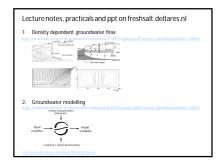
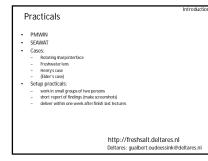


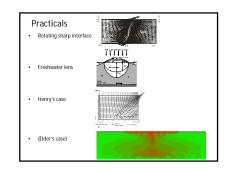
Curriculum Vitae

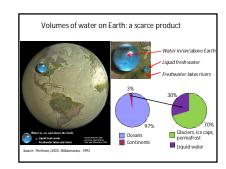
- Delft University of Technology, Civil Engineering: till 1997 Ph.D.-thesis: Impact of sea level rise on groundwater flow regimes Utrecht University, Earth Sciences: till 2002 Free University of Amsterdam, Earth Sciences: till 2004 .
- Free University of Amsterdam,
 Deltares
 Utrecht University: from 2014
- Qualifications:

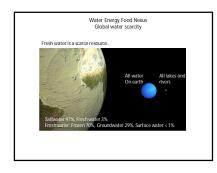
- Jalifications: Groundwater resources management Density-dependent groundwater flow and coupled solute transport Salt water intrusion in coastal aquifers Assessment of climate change on groundwater resources Numerical Modeling Teaching and training
- :

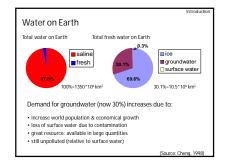

http://freshsalt.deltares.nl Deltares: gualbert.oudeessink@deltares.nl

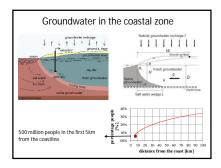


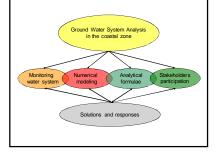


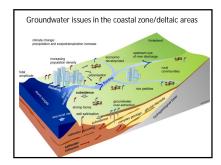

Research on groundwater in the coastal zone

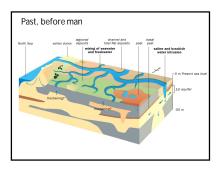

- 18 years experience in modelling variable-density dependent groundwater flow and coupled solute transport in the coastal zone Incorporating monitoring campaigns results in numerical modeling
- tools Research on new fresh-saline phenomenae: salty seepage boils and
- Enserver incomments Knowledge on creating 3D initial chloride distribution, based on geostatistics and geophysical data (analyses, VES, borehole measures, AEM) shallow freshwater lenses in saline environments
- Quantifying effects of climate change and sea level rise on fresh aroundwater resources
- . Developing adaptive and mitigative measures to stop salinization in the coastal groundwater system (e.g. ASR, MAR: fresh keeper, coastal collectors, freshwater storage underground)

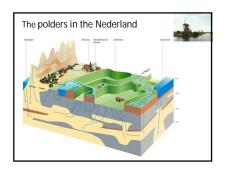










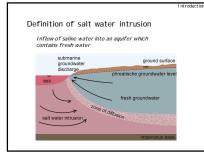


Topics of density driven groundwater flow

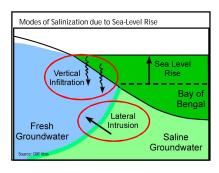
Groundwater in the future

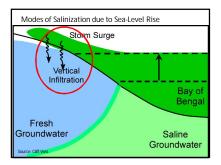
- We have to cope which ...:
- We have to cope which...:
 Groundwater extractions
- We have to use the set of th
- Climate change
- Land subsidence
- Development spatial land use
- Politics, Policy & Watermanagement
- Direct anthopogenic influence on groundwater is more important than climate effect

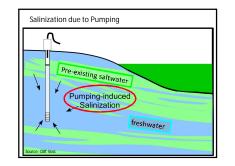
Salt Water Intrusion Meeting, since 1968

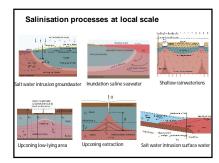


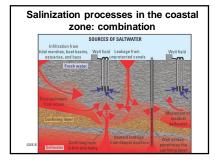
Introduction SWI

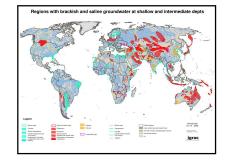


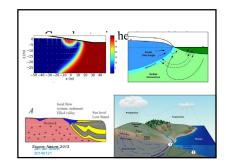

Origin of saline groundwater in the subsoil

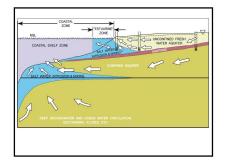

Geological causes: -marine deposits during geological times -trans- and regressions in coastal areas (deltas) -salt/brine dome

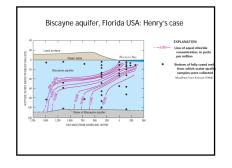

Anthropogenic causes:

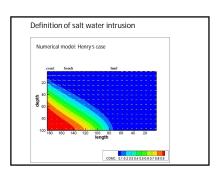

-agriculture/irrigation (salt damage Middle East & Australia) -upconing under extraction wells throughout the world -upconing under low-lying areas (e.g. Dutch polders)

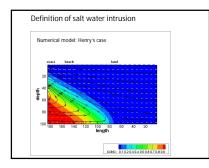


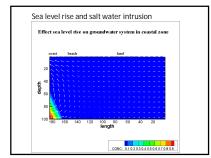


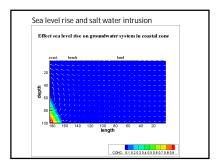


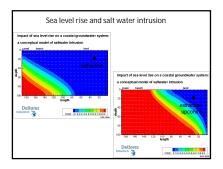


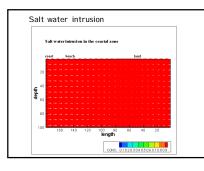


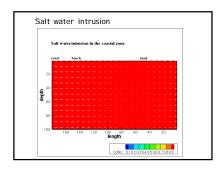


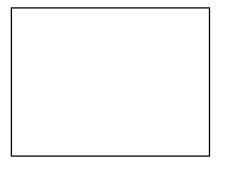










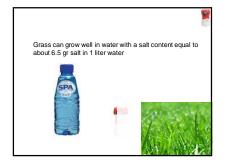


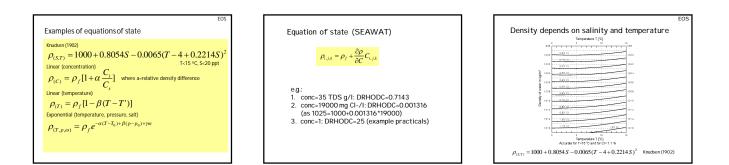
Water on Earth

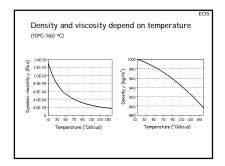
Some serious developments:

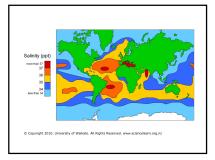
"shortage of drinking water will be one of the biggest problems of the $21^{\rm th}$ century"

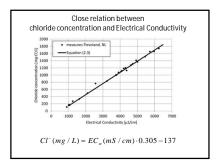
troductio


" in 2025, two third of world population will face shortage of water"

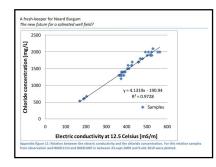


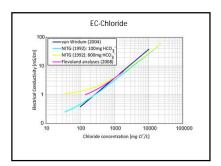


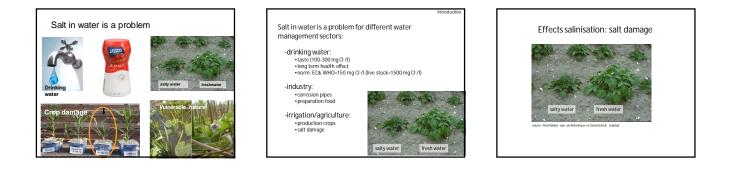



$\begin{tabular}{|c|c|c|c|c|} \hline Fresh-brackish-saline groundwater \\ \hline \hline x_{res} & $\frac{(r_{re}^{-}/4)}{1000}$ \\ \hline x_{r}^{-1} & $\frac{1000}{100}$ \\ \hline x_{r}^{-1} & $\frac{1000}{100}$ \\ \hline x_{r}^{-1} & $\frac{1000}{1000}$ \\ \hline $x_{r}^{$

Main type of groundwater	Chloride concentration [mg Cl ⁻ /L]		
oligohaline		0-5	
oligohaline-fresh		5 - 30	
fresh	1	30 - 150	
fresh-brackish		150 - 300	
brackish	300 - 1000		
brackish-saline	1	000 - 10.000	
saline	10.000 - 20.000		
hyperhaline or brine		≥20.000	
Type Non-saline or fresh water	[mS/cm]	[mg TDS/L]	Drinking- or irrigation water Drinking and irrigation wa
Slightly saline	0.7 - 2	500-1.500	
Moderately saline	2 - 10		
Highly saline	10-25	7.000-15.000	
Very highly saline	25-45		
Brine	>45	>35.000	

