

=

Remark with respect to the Jeffreys prior of the gamma distribution: The trigamma function (a)ψ ′  is
the first derivative of the digamma function:

2

2
(a) log (a)(a)
a a

ψ
ψ

∂ ∂ Γ′ = =
∂ ∂

for 0a > , where 1

0

a t

t
(a ) t e dt

∞ − −

=
Γ = ∫  is the gamma function for 0a > .
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