Assessing the dynamic feedbacks between the water system and society

9th Meuse Symposium, Liege, September 12th, 2023

2021 Summer Floods (Netherlands)

 $\underbrace{\textcircled{}}_{\mathbb{C}}$

Return periods up to 1/100 and 1/1000 years

2500 flooded households

600 flooded firms

Survey distributed among 11,000 (nearly) flooded addresses

"Flood measures at building scale reduce flood risk"

"Government needs to take care of this"

OVERSTROMINGSBESTENDIG Aangepast bouwen beperkt de schade bij hoogwater enorm

MAASTRICHT DOOR THEO SNIEKERS

'Overstromingsbestendig' bouwen kan de schade bij hoogwater met tienduizenden euro's beperken. Dat is een van de hoofdconclusies uit recent gepubliceerd wetenschappelijk onderzoek naar de watersnoodramp in Limburg in juli 2021.

Aan het onderzoek van de Vrije Universiteit (VU) Amsterdam en kennisinstituut Deltares lag een enquête onder 1500 Limburgse

het hoogwater plaats. Van enkele honderden huishoudens overstroomde de woning.

Waterdicht

Volgens hoofdonderzoeker Thiis Endendijk kan veel onheil worden voorkomen ...als je bij de bouw en renovatie van woningen in risicovolle gebieden rekening ongeveer 40.000 euro. De averij houdt met overstromingsge- aan de inboedel kan met 25.000 vaar". Door te werken met waterdichte materialen bijvoorbeeld, zegt de milieu-econoom van het Instituut voor Milieuvraagstukken van de VU. Ook het hoger plaatsen van elektri-

hoogde grond. De schade aan worden verlaagd, die aan de in-

hoedel zelfs met 40 procent. Noodmaatregelen helpen ook. Die kunnen de schade aan woningen met bijna 30 procent van de herbouwwaarde beperken, leert het onderzoek. Gemiddeld is dat euro worden teruzgebracht.

Verrast

"Ongeveer de helft van de huishoudens kon dit soort maatregelen in 2021 nemen", zegt promohuishoudens ten grondslag. Die sche apparaten helpt, net als het vendus Endendijk. Maar voor vond ongeveer een half jaar na bouwen van woningen op ver- veel inwoners in het Geulgebied

was dit niet meer mogelijk, weet huizen kan dan met 20 procent hij. "Zij werden verrast door het snelstijgende water." Langs de Geul kwamen waarschuwingen niet of laat. De gemiddelde schade per huishouden daar was 65.000 euro, langs de Maas 'slechts' 17.000 euro.

De totale gemiddelde schade is 50.000 euro, blijkt uit de enquête. Die wijst ook uit dat getroffen Limburgers daarvan slechts 60 procent vergoed kregen of dat verwachtten. Dat slachtoffers achterbleven met veel restschade, bevestigt het beeld dat oprees uit onderzoek van De Limburger.

REGIO // 7

De Limburger, July 2023

* What factors drive people to implement flood measures?

* Can flood risk assessment modelling capture these flood adaptation dynamics?

Flood risk assessment

Flood risk assessment

De Moel et al., 2013

Flood hazard

Role of Hydrology?

Flood Hazard Simulation

Sacramento

Rainfall-runoff models. T.V. Hromadka (1990)

GUMBEL'S EXTREME VALUE I DISTRIBUTION: A New Look

By Dennis P. Lettenmaier,¹ A. M. ASCE and Stephen J. Burges,² M. ASCE (1982)

Hydrodynamic models

Flood maps Geul tributary

(b) Return period of 1000 years

Figure 3.2: Estimated flood area of Valkenburg for two events with a different (Risicokaart, 2019)

Extreme value analyses Meuse (anual peaks / summer peaks)

Maas, Borgharen

ENW, 2021

Exposure

Socio economic impacts

Economic damage by natural disaster type, 1900 to 2022 Our Work in Data Global economic damage from natural disasters, differentiated by disaster category and measured in US\$ per year. Glacial lake outburst \$350 billion Fog Dry mass movement Landslide Volcanic activity \$300 billion Extreme temperature Wildfire Drought \$250 billion Flood Earthquake Extreme weather \$200 billion \$150 billion \$100 billion \$50 billion \$0 1900 1909 1918 1927 1936 1945 1954 1963 1972 1981 1990 1999 2008 2022

Source: EM-DAT, CRED / Université catholique de Louvain, Brussels (Belgium)

Source: EM-DAT, CRED / Université catholique de Louvain, Brussels (Belgium)

OurWorldInData.org/natural-disasters • CC BY

Flood exposure in The Netherlands

Land use change 1900-2100

Levee effect, The Netherlands

24 Overlay Flood map with exposed assets and people

Flood risk assessment

De Moel et al., 2013

Figure 1. Global total annual fatalities and population affected from coastal storm surges 1900–2015, including exponential trend lines since 1960.