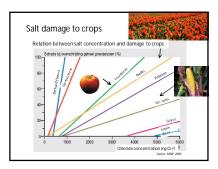


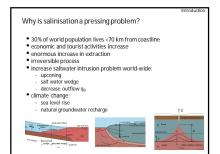

Close relation between chloride concentration and Electrical Conductivity


 $\begin{array}{l} 10^6 \ \mu S/cm = 10^3 \ mS/cm = 1 \ S/cm \\ 1 \ \mu S/cm = 100 \ \mu S/m \end{array}$

ocean water: ~19000 *mg Cl-/L* or ~34555 *mg TDS/L* ~5 *S/m* or ~48 *mS/cm*

the ratio Cl $\,$ over TDS equal to ~0.554, under stable normal seawater environments



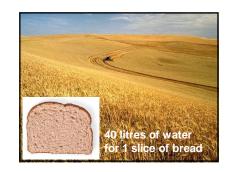


– Land u	le concentration	n in ti	he root zone	
Land use	Threshold val rootzone (mg CI-/I)	1	Gradient root zone (·)	Feide tases socialité et cônspitchel inforwaremen
Grass	36	506	0.0078	10- Setate X, our stripter grant pressioner (%)
Potatoes	7	756	0.0163	
Beet	48	331	0.0057	
Grains	48	331	0.0058	
Horticulture	13	337	0.0141	
Orchard (trees)	6	542	0.0264	
Bulb	1	153	0.0182	Source: MNP. 2005

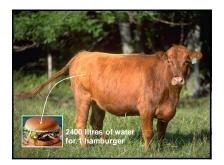
	Soil moisture		Irrigation water	
	Limi	Gradient	Limit	Gradient
Crop	mg/I Cl	%/mg/ICI	mg/I Cl	%/mg/ICI
Potatoe	756	0.0163	202	0.0610
Grass	3606	0.0078	962	0.0294
Sugar beat	4831	0.0057	1288	0.0212
Cut Corn	815	0.0091	217	0.0343
Grains	4831	0.0058	1288	0.0218
Fruit trees	642	0.0264	171	0.0991
Orchard (trees)	378	0.1890	101	0.7086
Vegetables	917	0.0158	245	0.0591
Horticulture	1337	0.0141	356	0.0527
Bulbs	153	0.0182	41	0.0683

Processes that accelerate salt water intrusion:

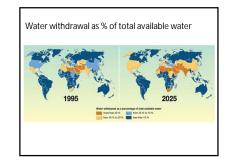
Sea level rise
 Land subsidence
 Human activities

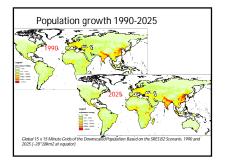

Threats for:

 agriculture: salt damage to crops: salt load and seepage •water management low-lying areas: flushing water channels


ecology

The wat	er footprir	it of products
1 kg wheat	1 m ³ water	
1 kg rice	3 m ³ water	
1 kg milk	1 m ³ water	
1 kg cheese	5 m ³ water	Alexan
1 kg pork	5 m ³ water	the second
1 kg beef	15 m ³ water	
		(Hoekstra & Chapagain, 2008

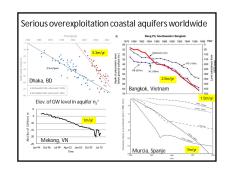




Question:

- Demand fresh water per capita per day in the Netherlands?:

- a. 10 litre/day b. 25 litre/day c. 100 litre/day d. 200 litre/day



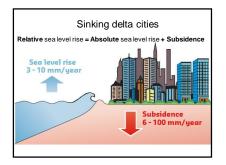
Reasons and drawbacks of using groundwater

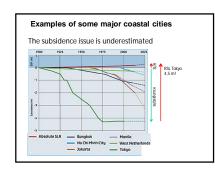
troduct

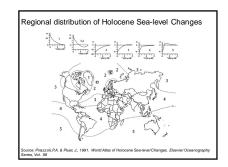

Advantage: -no seasonal effects -high quality -low storage costs -large quantities -no spatial limitations

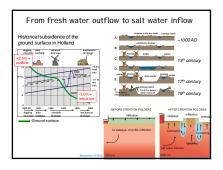
Disadvantage: -high extraction costs -local droughts -high mineral content -land subsidence.... -salt water intrusion !

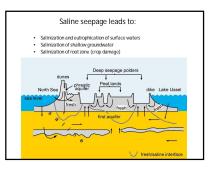
Megacity	Maximum	Date
	subsidence [m]	commenced
Shanghai	2.80	1921
Tokyo	5.00	1930's
Osaka	2.80	1935
Bangkok	1.60	1950's
Tianjin	2.60	1959
Jakarta	0.90	1978
Manila	0.40	1960
Los Angeles	9.00	1930's

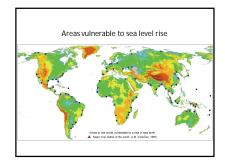


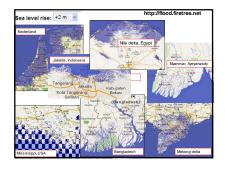

What causes the land to subside?

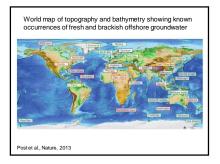

- Natural causes (geological processes): • Loading of the earth's crust by ice sheets, sediment (delta's), the ocean/sea
- Compaction of older sediments after sedimentation
- Anthropogenic causes (human-induced processes):
- Oil/gas extraction (usually relatively deep)
 Croundwater autoation (usually mediatetaly deep)
- Groundwater *extraction* (usually moderately deep) *Drainage* of soils ⇒ oxidation of peat, soil compaction
- Why discriminating between human-induced and natural processes?
 Magnitude
- Cooping strategy (mitigation versus adaptation)

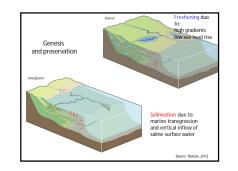


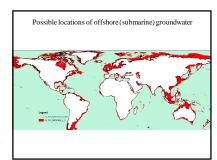


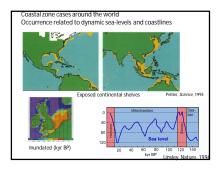


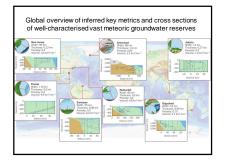


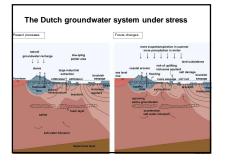


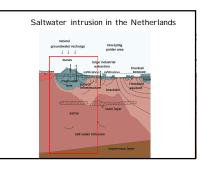


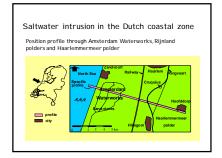


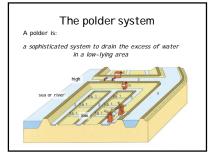


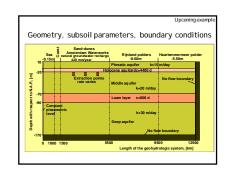


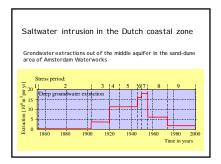


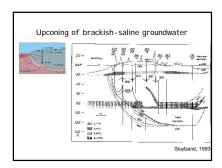


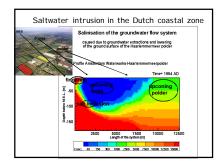


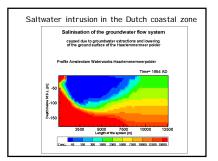


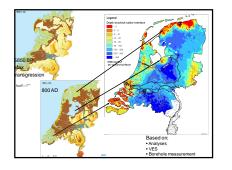

My first density dependent groundwater flow and solute transport model in 1990!

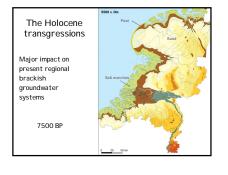




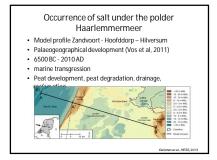


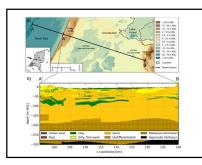


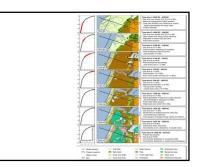


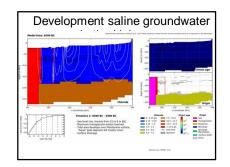


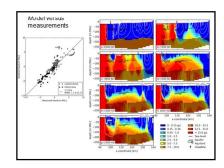
Palaeo hydrogeological modelling

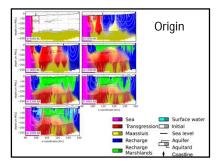

Palaeo-modeling salt water intrusion during the Holocene: an application to the Netherlands

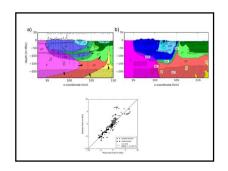

J.R. Delsman, K. Hu-a-ng, P.C. Vos, P.G.B. de Louw, G.H.P. Oude Essink and M.F.P. Bierkens

