

8th International Meuse Symposium at Liège EM Flood Resilience Project EMR228

Forecast-System for the Rur-Reservoirs

- 1. The Rur Reservoirs
- 2. Project objectives

The Rur-Reservoirs

Characteristics

- 2.372 km² catchment area
 - 799 km² controlled by reservoir-system ≈ ¹/₃
- 726 Mio. m³ annual run-off
 - 372 Mio. m³ controlled by reservoir-system $\approx \frac{1}{2}$
- 9 Reservoirs
 - ▲ 3 exclusively used for drinking water supply
 - ▲ 5 compose the Northern-Eifel-Reservoir-System
 - ⇒ Objectives: Flood protection and water supply for dinking water and low water enrichment
 - the Wehebachtalsperre used for drinking water supply and flood protection

17.10.2022 8th International Meuse Symposium at Liège · EMfloodResilience Project EMR22

Norther Eifel Reservoir-System

9 reservoirs

- 6 WVER-owned
- 3 water supply companies
- drinking water reservoirs
- hydro power

Total volume of WVERreservoirs: 302 Mio. m³

The Rur-Reservoirs

Objectives

- Flood control
 - Max. 70 Mio. m³ of retention room
 - Reduction of a 100-year flood from 307 m³/s to 60 m³/s
- Low-Water enrichment
 - Increase of NNQ from 0,45 m³/s to 5 m³/s
- Provision of water
 - 80 Mio. m³/a raw water for drinking-water supply
 - 100 Mio. m³/a industrial water

Opponent Tasks!

Low-Water enrichment and provision of water need filled reservoirs

Flood control needs empty reservoirs

Water-Power and Tourism purposes allowed where possible

3 | Reservoirs of the northern Eifel

- Flood control storage
 - Large in winter
 - Small in summer
- Preceding relief with high reservoir contents
- water conservation with low reservoir contents
- Further detailed operation-plans for each reservoir

The Rur-Reservoirs

Achieve better information about the response of the reservoir-system

- Operation plan based on more then 100 years of inflow data ⇒ Lamellenplan to achieve goals
- Standardized Precipitation Index (SPI) for the watersheds of the reservois ⇒ hydrologic status (drought-warning)
 - SPI-Forecast (in the end of 2022) ⇒ how will the hydrologic status change
- Existing forecast-models for the lower Rur lack of information about the future delivery from the reservoir-system
 - + Forecast of the Reservoirs discharge ⇒ downstream information/warning
 - Support the reservoirs operation
 - Information for downstream discharge forecasting-systems (LANUV and WL)
 - Information for disaster coordination centers.
 - Information for water sports
 - etc.

2 | Project objectives

EMfloodResilience Project EMR228

- Leadpartner: Waterschap Limburg
- Other Partners:
 - Université de Liège, Delft University of Technology, RWTH Aachen University
 - KNMI, Rijkswaterstaat, Province de Liège, Research Institute for Nature and Forest (Flanders)
 - De Vlaamse Waterweg, Gemeente Weert and Wasserverband Eifel-Rur

WP3 D.T3.1.1 Forecast system Rur

□ Improve the forecast information in the Rur-Catchment

2 | Project objectives

Improve the forecast information in the Rur-Catchment

Three steps of improvement:

1. Find transnational agreed specifications of forecast-requirements

- Share knowledge about available measured and forecast data. Establish and enhance data exchange
- Definition of information-products needed for the various forecast-models (LANUV, WL, ...)

2. Setup of a Forecast-System for the Rur-Reservoir-System

- Extension of the existing Reservoir-Operation-Model (TALSIM) with simple hydrologic models of the catchments
- Implementation of a FEWS-platform as data hub for measured- and forecast-data, to trigger and control the model calculations as well as to prepare and distribute resulting forecast-information

3. Application of the information-products

- Application to the existing forecast-models and feedback to enhance information-products
- Considerations about possible further improvements of the reservoir-forecasts for the international Rur (and Meuse)

Setup of a Forecast-System for the Rur-Reservoir-System (FSRRS)

- Extension of the existing Reservoir-Operation-Model (TALSIM) with simple hydrologic models of the catchments
 - Include every reservoir- and gauge-catchment
 - Discharge-volume based calibration, 1h-timestep
- Implementation of a FEWS-platform:
 - data hub for measured- and forecast-data
 - trigger and control the model calculations
 - prepare and distribute forecast-information

2 | Project objectives

Schedule overview

	2022-Q3	2022-Q4	2023-Q1	2023-Q2	2023-Q3	2023-Q4
3.1 Specifications of forecast- requirements						
3.2 Setup of Forecast- System						
3.3 Application of information-products						

Forecast-System for the Rur-Reservoirs

