

Hydrological modelling of three subcatchements of the Vesdre river Scenarios on forest, peatland and agricultural land management

Charles &

Aurore Degré, Benjamin Guillaume, Adrien Michez, Lisa di Maggio, Emmanuelle Leyh

I

Ħ

H

H

Context : Vesdre 2021

- After the floods of 2021, the strategic master plan proposes four theoretical development programmes for the catchment area
- These plans cover housing and mobility, as well as agriculture, biodiversity and the management of natural areas
- What are the potential effects of these developments on the hydrology of the catchment?

MODREC project - physically based hydrology section

Presentation outlines

- Model parameterisation
- Validation elements
- Some results in different contexts
- Floods and droughts

There are going to be some shortcuts and it's going to be quick, but I love chatting over a coffee :-)

Physically Based Hydrological Modelling

Quantifying the effectiveness of the strategies proposed in the Vesdre scheme

Magne catchment areaDominantly agricultural

Hoëgne catchment area

- Forest dominated

Helle catchment area

- Dominantly peat bogs

The tool : MikeSHE

Physical representation of the main processes in the hydrological cycle :

derived from the physical laws governing processes (conservation of mass, energy, etc.)

- \rightarrow Network drainage
- \rightarrow Evapotranspiration / Infiltration (vegetation)
- \rightarrow Surface runoff
- \rightarrow Vadose discharge
- \rightarrow Groundwater flow

Spatially distributed - meshed approach

- DTM (SPW)
- Landuse (SPW)
- Vegetation cover (Satellite/Sigec)
- Geology (EPICgrid model)
- River network (SPW lidaxes)

+ weather data from KMI and SPW (1 hour time-step)

Retention and hydraulic conductivity curves

- > Mineral soils :
 - Soil map: Textures and granulometric fractions of Walloon soils (surface, 40-80 cm, 80-120 cm)
 - Soil map: Stony load
 - COT
- > Raised bog and degraded peat
 - Retention measures for the "peat bogs" project (C. Sohier & C. Wastiaux)

Retention and hydraulic conductivity curves

- Methodology
 - > pedotransfer function EU-PTF(v2) (Szabo et al. 2021)

adjusted according to the % volume occupied by the stony load (considered to be non-porous)

Little stony	Stony	Very stony
Topsoil→ 5%	Topsoil→ 25%	Topsoil > 50%
subsoil → 15%	subsoil → 35%	Subsoil → 70%

- Retention and hydraulic conductivity curves
 - Retention measures for the "peat bogs" project (C. Sohier & C. Wastiaux)
 - > Raised bog
 - Acrotèlme = fitting of a Van genuchten function (θsat , θr , α , n) to retention points measured in Sphaignes and Touradons de molinies
 - Catotèlme I = fitting of a Van genuchten function (θsat , θr , α , n) to the retention points measured under Sphaignes and Touradons de molinies.
 - Catothelme II = Catothelme I 10% pore volume
 - > Degraded peat
 - Acrotèlme = Acrotèlme raised bog 10% pore volume
 - Catoterm = Catoterm I raised bog 10% pore volume

Rétention des tourbières hautes (TH) et tourbes dégradées (TD)

Agricultural catchment

Magne

- Surface area : 40 km²
- Occupation :
 - 69% agricultural areas (of which 65% grassland)
 - > 17 % impervious areas
- Discharge station SPW-ARNE of the "ruisseau des fonds des forêts" (L7600).
 - > Max gauged: approx. 5 m³/s
 - > In place since 11/05/2011

Other subcatchments La Hoegne (Forest) and la Helle (Peat)

Peaty catchment

Agricultural catchment

Max discharge measured on the rating curve : 5m³/s /!\

Agricultural catchment

Hydro year	ME	MAE	RMSE	STDres	R	R ² - Nash
2012	-0.0734671	0.197003	0.311776	0.302996	0.814079	0.642428
2013	-0.0252865	0.168152	0.318273	0.317267	0.803208	0.634548
2014	-0.0551104	0.140319	0.307514	0.302535	0.881499	0.759072
2015	-0.0701512	0.165078	0.279127	0.270168	0.853738	0.691858
2016	0.0454241	0.305206	0.524472	0.522501	0.813156	0.652682
2017	-0.185832	0.219136	0.291693	0.224836	0.749942	-0.0337472
2018	-0.0863093	0.16273	0.355884	0.34526	0.927651	0.819321
2019	-0.0929198	0.171308	0.298962	0.284155	0.801971	0.601217
2020	0.0845958	0.229815	0.401215	0.392196	0.849105	0.677217
2021	0.135175	0.332789	1.24801	1.24067	0.872909	0.662086
2012-2021	-0.0313491	0.207839	0.507214	0.506244	0.831835	0.681767

- Acceptable adjustment but based on limited data and only at the outlet
- Need to compare with other observations, even qualitative ones

Diagramme de dispersion - Forêt - Modélisation physique

An example from the forested catchment

Analysis of soil hydrodynamics

- Vertical dynamics of the saturated zone

Forested catchment

Analysis of soil hydrodynamics

- Vertical dynamics of the saturated zone

The scenarios....