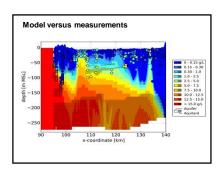


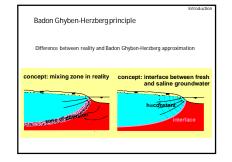


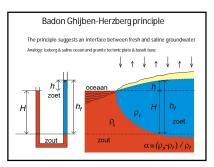


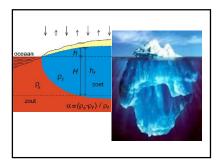


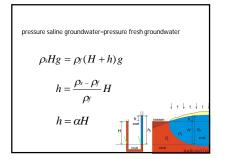


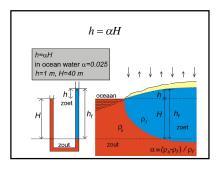

5500 6	20	Maximum transport Tidal area devel	nearly from 22 to 8 m BSL grossion extent reached ops over Pfeistocene surface, posits left mostly intact
5 10 10 10 10 10 10 10 10 10 10		- Present-day situ - Sea level at 0 M - Groundwater ab	
15 June (ky AD) 8 2000 /	Disi fats	- Present-day situ - Sea level at 0 M - Groundwater ab	ation SL straction in ice-pushed ridge
5 time (ky AD) 5 2000 A		Present-day shu Sea level at 0 M Groundwater ab Groundwater ab Groundwater ab Beach barrier Peat	ation SL straction in ice-pushed ridge straction in coastal duries decreased
15 20 -6 -6 -6 -6 -6 -6 -6 -6 -2 0 2 2 2 2 2 2 2 2 2 2 2 2 2	Tidal flats	Present-day situ - Sea level at 0 M - Groundwater ab - Groundwater ab	ation SL straction in ice-pushed ridge straction in coastal duries decreased

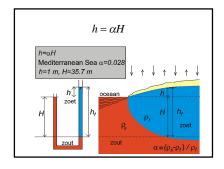




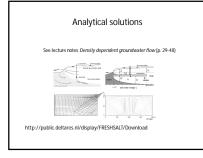


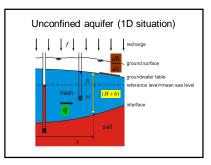


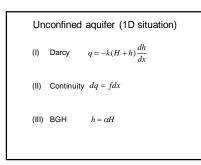

Sharp interface between fresh and saline groudwater

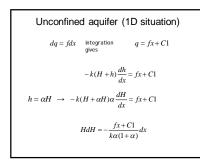


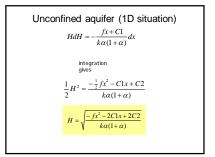
Badon Ghyben-Herzberg principle

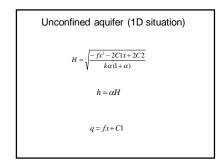

- gives analytical solutions (see later and lectures)
 educational
- interface is a simple approximation
- dispersion zone <10m
- relative simple geometries

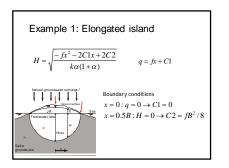

Badon Ghyben-Herzberg principle

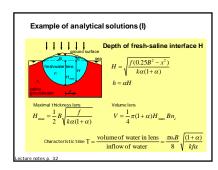

What is the case then $h\neq \alpha H$?

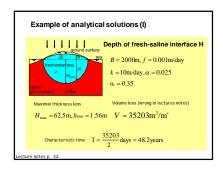

- 1. still dynamic situation
- 2. occurrence resistance layer
- natural groundwater recharge not constant
 relative density difference a is not ok
- relative density difference a is
 occurrence shallow bedrock
- groundwater extractions

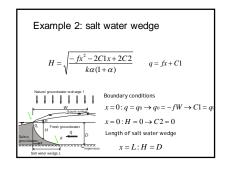

Analytical solutions

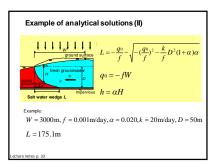


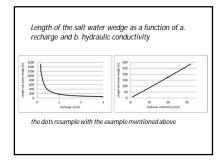


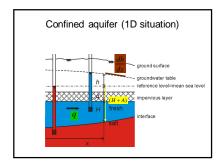


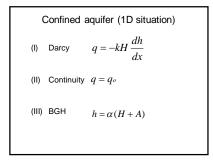


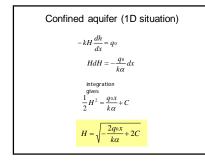


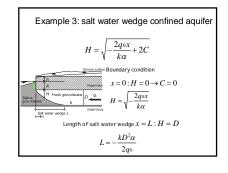


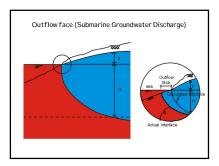


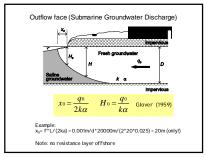


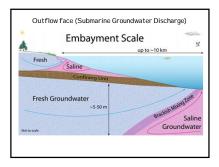


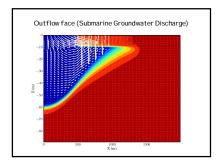


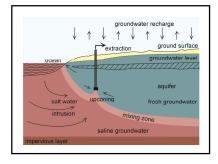




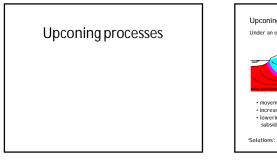


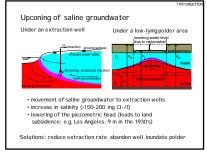


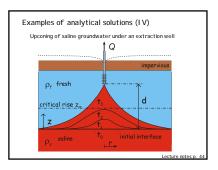


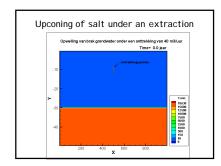

Example of analytical solutions (III)	
ground surface A ground surf	er wedge
Example: $W = 2000 \text{m}, f = 0.00 \text{ lm/day}, \alpha = 0.025, k = 25 \text{m/c}$ L = 250 m .ecture rotes p. 35-36	ay, <i>D</i> = 40m

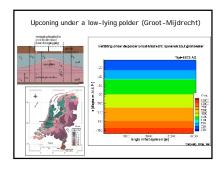


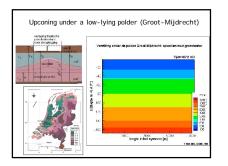


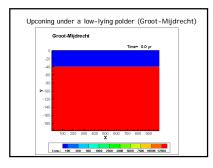


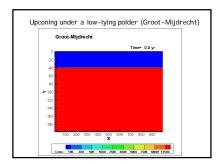


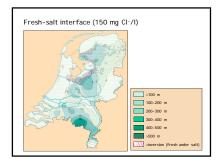


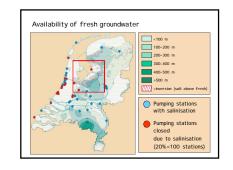


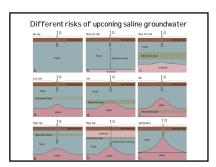


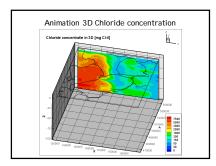


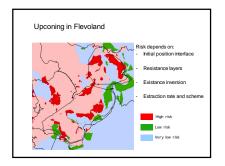

Upconing of saline groundwater under an extraction well
$z(r,t) = \frac{Q}{2\pi\alpha k_x d} \left[\frac{1}{(1+R'^2)^{1/2}} - \frac{1}{[(1+\gamma')^2 + R'^2]^{1/2}} \right]$
$R' = \frac{r}{d} \frac{k_z}{k_x}^{1/2} \qquad \gamma' = \frac{\alpha k_z}{2n_e d} t$
Dagan & Bear, 1968, J. Hydraul. Res 6, 1563-1573

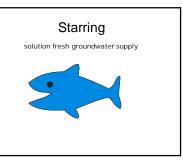


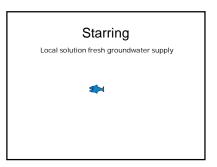


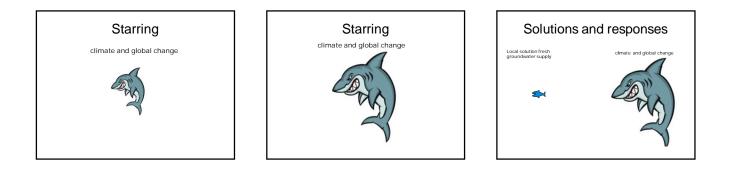






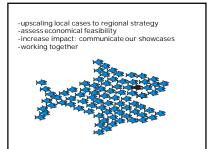





Compensating measures	

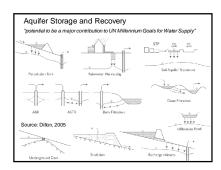
Base idea

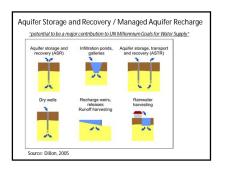

Many local solutions for fresh groundwater supply can have regional impact

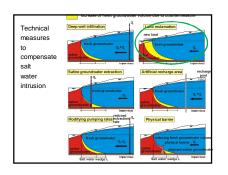


What should be the response?