Bouwer and Jonkman. 2018, ERL

Risk / Static scenario based approach

Dynamics in vulnerability and adaptation

vulnerability model: depth-damage curves

Pakistan floods; 2010, 2022

Pakistan floods 1990-2010

Jongman et al. 2015, PNAS

Pakistan floods 1990-2010

Socio Hydrology

Adaptation effect through consecutive events

Kreibich et al., 2017; 2022
Analysis of flood damages from the 1993 and 1995 Meuse floods

H. G. Wind, T. M. Nierop, C. J. de Blois, and J. L. de Kok

Faculty of Technology and Management, Department of Civil Engineering, University of Twente Enschede, Netherlands

WIND ET AL.: ANALYSIS OF MEUSE FLOOD DAMAGES

Table 1. Damage Data of the 1993 and the 1995 Meuse Floods

Damage Category	1993 Damage, Millions of Dfl	Percent	1995 Damage, Millions of Dfl	Percent	
Private	96.5	38	40.7	25	
Houses	80.8		40.0		
Cars	1.0		*		
Caravans	13.5		0.7†		
Gardens	1.2		*		
Agriculture and horticulture	19.4	8	20.9	13	
Trade and industry	74.0	29	62.2	38	
Trade and industry	71.3		62.2		
Gravel extraction	2.7		*		
Institutions	2.6	1	2.1	1	
Government	61.3	24	39.1	24	
Buildings and sites	6.6		0.5		
River infrastructure	21.9		1.5		
Land infrastructure	15.5		18.0		
Public utilities	7.3		*		
Clear away and assistance	10.9		10.1		
Total	253.8	100	165.0	100	

*Data not available.

†Only holiday houses.

estimating the number and type of flooded objects. However, whether all the objects in the flooded area are indeed likely to experience damage and result in flood damage reports depends on individual precautionary measures and on the attitude and experience of the public and authorities with previous floods. This introduces an additional margin of uncertainty in the number of flood damage reports, which, as shown in section 4.1, can be 20% or more.

Methods for modeling adaptation / behavior dynamics

Social sciences: surveys and statistical methods

2021 floods Central Europe

Key results

★2500 households and 600 firms experienced flood damage

✦Total economic damage estimated between €350 million and € 0 million

IVM Institute for Environmental Studies

Experienced Flood Damage

% with damage

Environmental Studies

IVM Institute for

Mean damage

Water Levels for Flooded Households

#n total 27% of respondents experienced water in their home

IVM Institute for Environmental Studies

Goal: determine flood vulnerability while accounting for private adaptation actions

IVM Institute for Environmental Studies

Flood Risk Reduction Measures of Flooded Households

Measure	% of respondents		
	with measure		
Placing sandbags	35%		
Elevating possessions	34%		
Installing a water pump	32%		
Installing a water-resistant floor	25%		
Elevating electrics	20%		
Placing shields or beams	16%		
Elevating floor or entrance	10%		
Using other water-resistant			
material	10%		
Building water-resistant walls	9%		
Strengthening foundations	4%		

Effectiveness of Flood Damage Mitigation Measures

BUILDING STRUCTURE

Reduction in damage ratios:

₩Building structure: 0.20 – 0.29

Household contents: 0.37 – 0.54

HOUSEHOLD CONTENTS

Outcome: building vulnerability estimates that can be adjusted for private adaptation actions

Influence of "risk awareness" on adaptation actions

Socio Economic data

Distance to health facilities

Who is interacting with the hydrological system?

Enable simulating behavior of main three agents in FRM:

- Government
- Households
- Private Sector (e.g. Insurance)

Flowchart of the GEB model (applied for droughts)

Flood risk / ABM model Rotterdam

IVM Institute for Environmental Studies

<u>Joint Cooperation programme for</u> <u>Applied scientific Research</u> 2023-2028

<u>Accelerate Transboundary Regional Adaptation to Climate Extremes</u>

Joint structural policy-relevant research on flood and drought risk management in regional river basins

Contacts

Regional focal points:

Germany:	Prof.DrIng. Holger Schüttrumpf
	Prof.Dr. Bruno Merz
Belgium:	Prof.Dr. Benjamin Dewals
	Prof.Dr.Ir. Patrick Willems
Luxembourg:	Prof.Dr. Laurent Pfister
Netherlands:	Prof.dr. Jaap Kwadijk

schuettrumpf@iww.rwth-aachen.de bruno.merz@gfz-potsdam.de b.dewals@uliege.be patrick.willems@kuleuven.nl laurent.pfister@list.lu jaap.kwadijk@deltares.nl

Overall program management: Dr.ir. Kymo Slager kymo.slager@deltares.nl

Main objectives

Objective 1: Preparing for Future Water Challenges

- Facilitate European regional governments on transboundary flood and drought risk management of smaller regional river basins;
- Enhance integrated planning, development and management.

