

17.10.2022

2D hydraulic modeling strategies of the Vicht and Inde river for flood protection measures, related to the July 2021 flood (KAHR project)

8th International Meuse Symposium

Dr.-Ing. Julian Hofmann Felix Steudtner, M.Sc. RWTH Institute for Hydraulic Engineering and Water Resources Management, RWTH Aachen University

• Aim of the KAHR project:

"Gain of knowledge in flood research by scientific processing of the flood event in July 2021 with interdisciplinary and transregional networking."

- Concrete aims of the IWW
 - **AP 1:** Evaluation of flood protection measures

Tasks:

2

- Setup of hydro-numerical models for Inde River and Vicht River (NRW)
 AP 1.1
- Verification of the nature similarity of the models
- Modeling of the runoff event
 - Simulation of the July flood 2021
 - Evaluation of the effectiveness of flood protection measures in focus regions
 - Review of identified flood protection measures

AP 1.2

AP 1.2

AP 1.3

2D hydraulic modeling

- Use of HYDRO_AS-2D (Hydrotec)
 - Flussschlauchgenerator
 - Generating the river mesh from cross-section data
 - LASER_AS-2D
 - Mesh creation of the surrounding area
 - HYDRO_AS-2D
 - 2D simulation of flowing waters with the finite volume method
- Input Data:
 - Digital elevation model
 - Cross sections from terrestrial survey with river bed
 - Waters stationing map E3 NRW
 - ALKIS Data (Official Real Estate Cadastre Information System)
 - Element edges such as building outlines and street lines
 - Land use (k_{St} value)
 - Runoff Data (hydrological data)

(Hydrotec 2022)

- Work status:
 - Setup of two models each
 - Comparison before the 2021 flood event and afterwards
 - Models of the Inde River and Vicht River are in progress
 - Main focus first on the "new" Vicht River model

Calculation runs

Input Data	Vicht River		Inde River	
	old	new	old	new
DEM	2016	2022	2016	-
Cross sections	1986 – 2012	2022	2017	-
ALKIS Data	01.04.2022	01.04.2022	01.04.2022	01.04.2022
Waters stationing map	30.11.2019	30.11.2019	30.11.2019	30.11.2019

2D hydraulic modeling of the Vicht River

Work status

- River axis taken from the waters stationing map
- DEM1 2022 pre-processed
- Building outlines pre-processed
- first iteration steps with LASER_AS-2D
 - thinning of the nodes by approximately 95%
- Element edges taken from ALKIS data
 - streets and railroad lines

2D hydraulic modeling of the Vicht River

Work status

- Design of the river mesh
 - 23 river kilometers
 - 67 bridges and a few culverts
 - river walls and other buildings

Hindcast of Flash Flooding at Vicht Catchment

- Slowly-moving low-pressure system "Bernd"
 - recurrent and persistent heavy rain overlarge areas
- Experiment: flash flood modeling combining fluvial and pluvial processes
- Modeling challenges:
 - Flooding interactions of surface and streams
 - Influence of soil moisture conditions
 - Influence of bridges

17.10.2022

Experiments of Modeling Flash Flooding

8

Preliminary Results: Different Simulation Runs

9

Preliminary Results: Validation at Single Point

Estimated flood level from flood marks

(HOFMANN, 2021)

Flood simulation results

Single Fluvial Model

5,2 m

Overestimation

Fluvial + Pluvial Model

17.10.2022

Preliminary Results: Validation using Satellite Data

- Straße, wahrscheinlich beschädigt
- Hauptstraße, kein sichtbarer Schaden
- Nebenstraße, kein sichtbarer Schaden
- lokale Straße, kein sichtbarer Schaden
- Feldweg, kein sichtbarer Schaden
 Fernverkehrs Bahnstrecke, kein sichtbarer Schaden

Gebäude

- zerstört
- beschädigt
- wahrscheinlich beschädigt

SL 2 100 m 50 Ausschnitt der Wasserstände Gebäude-0,05 - 0,50 m 2,00 - 4,00 m Satellitenaufnhame polygone 🔲 0.50 - 1.00 m 📕 4.00 - 6.00 m 📄 □ 1.00 - 2.00 m ■ > 6.00 m

RNTHA

Influence of Infiltration Capacity

Thank you very much for your attention!