Possible solutions to stop salt water intrusion:

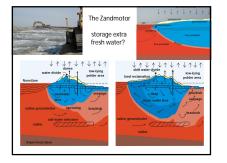

- Restriction of groundwater extractions through permits
- Co-operation between authorities and water users
- Desalinisation of saline water
- Technical countermeasures of salt water intrusion
 six examples

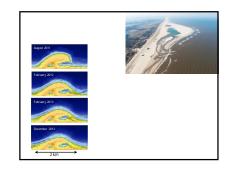

Tools to understand salt water intrusion:

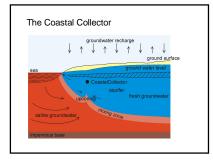

- Monitoring of salinities and piezometric levels
- Numerical modelling of salt water intrusion

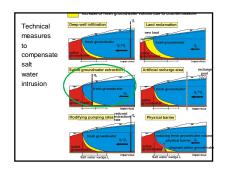
Measures to compensate salt water intrusion

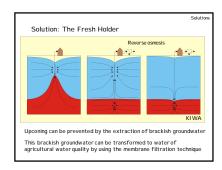
- 'The Fresh Holder'
- · Extraction of saline/brackish groundwater
- Infiltration of fresh surface water
- Modifying pumping rates
- Land reclamation in front of the coast
- Creating physical barriers (chrystallisation or biosealing)

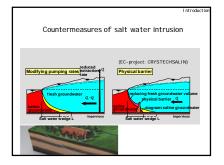


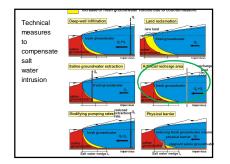


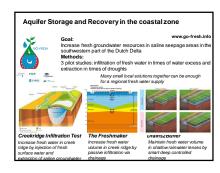


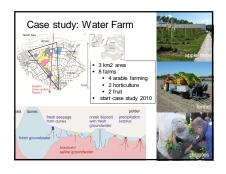


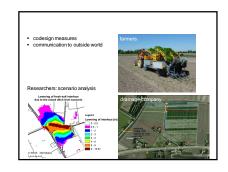


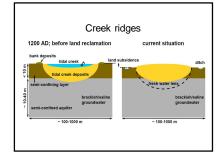


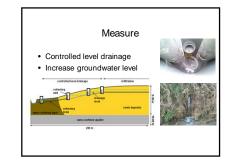


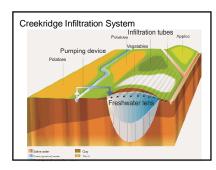


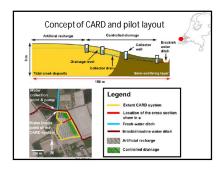


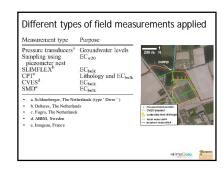


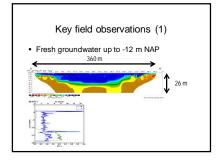


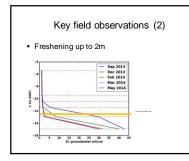


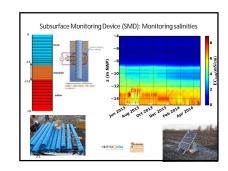


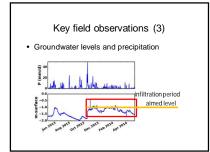


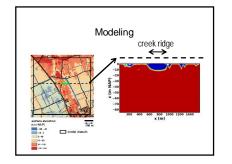


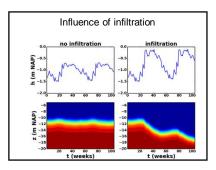


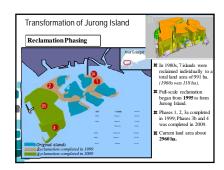


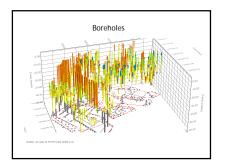


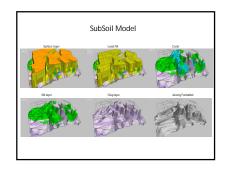


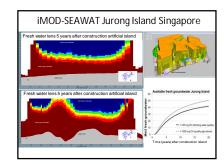


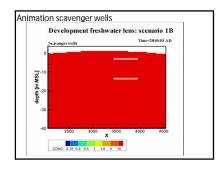


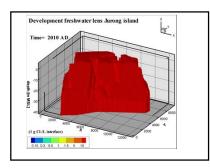


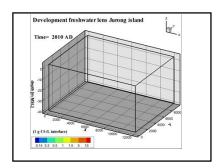


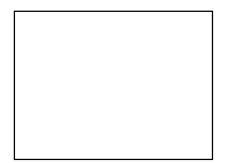

Singapore Jurong Island


Aquifer Storage and Recovery









Modelling

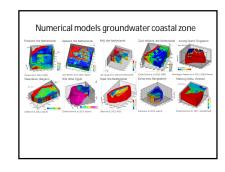
salt water intrusion density dependent groundwater flow Why mathematical modelling anyway?

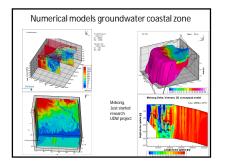
A model is only a schematisation of the reality!

Why mathematical modelling anyway?

- +: cheaper than scale models
- · analysis of very complex systems is possible
- a model can be used as a database
 to increase knowledge about a system (water balances)

modelli


- -:
- simplification of the reality
- only a tool, no purpose on itself
- garbage in=garbage out: (field)data important .
- perfect fit measurement and simulation is suspicious


Numerical modelling variable density flow

modellin

Type: sharp interface models solute transport models

State of the art: three-dimensional
 solute transport
 transient

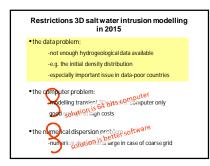
modelling

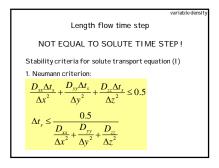
Some existing 3D codes which simulate variable density groundwater flow in porous media:

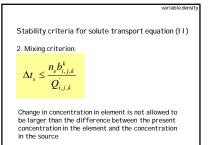
SEAWAT (Guo & Bennett, 98) METROPOL (Sauter, '87) FEFLOW (Diersch, '94) MVAEM (Strack, '95) D3F (Wittum et al., '98) MOCDENS3D (Oude Essink, '98)

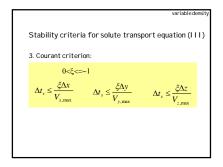
SWI CHA (Huyakorn et al., '87) SWI FT (Ward, '91) FAST-C 3D (Holzbacher, 98) MODFLOW-MT 3096 (Gerven, '98) HST3D (Kip, '86) SUTRA (beta-version, Voss, '02)

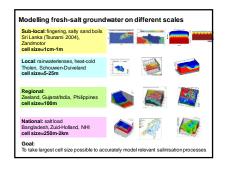
Restrictions 3D salt water intrusion modelling


• the data problem:

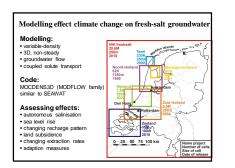

-not enough hydrogeological data available -e.g. the initial density distribution -especially important issue in data-poor countries

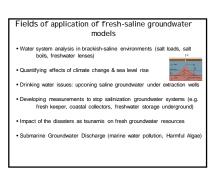

• the computer problem:

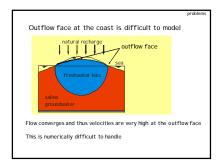

-modelling transient 3D systems: computer only good enough at high costs


• the numerical dispersion problem: -numerical dispersion is large in case of coarse grid





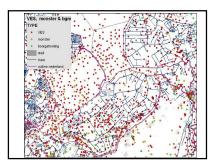


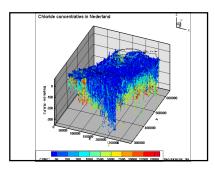


variable densi

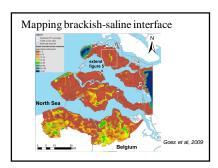
 ${\sf Difficulties} \ {\rm with} \ {\rm variable} \ {\rm density} \ {\rm groundwater} \ {\rm flow}$

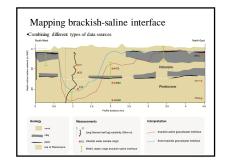
- Initial density distribution (effects on velocity field) !
- Velocities freshwater lens at the outflow face near the sea
- Boundary conditions (especially concentration boundaries)
- Choice of element size
- Length of flow time step to recalculate groundwater flow

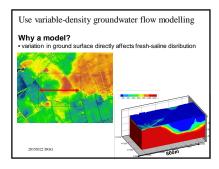


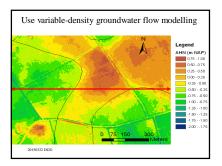

A good initial density distribution is essential

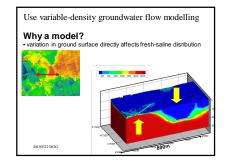
- Because groundwater and solute transport are coupled, the density influences grondwater velocities
- Numerous density measurements are necessary to get a reliable 3D density matrix

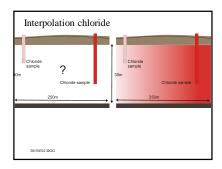

'Procedure' to improve initial density distribution

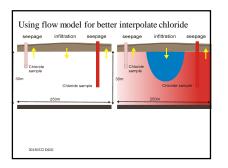

- Implement all chloride data
 - Analyses, Borehole, VES, Airborne techniques (HEM, SkyTem)
 Better old then nothing
 Better VES then nothing
- Interpolate and extrapolate Sea = easy (salt)
 Inland = fresh?
- Start with simulation (10/20/30 years) with mol.diffusion*1000 to smooth out artificial densities

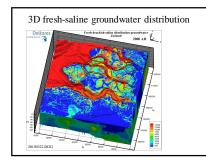


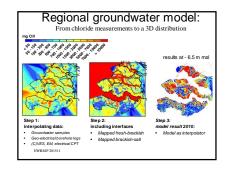



 Combining 	different types of	data sou	rces:	
Data type	Characteristics of measurement	# Data	Determined	Accuracy depth of interfaces
Groundwater Samples	0D in situ	721	Chloride concentration	Depends on positions of screens
Geo-electrical borehole logs	1D in situ	149	1D chloride profile, Depth fresh-brackish and brackish- saline interface, Inversions.	±1 m
Electrical CPT	1D in situ (max. depth 50 m)	71	Borehole log	±1 m
VES	1D from surface	1113	Depth brackish-saline interface, Major inversions, (1D chloride profile).	±20% of depth
EM34	1D from surface	3251	Depth brackish-saline interface	ranges of 7.5, 15 or 30 m (accuracy decreases with depth)
Groundwater Abstractions	0D in situ	716	Depth brackish-saline interface	a range depending on screen depth
Unique locations		6021		