Implementation by basin

MIKESHE- HOEGNE

MIKESHE- MAGNE

	CATEGORY I	CATEGORY II	CATEGORY III
LEVEL A	A1 : Restoration of peaty and paratourbous soilsA2 : Diversification of environments on hydromorphic soils	 A3: Conservation of grassland in agricultural areas A4: Agricultural practices to conserve water and soil in maize production A5: Forestry practices limiting soil compaction 	
LEVEL B	B1: Bocage network in agricultural areas	B2: Alternative drainage management for forest roads and firebreaks B3: Installation of slopes on steeply slopin roads B4: Inter-plot forage production	B5: Development of canals, diversion bays, keyline B6: Torrential correction of incised runoff axes
LEVEL C	C1: Restoration of riparian zones C2: Hydromorphological restoration (re-mandration)	C3: Use of quarries as storage areas for major floods	C4: Creation of reservoirs (with dykes and sluices) along the tributaries of the Vesdre river

Magne (agricultural catchement)

Hoëgne (forested catchment)

Peat and para-peat soils : Managed area: 460 Ha (11% of the area)

49 ponds 158 redents (± 24 km of managed small rivers axis)

Hoëgne (forested catchment)

Hydromorphic soils Managed area: 539 Ha (13% of the area) 165 redents (± 25 km of managed small rivers axes)

Helle (peaty catchment)

- 197 redents in small rivers axis
- 26 ponds
- 83 ha (moor to bog)
- 319 ha (spruce to peatland)
- 349 ha (spruce to deciduous)
- 1234 ha (forestry practices limiting soil compaction)

Some results

25

Results: July 2021 – Hydrographs - Magne

Foret

Overall comparison of maximum flows per event

Magne (since 2018)

- The points correspond to the maximum flows of isolated events (6h without rain)
- Maximum flow rates reduced by around 30% (including for the highest flow rates) (including for the highest flow rates)

Overall comparison of maximum flows per event

Forested catchment Belleheid (since 2002) Peat catchment

Time series analysis : forested catchment

28

Flow coefficients – agricultural catchment

Runoff instant speeds – peaty catchment

m/s

Summary for policy makers

- « Identity card » of the management actions
- Objectives
 - Quantifying the hydrological efficiency of the various actions
- Method
 - Analysis of runoff production before and after development
 - > Estimated efficiency

$$Efficiency (\%) = 100. \frac{(runoff_{before} - runoff_{after})}{runoff_{before}}$$

- Carried out for each managed area and for each rainfall event
 - > 6 hours without rain between two events
 - > First test: 2002-2011 period

« Identity card » of the management actions

Efficiency in runoff volume reduction

- 1089 rainfall events -> 88 with runoff > 5 mm (before management)

Results forested catchment

A1.1	: Moors -> Future peat bogs
A1.2	: Spruce -> Future peat bogs
A2	: Spruce -> Deciduous

Results BV Peaty catchment

A1.1	: Moors -> Future peatlands
A1.2	: Spruce -> Future peatlands
A2	: Spruce -> Deciduous + limit compaction

Focus on drought: Construction of an edaphic stress indicator

For each model cell and each year (2003-2021), extraction of the maximum duration when the water pressure in the soil profile explored by the roots is below the stress threshold.

For each cell, adjustment of a Gumbel law to establish the link between the duration, intensity (threshold) and probability of occurrence (return period) of the stress. -> Drought - Duration - Frequency (DDF)

Focus on drought: Results (before management)

Focus on drought: Results (difference)

Moderate stress(-30 m)

Severe stress(-150 m)

Focus on drought: Results (difference)

Conclusions so far....

- Although its full validation remains a challenge....
- This type of model offers the possibility of explicitly testing a wide range of catchment management actions,
 - both in terms of floods and droughts.
- It is possible to
 - run different types of management actions,
 - extract key intermediate variables and
 - subject the models to climate change scenarios, etc.
- ▶ We are only at the beginning of exploiting the results,
- We remain aware of the limitations and value the comparative approach before and after development more than the absolute results

LIÈGE université Gembloux Agro-Bio Tech

Thank you!

Still a lot to show, a lot to discuss... do not hesitate to contact us aurore.degre@uliege.be