

DryRivers

Groundwater modelling for low flow risk-management

SPONSORED BY THE

Bastian Winkels, M.Sc. RWTH

Dr.-Ing. Jan Oetjen
Dr.-Ing. Catrina Brüll
Univ.-Prof. Dr.-Ing. Holger Schüttrumpf
Prof. Dr.-Ing. Daniel Bachmann

Institute of Hydraulic Engineering and Water Resources management, RWTH Aachen University

Contents

Introduction and context

- The need for low flow management
- DryRivers Project

LoFloDeS – Low Flow Decision Support

- Objective
- Challenges
- Concept

Outlook

Introduction and Context

- Droughts become an increasingly regular "event"
 - Far-reaching consequences

- The topic has been widely neglected in Germany
 - Crisis response instead of management

DryRivers-Project

Partners

 Department of Water, Environment, Construction and Safety / Department of Economics (University Magdeburg-Stendal) Hochschule Magdeburg • Stendal

 Institute of Hydraulic Engineering and Water Resources Management (RWTH Aachen University)

- Institute of Sociology (RWTH Aachen University)
- Environmental Office essen Bolle and Partner GbR
- LimnoPlan Fish- and Water Body Ecology

DryRivers-Project

Overall Goal:

 Creation of a praxis-ready tool to support Low-flow riskmanagement

Holistic approach

- Stakeholder involvement
- Modelling
- Risk management
- Risk communication

Task of IWW:

LoFloDeS development

LoFloDeS (Low Flow Decision Support)

Objective:

Numerical modelling of groundwater and rivers in low-flow situations

Based on ProMalDeS

https://promaides.myjetbrains.com/youtrack/articles/PMID-A-7/General

Challenges:

- Not location-specific
 - High flexibility
 - Sufficient quality
- Droughts have memory
 - Long time frames
 - Efficient calculation

Only 1st aquifer is modelled

Spatial discretization

Regular grids

- Efficient storage
- Efficient computational handling
- Compatability with ProMaIDeS

Couplings

- 2D-2D Coupling
- Spatial optimization
- Option to embed more detailed local grids

Data input

- Data input through QGIS plugins
- Plugins generate ProMalDeS compatible text-files
- Open-source
 - Usable anywhere by anyone

Site specific data:

- DEM
- Land use
- dike
- Etc

Pre-processing for input

PROMAIDES Helper

Source: Magdeburg-Stendal University

Data input

Groundwater grid

Groundwater grid

- User input
 - Thickness
 - Initial water level
 - Conductivity-Index
 - Porosity-Index

Conductivity and porosity input through IDs

- Link to external files
- Simplified calibration

Exchange after Darcy:

$$Q_{internal} = \frac{2 T_1 T_2}{T_1 + T_2} * \Delta y * \frac{h_{p1} - h_{p2}}{\Delta x}$$

with:

$$T_i = k_{fi} * M_i$$

 $Q_{internal}$ = Discharge; T_i = Transmissivity; h_i = Potential; M_i = Thickness

!BEGI	V										
0	45.000000	20.000000	1	1	10.000000	true	true	true	x_dir	57	area
1	45.000000	20.000000	1	1	10.000000	false	false	false	x_dir	0	point
2	45.000000	20.000000	1	1	10.000000	false	false	false	x_dir	0	point
3	45.000000	20.000000	1	1	10.000000	false	false	false	x_dir	0	point
4	45.000000	20.000000	1	1	10.000000	true	true	true	x_dir	53	area
5	45.000000	20.000000	1	1	10.000000	true	true	true	x_dir	57	area
6	45.000000	20.000000	1	1	10.000000	false	false	false	x_dir	0	point
7	45.000000	20.000000	1	1	10.000000	false	false	false	x_dir	0	point
8	45.000000	20.000000	1	1	10.000000	false	false	false	x_dir	0	point
9	45.000000	20.000000	1	1	10.000000	true	true	true	x_dir	53	area
10	45.000000	20.000000	1	1	10.000000	true	true	true	x_dir	57	area
11	45.000000	20.000000	1	1	10.000000	false	false	false	x_dir	0	point
12	45.000000	20.000000	1	1	10.000000	false	false	false	x_dir	0	point
13	45.000000	20.000000	1	1	10.000000	false	false	false	x_dir	0	poin
14	45.000000	20.000000	1	1	10.000000	true	true	true	x_dir	53	area


```
Datei Bearbeiten Format Ansicht Hilfe
# This file for LoFloDeS conductivity file
# Generated Manually
# Comments are marked with #
# Explanation of data:
# Start with number of rows
# id value type (KF)
# The conductivity-ids are connected to the 2d-raster files;
# adjust it to your purpose
# Use in .ilm-file (just copy, delete the leading "#", set file(s)):
# Set in global section between !$BEGINGLOBAL and !$ENDGLOBAL
# !CONDUCTIVITYFILE = "./PATH2FILE/FILE NAME.txt"
3 #number of rows
      0.003000000
                   KF
                   KF
2
      0.000333333
                   KF
      0.000033333
```



```
Datei Bearbeiten Format Ansicht Hilfe
# This file for LoFloDeS porosity file
# Generated manually
# Comments are marked with #
# Explanation of data:
# Start with number of rows
# id value type (EP)
# The porosity-ids are connected to the 2d-raster files;
# adjust it to your purpose
# Use in .ilm-file (just copy, delete the leading "#", set file(s)):
# Set in global section between !$BEGINGLOBAL and !$ENDGLOBAL
# !POROSITYFILE = "./EPATH2FILE/FILE_NAME.txt"
4 #number of rows
      0.3
      0.4
            EP
      0.5
      0.6
```

Groundwater-River-Coupling (1D-2D)

- Boundary Polygon creation from river profiles
 - automatic

- Currently coupling of the cells that are located completely inside the polygon
- Coupling discharge calculation with leakage approach

$$Q_{cross} = C_{RIV} * \Delta h$$

$$C_{RIV} = K_{fRIV} * L * \frac{W_{RIV}}{M_{RIV}}$$

 Q_{cross} = Exchange-discharge; C_{RIV} = Leakage-Factor; Δh = Potential-diff.; L = Flowlength; M_{RIV} = thickness; W_{RIV} = wetted perimeter

Outlook

- Finalization of Groundwater-River-Coupling
- Enable storage in database
 - Visualization in QGIS
- Adapt user-interface
- Test-runs/debugging
- Optimization

Source: Magdeburg-Stendal University

Thank you for your attention!

Questions or suggestions?

Bastian Winkels, M.Sc. RWTH
Univ.-Prof. Dr.-Ing. Holger Schüttrumpf
Prof. Dr.-Ing. Daniel Bachmann
Dr.-Ing. Catrina Brüll
Dr.-Ing. Jan Oetjen
winkels@iww.rwth-aachen.de
schuettrumpf@iww.rwth-aachen.de
bruell@iww.rwth-aachen.de
oetjen@iww.rwth-aachen.de

Institute of Hydraulic Engineering and Water Resources Management

Univ.-Prof. Dr.-Ing. Holger Schüttrumpf Mies-van-der-Rohe-Str. 17 52074 Aachen http://www.iww.rwth-aachen.de