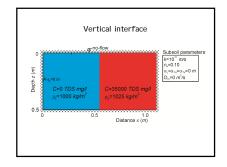


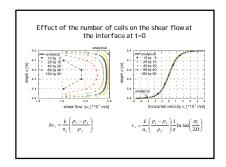


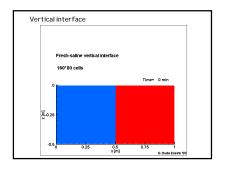
- Broad 14 Basin, North Sea
- Heat transport: Elder and Rayleigh=4000
- 5 Dutch 3D cases
- Freshwater lenses
- Effect of Tsunami on groundwater resources

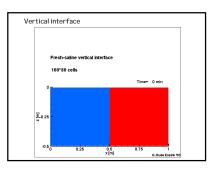
Rotating immiscible interfaces

Conclusion:

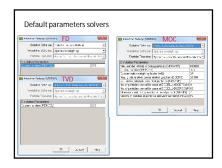

modellin

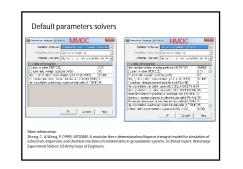

To check the variable-density component of your code, this immiscible interface benchmark can be used.

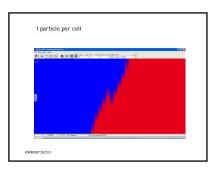

cas

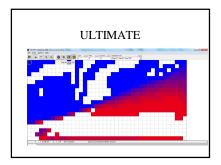


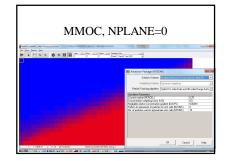
Case 1: Verti	cal interface ground	etween fresh water	and saline			
		1.0				
Parameters						
Layers	20	Khar	1 10 ⁻³ m/s			
Layers Rows	20	K _{hor} T	1 10 ⁻³ m/s 2.5 10 ⁻⁵ m/s			
Rows	1	Т	2.5 10 ⁻⁵ m/s			
Rows Columns	1 40	T Anisotropy K _{hor} /K _{ver}	2.5 10 ⁻⁵ m/s 1			
Rows Columns Δx	1 40 0.025 m	T Anisotropy K _{hee} /K _{ver}	2.5 10 ⁻⁵ m/s 1 0.1			
Rows Columns Ax Ay	1 40 0.025 m 1 m	T Anisotropy K _{hee} /K _{ver} n _e α _t	2.5 10 ⁻⁵ m/s 1 0.1 0 m			
Rows Columns Δx Δy Δz	1 40 0.025 m 1 m 0.025 m	T Anisotropy K _{hee} /K _{ver} n _e α _t	2.5 10 ⁻⁵ m/s 1 0.1 0 m			

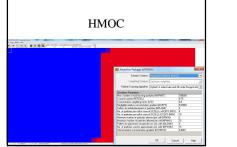


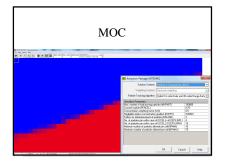


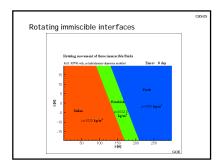


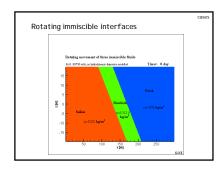


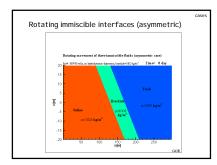

The effect of numerical solvers on the salt transport
Examples
EWRM P 201511

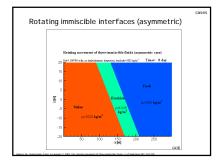


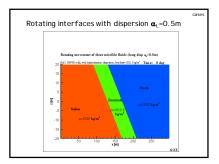


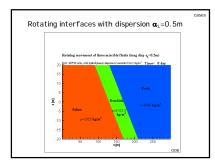

MMOC, I	NPLANE=10
NAMES & SAMES & MORE AND A SAMESAN AND A	لأعيا
+ 0 < < + = = = = = = = = = = = = = = = = =	Proof. Sector +
	Advection Package (MT3DMS)
	Solution Scheme: Middled Middled of Dissectivities MM101
	Weighting Scheme: Daytware veighting
	Particle Tracking-Algorithm: [Hydrid 1st order Duler and 4th order Runse-F.
	Service Teamber
	Count outber FSRC51 0.75
	Concentration meighting textus (MD) 0.5
	Neglighte winter concentration posterit (DCEPS) 0.00001 Pattern to placement of postcicu (or pric cells NLSINC) 18
	No. of particles used to approximate sink cells (MPSINC) 15

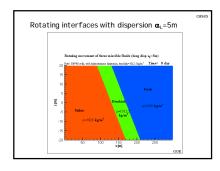


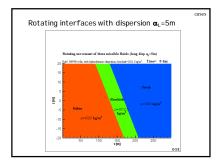

t ← D ≪ ≪ ♦ ♥ ■ ■ ■ the life is the set from the from th	- 11 1. fee 100 - 2		
			-
	Advection Package (MT30		-
	Solution Scheme:	Finite Difference Mathed	
	Weighting Scheme:	Upsteam weighting	-
	Paticle Tracking Algorithm	Hybrid 1st order Duler and 4th ord	ler Range-Katter v
	Simulation Parameters	10.5	
	Count name (FERCEL)	0.75	
C L I (13 () Indexes ResConvice/H28E(mm)		05. Cancel	Help

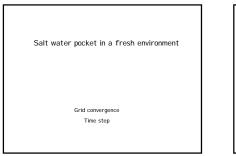

		MOC	2		
Martinet Assessment	and the second se				
+ 1 4 4 0 + 1	🛙 🔳 provide provided provide	are did Depth Tex Off			
			Advection Package (MTIC	(MG)	
			Solution Scheme	Method of Characteristics I	HOCI
			Infection Column	Ucchean weighting	
			Patide Tusking-Ngotten		
				Hybrid 1st order Ealer and	4th ceder Runge-Fuit
			Simulation Panameters Mass number of total maying bit		110000
			Flax name at loss nevergina Coavet number (PERCEL)	noec(M094ALL)	10.00
			Concentration weighting factor (w01	0.5
			Necioble relative concentration	credent (DCEPS)	0.08081
			Patern for initial placement of p		
			No. of particles per cell in case.	I DOTELL CADORES INPUT	4
			No. of particles per cell in case No. of particles per cell in case Minimum number of particles all	# DCCELL-DCEPS INPUT # DCCELLIODEPS IMPHT	4

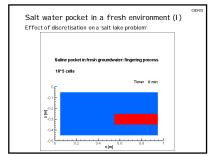


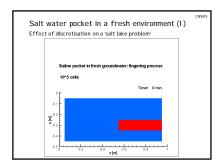


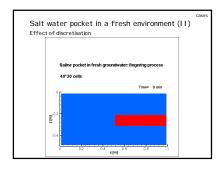


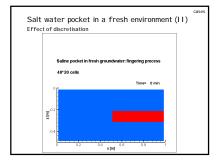


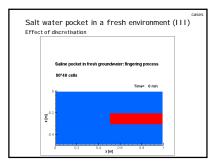


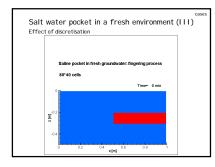


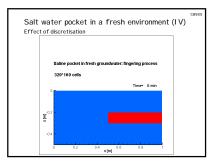


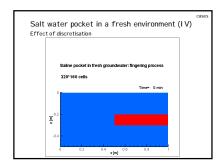


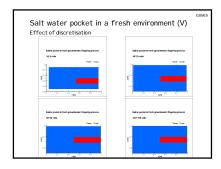


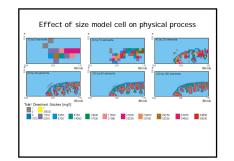


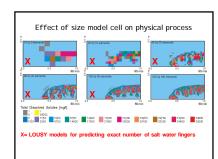


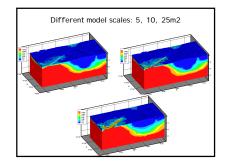


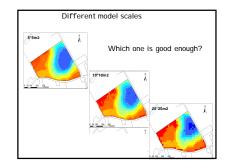


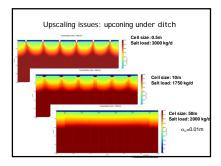




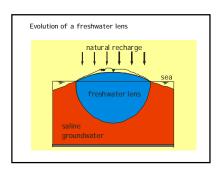


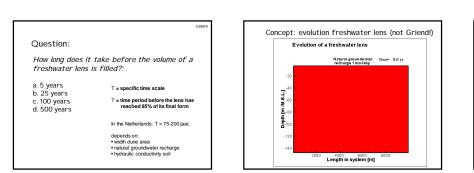


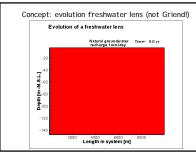


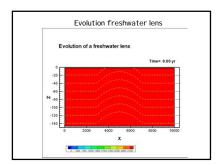


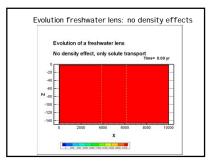
Total Dissolved Solutes (mpl):	10 bij 5 ukernente 0 0 0 0 0 0 0 0 0 0 0 0 0	2.5	60 min	4ª	0 etersorts 0 0 80 etersorts		60 min	00 800 bi 20 ee 8 90 8 90 8 90 8 90 8 90 8 90 8 90 8	ie.	940 97
o 1 12000	Total Dissolved S		60 min	a.a		19 B.V	10 60min	0.0	<u> </u>	00 00 00 00 00 00 00 00 00 00 00 00 00

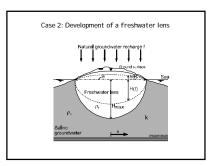


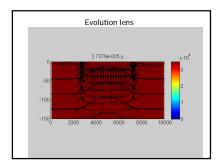


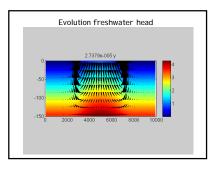

Salt water pocket in a fresh environment (VI)


case

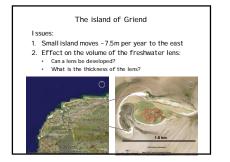

Conclusion: • For some physical processes, a large number of cells is necessary • Check always grid convergence!