Objective 2: Knowledge cooperation

- Support the development of an international expert community on flood and drought risks in regional river basins;
- Fostering long-term partnerships between European knowledge institutes and enhance the knowledge base to inform strategies on mitigation and adaptation

References

- Aerts, J., Botzen, W., Clarke, K., Cutter, S., Hall, J., Merz, B., Michel-Kerjan, E., Mysiak, J., Surminski, S., Kunreuther, H. 2018. Integrating human behavior dynamics into flood disaster risk assessment. *Nature Climate Change* doi.org/10.1038/s41558-018-0085-1
- Aerts, J., Botzen, W., Emanuel, K., Lin, N., de Moel, H., Michel-Kerjan, E. 2014. Evaluating flood resilience strategies for coastal mega-cities. *Science*, 344: 473-475.
- Aerts, J., Botzen, W. 2012. Managing exposure to flooding in New York City. Nature Climate Change, 2: 377.
- Aerts, J., Lin, N., Botzen, W., Emanuel, K., de Moel, H. 2013. Low probability flood-risk modeling for New York City. *Risk Analysis*, 33: 772-788.
- Botzen, W., Kunreuther, H., Michel-Kerjan, E. 2015. Divergence between individual perceptions and objective indicators of tail risks. *Judgment and Decision Making*, 10(4): 365-85.
- Botzen, W. Michel-Kerjan, E., Kunreuther, H., de Moel, H., Aerts, J. 2016. Political affiliation affects adaptation to climate risks: Evidence from New York City. *Climatic Change*, 138(1), 353-360.
- Haer, T., Botzen, W., de Moel, H., Aerts, J.C.J.H. (2017). Integrating household risk mitigation behaviour in flood risk analysis: An agent-based model approach. *Risk Analysis*, 37(10): 1977-1992.
- Haer, T., Botzen, W., Aerts, J.2016. The effectiveness of flood risk communication strategies and the influence of social networks: insights from an agent-based model. *Environmental Science and Policy*, 60: 44-52.
- Ward, P., Jongman, B., Aerts, J., Bates, P., Botzen, W., Diaz, A., Hallegatte, S., Kind, J., Scussolini, P., Winsemius, H.2017. A global framework for future costs and benefits of river-flood protection in urban areas. *Nature Climate Change*, 7: 642-646.

Winsemius et al. 2016. Global drivers of future flood risk. Nature Climate Change, 6: 381-385.

Thanks for your attention!

GAÖWENPLATZ

500

jeroen.aerts@vu.nl

(a) Return period of 100 years

(b) Return period of 1000 years

Figure 3.2: Estimated flood area of Valkenburg for two events with a different return period (Risicokaart, 2019)

Flood risk assessment modelling

- Mostly upward trend in risk, damage, casualties
- Socio economic drivers have largest share in this trend
- Relative share of Climate change forcing will increase over the coming century

Is this enough?

and the second

Is a rational view of flood management representative of the real world?

Evacuation behavior

	All		Geul		Meuse	
	Did not		Did not		Did not	
	evacuate	Evacuated	evacuate	Evacuated	evacuate	Evacuated
Total	135 (44%)	173 (56%)	69 (47%)	78 (53%)	66 (41%)	95 (59%)
No advice to evacuate (according to respondent)	86 (81.1%)	20 (18.9%)	54 (81.8%)	12 (18.2%)	32 (80%)	8 (20%)
Received evacuation advice (according to respondent)	49 (24.3%)	153 (75.7%)	15 (18.2%)	66 (81.8%)	34 (28.1%)	87 (71.9%)

Being aware of an evacuation advice significantly drives evacuation decisions

There is a group that is structurally unwilling to evacuate

	All		Geul		Meuse	
	Did not		Did not		Did not	
	evacuate	Evacuated	evacuate	Evacuated	evacuate	Evacuated
Total	135 (44%)	173 (56%)	69 (47%)	78 (53%)	66 (41%)	95 (59%)
Certainly not evacuating	39 (28.9%)	0 (0%)	18 (26.1%)	0 (0%)	21 (31.8%)	0 (0%)
Probably not evacuating	74 (54.8%)	34 (19.7%)	42 (60.9%)	13 (16.7%)	32 (48.5%)	21 (22.1%)
Probably evacuating	18 (13.3%)	83 (48.0%)	6 (8.7%)	38 (48.7%)	12 (18.2%)	45 (47.4%)
Certainly evacuating	4 (3.0%)	56 (32.4%)	3 (4.4%)	27 (34.6%)	1 (1.5%)	29 (30.5%)

Conclusion and implications

Empirical estimates of business interruption duration and losses

Stimulate firm insurance uptake and adaptation

A strategy for firms to increase their resilience to disasters is by engagement with the local community

Efficient and streamlined damage compensation reduces business interruption and thus, post-disaster losses

Firm impacts and resilience

Direct and indirect impacts to firms

Business interruption and losses per sector

Insurance compensation

IVM Institute for Environmental Studies

Business interruption duration and losses

IVM Institute for Environmental Studies

Trends in losses from hurricanes

Total Losses per Year from Atlantic Tropical Cyclones in 2005 Dollars (11-year centered average)

Trends in Losses

Losses (US 2005 dollars)

CL05 Normalized Losses per Year from Atlantic Tropical Cyclones (11-year centered average)

CL05 Normalized Losses per Year from Atlantic Tropical Cyclones (11-year centered average)