

Estimation of discharge extremes in the Meuse basin

Application of high-resolution climate and hydrological models

Interreg Euregio Meuse-Rhine

Robert Slomp, Rita Lammersen, Niek van der Sleen (Rijkswaterstaat)

Leon van Voorst, Henk van den Brink (KNMI)

Anaïs Couasnon, Mark Hegnauer, Laurène Bouaziz (Deltares)

Interreg project – Euregio Meuse-Rhine

Short-term actions to strengthen, among other things, weather data, flow data, early signalling, mapping hazards and risks, measures for flora and fauna management

July 2022 – December 2023
Waterboard Limburg in the lead with 11 partners

WP 5 D.T5.4.1 - KNMI - Meteorological information on extreme precipitation events from synthetic climate data WP 5 D.T5.4.2 - RWS - Floodrouting of extreme precipitation events from synthetic climate data

Partners

Lead partner:

Other partners:

Intro: Estimation of discharge extremes

Typically:

- Observed historical time series of hydrometeorological data of limited length (30 – 100 years)
- Extrapolation to higher return periods based on extreme value statistics (GEV, Gumbel...)

Intro: Estimation of discharge extremes

Alternatively:

Synthetic meteo time series of very long length (1000 – 50000 years) based on shorter time series of observed historical meteo data in combination with a hydrological model

No extrapolation required to estimate higher return periods

 Ongoing research and application for the Meuse & Rhine by RWS, KNMI and Deltares since many years "GRADE"

GRADE Generator of Rainfall And Discharge Extremes

Modeling chain to generate long meteorological and discharge time series (50.000 year) for the Meuse at Borgharen

Drawbacks

- Climate is changing
- In the 50000 years, no summer event reached the level of July 2021
- Including July 2021 in the weather generator leads to unrealistic patterns in the 4-days extreme precipitation

L. van Voorst & H. van den Brink, 2022

> What if.....

 we would have thousand(s) of years of meteorological data every 10km for every hour which include more extreme events than have been observed..

> Then:

 we could use a hydrological model to calculate the extreme discharges for the Meuse and all its subbasins.

We have!

- RACMO is regional climate model
- Main use is derivation of the climate scenarios for the Netherlands.
- Complete meteorological dataset (precipitation/temperature/evaporation)
- > Simulate more extreme events than ever observed 16 members, 72 years = 1152 years of data
- Applicable to current and future climate

We have!

- Wflow sbm is distributed hydrological model
- > It has been set-up and evaluated (hydrographs, signatures) for the entire Meuse basin including many tributaries
- With a large focus on improving the process representation (e.g. including overbank flow and floodplain routing)

Meuse model extent

Main goals of the project

- Evaluate the use of synthetic data sets from climate models to calculate statistics in extreme discharge frequencies
- Evaluate the use of a 6-hourly time step instead of daily on extreme discharge frequencies
- Estimate discharge statistics for the main tributaries of the Meuse
- Understanding the interaction of tributaries with the main river
- Improve the model based on feedback and information of water managers in the basin

Suggested Approach

Suggested Approach

Datasets from KNMI

Hydrological and hydraulic model

Datasets of discharges across the whole Meuse catchment

Suggested Approach

Fully automated process for efficient computing

Datasets of discharges

Datasets from KNMI Hydrological and hydraulic across the whole model Meuse catchment

Datasets of discharges

Across the whole postprocessing

Suggested Approach

Datasets from KNMI

Hydrological and hydraulic model

Datasets of discharges across the whole Meuse catchment

Postprocessing

Requirements

- Cooperation with researcher and water manager partners
 - Workshop ~ 1 Dec 2022 Maastricht to present methodology, gather data and select focus areas
 - Workshop ~ May 2023 to present results and gather feedback to improve modeling chain
- Data requirements
 - Hourly discharge data (for model validation) at gauge locations
 - Locations of gauges / reservoirs / other relevant data (GIS)
 - Local relevant information / system understanding (e.g., bathymetry / floodplains)
 - Information on current methodologies for derivation of extreme discharge statistics
 - Reservoir operation rules (adapted after 2021?)
 - Current official discharge statistics for selected locations / tributaries (for e.g., 1/10, 1/100, 1/1000)

Expected outcome

- A set of high impact low probability extreme rainfall and discharge events, across all seasons (such as the last summer rainfall events)
- Comparison with local discharge statistics for better understanding and improving the model performance

Following the suggested approach, we will derive:

- Synthetic discharge times series (daily and 6-hourly) across the whole catchment
- Discharge frequency curves for selected locations in the catchment, including the main tributaries