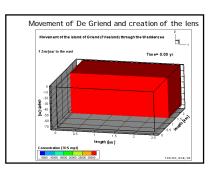


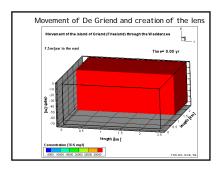


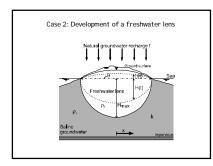


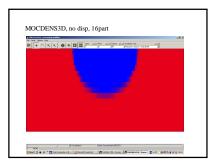


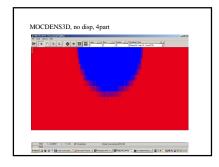


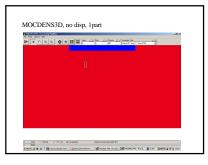


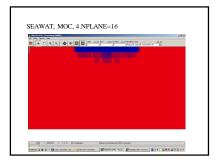


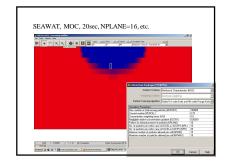


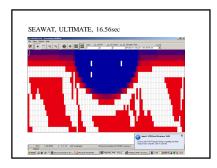


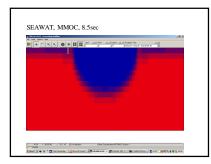


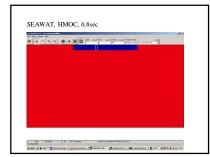


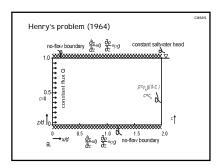

Dataseters Users 15 K _w (2) 20 m/d Rows 15 T 200 m/d Columno 100 Aniotropy K _w (K _w) 10 Ax 100 m ne 0.33 Ay 100 m d. 0.33 Ay 10 m d. 0 m Serse periods 10 m exharps concentration 0 m/d	n Sd - grand etcr	i nordan		
Total Total Total 200 mid Column 100 Anisotrops K _w , K _w 10 As 100 m 6 0.33 Jy 10m d. 0m Az 10m d. 0 m Serse period 10 rcharge 360 mm	Parameters			
Ioo Anisotropy K _{uu} /K _{vi} Ioo Δx 100 m ac 0.33 Δy 10 m dL 0 m Δz 10 m aT 0 m Stress periods 10 rcharge 360 mm	Lawers	15	Khor	20 m/d
Δx 100 m ne 0.35 Δy 10 m ol. 0 m Δx 10 m aT 0 m Stress periods 10 recharge 360 mm				
Ay 10 m aL 0 m Δz 10 m aT 0 m Stress periods 10 recharge 360 mm		1	т	200 m/d
Δz 10 m αT 0 m Stress periods 10 recharge 360 mm	Rows	1 100		
Stress periods 10 recharge 360 mm	Rows Columns		Anisotropy K _{hor} /K _{ver}	10
	Rows Columns Δx	100 m	Anisotropy K _{hot} /K _{ver}	10 0.35
Initial concentration 35000 mg/l Recharge concentration 0 mg/l	Rows Columns Δx Δy	100 m 10 m	Anisotropy K _{hor} /K _{ver} ne aL	10 0.35 0 m
	Rows Columns Δx Δy Δz	100 m 10 m 10 m	Anisotropy K _{ho/} K _{vsr} ne aL aT	10 0.35 0 m

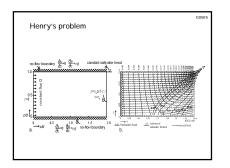


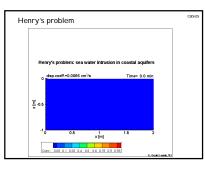


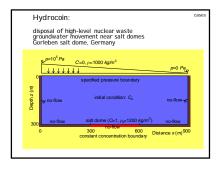


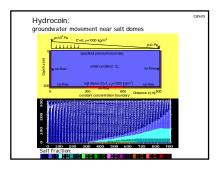

	AREA.
+ 0 9 9	A Dates of all States free A Dates
	h harry site marging 2
, ,	
	M. Advection Package (MT30MS)
	Solution Scheme: Middled Dissectoration MCC
	Weighting Scheme: Upstream weighting
	Particle Track ing Algorithm: [Hybrid Tst order Duler and 4th order
	Particle Tracking-Algorithm: [Hybrid Trit order Duler and 4th order Securition Therameter: Miss, number of 1548 review particles MrdPrid11 11208
	Pastide Tasking/Agothic [Hybrid Till ode Dule and His ode Smulitice Passenies: His number of total serving pantiles (6/05/01) [1000 Courset number (PERS).] 0.75
	Particle Tasking Algorithm [Hybrid Tst order Date and 4th order Main number of total moving particles (MORENT) [1500 Consent number (PERDEL] [075 Consent insteme PERDEL] [075
	Particle Trading Algorithm: [Hybrid Titricolar Euler and 4th color Simulation Procession Description of local acrossing particles (MORIDI) 1020 Covershifting weighing Safeth MOI 0.5 Encommission weighing Safeth MOI 0.5 Hindelide author concretings and all ECCPTS 0.000
	Packie Tasking Agolini [Hydro Tir color Cube and Wronk Immediate Thermetics Micro and the Color Agoline Transmission (1997) [1000 Construction (1997) [1000 [1001] [1000 Construction (1997) [1001] [1000 [1001] [1000 [1001] [1000 [1001] [1000 [1001] [1000 [1001] [1000 [1001] [1000 [1001] [1000 [1001] [1000 [1001] [1000 [1001] [1000 [1001] [1000 [1001] [1000 [1001] [1000 [1000 [1001] [1000 [1
	Packle Tosking Agotter [H, dot Tir cols Zule and Hr cols 2mulation Planeter: Nex. How on to bit mong packles (60%01) 1020 Counter wells (FEDS1) 075 Counter wells (FEDS1) 075 Counter and the State Model (FEDR1) 03 Hogistic to well packet for Model (FEDR1) 03 Hogistic to well packet for the
	Packie Tasking Agolini [Hydro Tir color Cube and Wronk Immediate Thermetics Micro and the Color Agoline Transmission (1997) [1000 Construction (1997) [1000 [1001] [1000 Construction (1997) [1001] [1000 [1001] [1000 [1001] [1000 [1001] [1000 [1001] [1000 [1001] [1000 [1001] [1000 [1001] [1000 [1001] [1000 [1001] [1000 [1001] [1000 [1001] [1000 [1001] [1000 [1001] [1000 [1000 [1001] [1000 [1

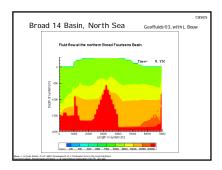


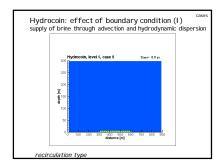


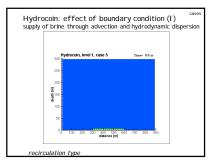


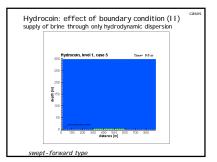


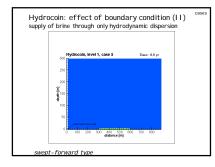


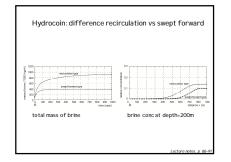

Henry's problem

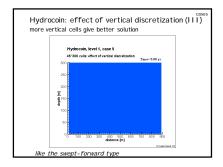

Don't use the Henry problem as a variable-density benchmark, because even with a constant density model, the results are more or less the same!

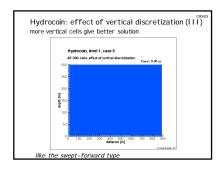

cases



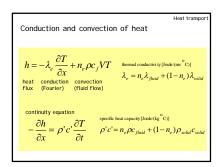


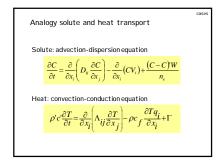


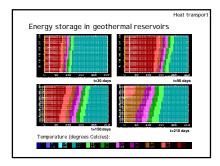


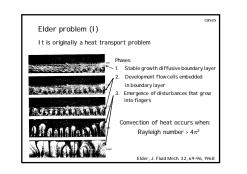


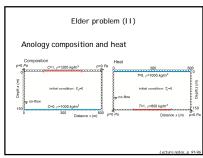


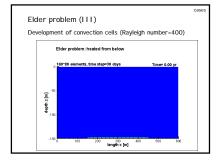


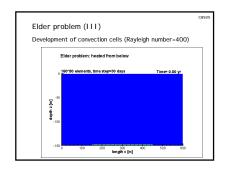

45 by 25 elements		100 years	5 by 30 elements	••••••	100 year
meat detant position of 0.85 bring mass fraction	-		most datast peopler of 2.05 bline mass fraction	-	
n 180 208 208 400	100 000 70			0 800 70	100 years
45 by 50 elements		100 years - 14	5 by 75 elements		100 years
most distant position of E-OS bring mean fraction		-	most distant position of 2.05 bring mass factor		
e 180 208 200 400	800 608 70		400 200 300 M		AGC 4
45 by 150 elements		100 years 1 4	5 by 300 elements		100 years
mest datant position D31 bring many fast			ment datant		
CALOR PASTA		_	0.28 brine cu	ss Factor	

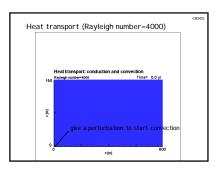


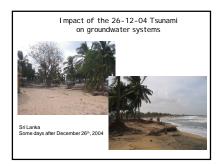




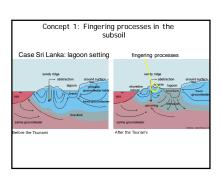


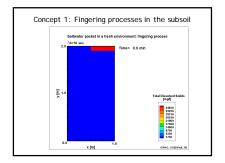

			Heat transport
Analogy heat	and solu	te transport	
Heat transport			
Convection-condu	uction equation	n	
$\rho' c' \frac{\partial T}{\partial t} = \frac{\partial}{\partial x_i} \left[\Lambda_{ij} \frac{\partial T}{\partial x_j} \right]$	$-\rho c_f \frac{\partial T q_i}{\partial x_i} + \Gamma$		
Equation of state	e: relation de	nsity & temperature	
$\rho_{i,j,k} = \rho_f (1 - \alpha_f T_{i,j,k})$	e)		
Analogy between	solute and h	eat transport	
Solute	Heat		
С	3	r	
R_d	$1 + \frac{(1-n_{e})}{n_{e}}$		
D_m		$\frac{(1-n_r)\lambda_s}{\rho c_f}$	
λ	()	

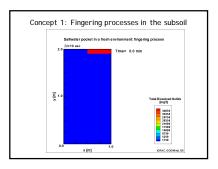


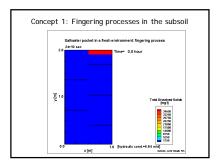


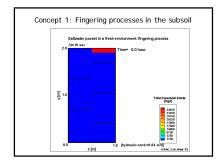


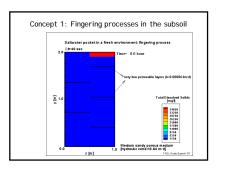


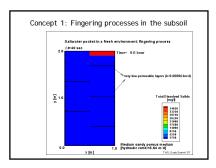


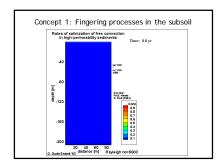


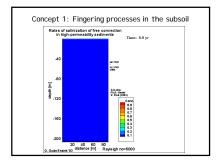

- I mpression of relevant salinisation processes by conceptual models of salt water intrusion in coastal aquifers:
- Fingering processes in the subsoil
 Evolution of a freshwater lens after flooding by sea water
 Freshwater lens in a coastal aquifer with a brackish lagoon

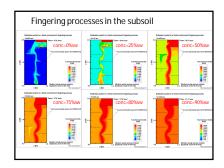

Next step: quantifying processes in real situations, using topographic and hydrogeological data, and ending up with vulnerability maps

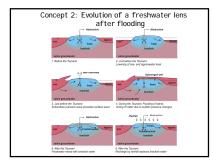


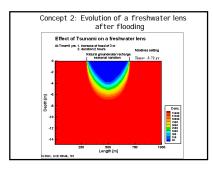


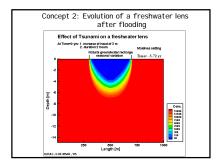


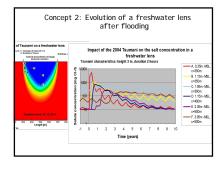


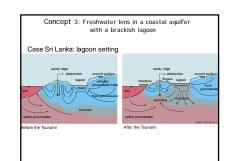


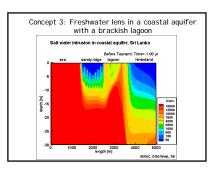


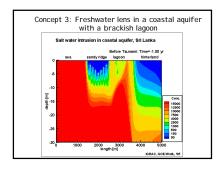


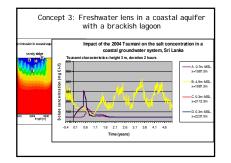


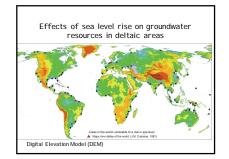


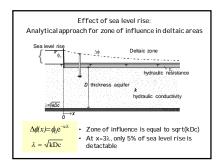


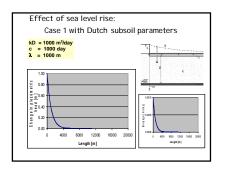


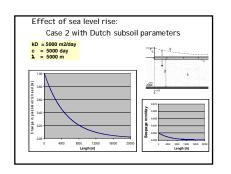


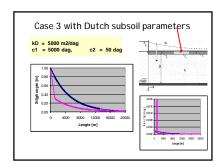


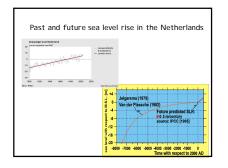


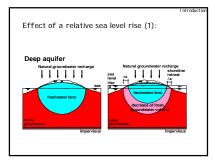


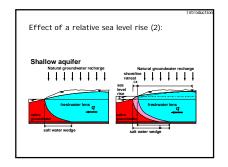

Effect sea level rise

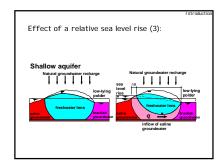

Effects of sea level rise on groundwater resources in deltaic areas

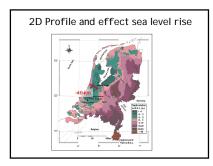

- 1. Increase of salt water intrusion
- 2. Increase of upconing under groundwater extraction wells
- 3. Increase of piezometric head
- 4. Increase of seepage and salt load to the surface water system
- 5. Risk of instable Holocene aquitards
- 6. [Decrease of fresh groundwater reservoirs due to decrease in natural groundwater recharge]

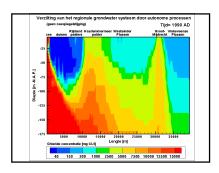


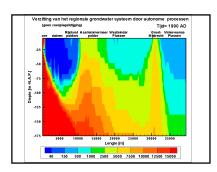


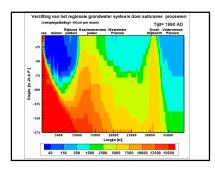


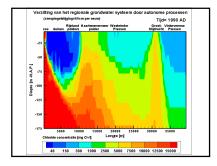


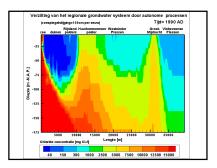


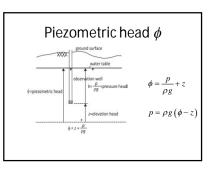

	mplementing nev	N KINI	VII 06	CIIM	ate s	cenal	105
21	00	G	G+	W	W+	С	C+
Worldwide	e temperature rise in 2050	+1°C	+1°C	+2°C	+2°C	+3°C	+3°
Worldwide	e temperature rise in 2100	+2°C	+2°C	+4°C	+4°C	+6°C	+6°
Change in Europ	a airstreampattern Western a	no	yes	no	yes	no	у
Winter	Average temperature	+1,8°C	+2,3°C	+3,6°C	+4,6°C	+5,4°C	+6,9%
	Coldest winter day each year	+2,1°C	+2,9°C	+4,2°C	+5,8°C	+6,3°C	+7,8%
	Average precipitation	7%	14%	14%	28%	21%	429
Summer	Average temperature	+1,7°C	+2,8°C	+3,4°C	+5,6°C	+5,1°C	+8,4%
	Hottest summer day each year	+2,1°C	+3,8°C	+4,2°C	+7,6°C	+6,3°C	+11,4
	Average precipitation	6%	-19%	12%	-38%	18%	-579
Sea level rise	Absolute rise (cm)	35-60	35-60	40-85	40-85	45-110	45-11

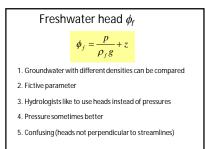


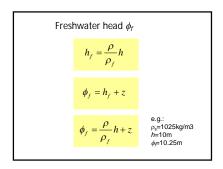


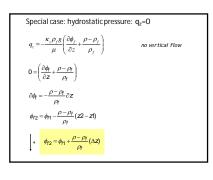


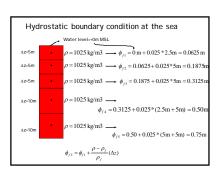


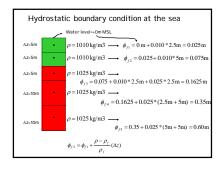


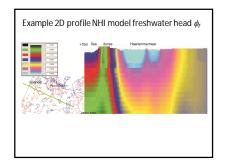


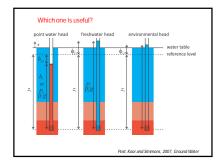


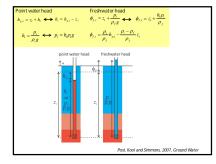


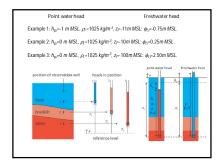

Point water head and $\label{eq:Freshwater head}$ Freshwater head $\phi_{\!f}$

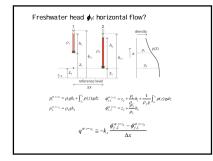


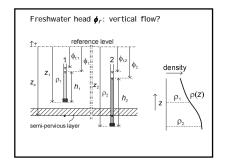


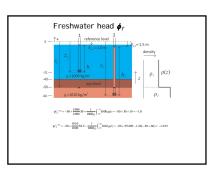


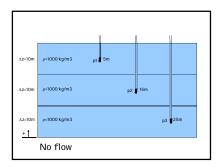


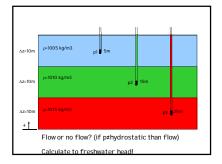


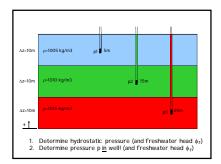


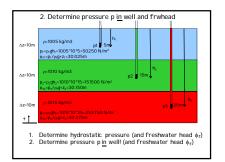


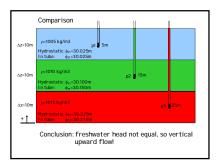


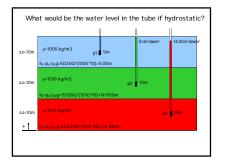


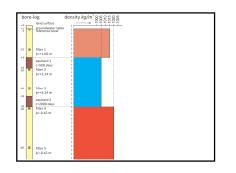




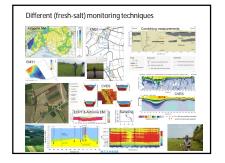


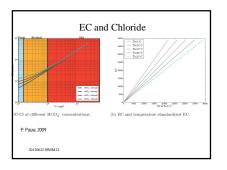


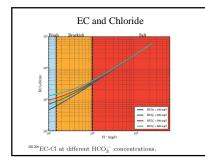


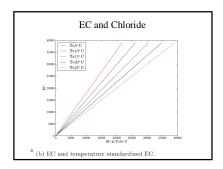


	1. Determine hydrostatic press	ure and frw	head	
∆z=10m	p=1005 kg/m3 p1 2 5m p₁=p₁gh=1005*10*5=50250 N/m ² ¢n=p₁/pg+z₁=30.025m			
∆z=10m	p=1010 kg/m3 p2 1 P2=P1g10m+p2gh=1005*10*10+1010*10*5=15100 \$rg=P2/pg4zz=30.100m	15m O N/m²		
∆z=10m + †	$\label{eq:product} \begin{split} & \rho=1015\ kg/m3 \\ & p_2=\rho_1g10m+\rho_2g10m+\rho_2gh=1005^{+}10^{+}10+1010^{+}10^{+} \\ & \varphi_{12}=\rho_2/\rho_2g+z_2=30.225m \end{split}$		25m 2250 N/m²	
1. 2.	Determine hydrostatic pressure (a Determine pressure p in well! (and			r)

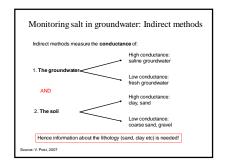



Take home message

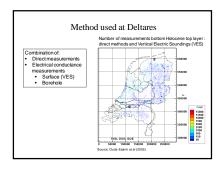

- In coastal area (with fresh-brackish-saline groundwater), always measure head and Electrical Conductivity (EC)
- 2. Convert EC to density
- 3. Determine freshwater head with lecture notes and ppt
- 4. Determine flow

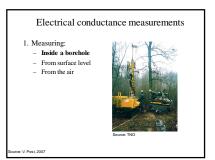

Monitoring

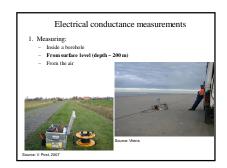
Monitoring salt in groundwate	er
Why monitoring? Mapping salt concentrations in the groundwa Detection of trends (upconing near pumping	
System and process knowledge Input for a groundwater model	
Methods: 1. Direct: water sample available 2. Indirect: conductance of the subsoil	Pumpingstations with satisfaction
Source: V. Post, 2007	Pumpingstations closed due to salinisation

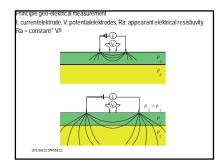


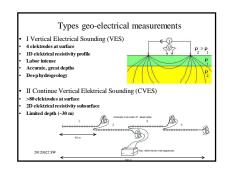
Airborne measurements			
Measuring system	Physical parameter	Geology/terrain information	
radar	EM traveltime	Terrain elevation	
Infrared photography	Infrared radiation	Surface temperature	
Time domain EM Frequency domain EM	Electr. resistivity from induced EM fields	Lithology Water salinity	
Magnetic gradiometer	Magnetic field (variations)	Lithology (magnetite) Artefacts Steel/Iron objects	
Spectral gamma	Radiation (gamma)	Soll type Surface lithology Recent disturbence	

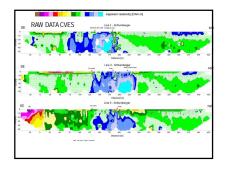

Measuring system	Physical parameter	Geology/terrain information
Ground penetrating radar	EM traveltime, diaelectric constant,	Lithology Soil moisture
ERT	Electr. resistivity	Lithology Water salinity
Time domain EM Frequency domain EM	Electr. resistivity	Lithology Water salinity
Magnetometer (total field, gradiometer)	Magnetic field (variations) magnetic susceptibility	Lithology (magnetite) Artefacts Steel/Iron objects (UXO)
Spectral gamma	Radiation (gamma)	Soil type Surface lithology Recent disturbence

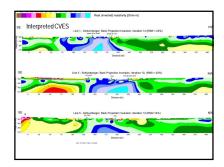

Cone Penetration Tests			
Measuring system	Physical parameter	Geology/terrain informatio	
mechanical CPT	Cone resistance Friction resistance	Lithology Geotechnical parameters	
Electrical conductivity	Electrical formation conductivity	Water salinity	
Contnuous water pressure	Water pressure	Lithology Piezometric head	
Water pressure dissipation in clay layers	Water pressure in time	Permeability clays	
BAT sampling in CPT casing		Water chemistry	
ROST, MIP		Contamination of hydrocarbons (high concentration)	
Camera sonde	Visual view	Lithology, contamination, ga	

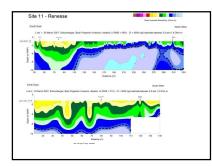

	Advantage	Disadvantage
1. Observation well	 High accuracy 	•Costly
	 Detection trends 	Point measurement
2. Well screens in	 High accuracy 	•Costly
observation well	 Detection trends 	
	 High vertical resolution 	
3. Sediment sample	 High accuracy 	 Very costly and time
(extraction milliliters of water)	 High vertical resolution 	consuming
	Direct methods 1 and 2	Source: V. Post, 20

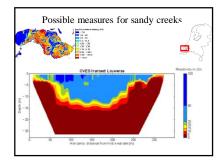


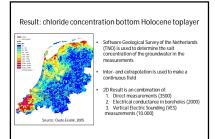

Method	Advantages	Disadvantages
1. Electrical conductance measurements	•High resolution (3D) •Depth ~200 m	•Time consuming
2. Electromagnetic measurements	•Fast	Limited vertical resolution Sensitive for underground conductors (pipes)
3. Satellites	•Suitable for large areas	•Small vertical resolution •Low accuracy

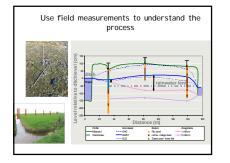


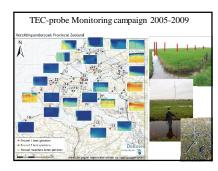


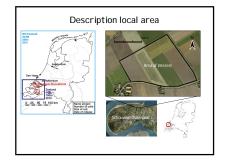


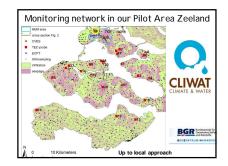


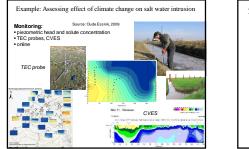



U	l conductai	ndwater: Indirect methods nee measurements 29 subsoil & groundwater 29 groundwater 10 factor
Lithology	F	
Gravel with sand	7	
Coarse sand	5	
Sand with silt	2 - 3	
Clay	1-3*	F varies with the resistance
peat	1*	
$\rightarrow \rho_w$ can be calc	ulated	measurement is in an aquifer






CliWat www.cliwat.eu


- · Transnational project in the North Sea Region
- Transmitutuda project in the vortil sea Kegioni
 Main object ves:

 to evaluate the physical and chemical impacts of climate change on groundwater and surface water systems
 to provide data for adaptive and sustainable water management and infrastructure.
- Different innovative monitoring techniques (Helicopter EM, CVES, CPT, TEC-probe) are used to map the salinization status of the coastal groundwater system.

