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A B S T R A C T   

Digital agriculture increasingly relies on the availability and accuracy of measurement data collected from 
various sensors. Of this data, water quality attracts great attention due to its intended use for crop irrigation, 
livestock, and other farming activities. Accurate and reliable water quality measurements enable farmers to 
understand the landscape comprehensively, optimising resource utilisation and reducing the negative impacts of 
agriculture on the environment. In practice, missing and incomplete data can create biased estimations and 
reduce the efficiency of many of the valuable applications provided by digital agriculture. The purpose of this 
paper is to propose a dual-head sequence-to-sequence imputation model (Dual-SSIM) designed to impute missing 
time series data in sensor networks, therefore reducing the negative consequences of missing and incomplete 
data. Unlike standard sequence-to-sequence architecture, the Dual-SSIM model features two encoders with gated 
recurrent units (GRUs) which are used to process temporal information before and after the missing gap sepa
rately. Furthermore, the attention mechanism is applied to two encoder outputs concurrently, in order to allow 
the model to focus on the high relative inputs when estimating missing data. The performance efficacy of Dual- 
SSIM has been investigated through the monitoring of water quality, sourced from an Australian water quality 
information system. Experimental results of this investigation indicate that Dual-SSIM outperforms associated 
alternatives based on the mean absolute error (MAE), root mean square error (RMSE), and dynamic time warping 
(DTW) scores in imputing two different water quality variables. Therefore, it can be concluded that Dual-SSIM 
provides an effective and promising approach for water quality data imputation.   

1. Introduction 

High-frequency monitoring data is becoming increasingly essential 
for prediction and decision making in application areas such as envi
ronmental protection, industrial control, and agricultural management 
(Zhang et al., 2019a; Zhang et al., 2020). For example, the timely 
monitoring of water quality is of great practical significance to aqua
culture in regards to high yield, health and safety (Huan et al., 2020). 
Additionally, real-time water quality information can facilitate the im
mediate evaluation of recent farming practices, which can assist farmers 
in understanding the impact of cropping on water quality (Vilas et al., 
2020). While advanced sensor technologies are currently widespread 
used for high-frequency monitoring, the eventuation of missing data is 
inevitable due to sensor failure and poor network connections. 

Missing time series data is problematic as many statistical analyses 
require complete data sets. A simple solution to this issue is to omit the 
missing data; however, this approach may result in biased or erroneous 

analysis results (Mohamed et al., 2007). Additionally, missing data in 
the time series increases the challenge of identifying temporal patterns, 
especially when consecutive data points are lost. As a consequence, 
effective methods for estimating missing values based on available data 
are required. 

Whilst various methods have already been developed for missing 
data imputation, these methods either require the knowledge of domain 
experts or cannot make full use of the temporal patterns inherent in the 
variables being monitored. For example, Nelsen et al. (2018) proposed 
an empirical mode-spatial model for environmental time series data 
imputation. Although this method performs well in imputing tempera
ture measurements, it also expects the data to possess the recurring cycle 
or oscillations in time. In most scenarios quasi-periodic processes may 
not be obvious for non-expert users. Phan et al. (2020) proposed a dy
namic time warping based approach to fill in large gaps within time 
series data. When evaluating their method on water level data acquired 
from France, a window with size T needs to be determined for searching 
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the similar sub sequence. This also requires users to clearly understand 
the trend, seasonal and cyclical changes about the target time series. 

In addition, data-driven models have recently attracted increasing 
attention in imputing missing data as they do not assume stationary or 
linear data, and rely less on domain knowledge (Betrie et al., 2016; 
Rahman et al., 2015; Hamzah et al., 2020). Betrie et al. (2016) inves
tigated the regression imputation model, expectation-maximization al
gorithm and the covariance matrix calculation method to impute 
missing water quality data. Rahman et al. (2015) extended the K-nearest 
neighbour (KNN) and Fourier transform methods in imputing the 
biomedical time series data. The proposed method was evaluated using 
real-world biological datasets and achieved high imputation accuracy 
for different ratios of missing data. Hamzah (Hamzah et al., 2020) 
reviewed several infilling techniques that are convenient to time series 
analyses in streamflow. In their study, spline and linear interpolation are 
applied to the streamflow data. These methods tread streamflow data as 
a sequence of points. Nevertheless, none of these methods can capture 
the temporal patterns in time series datasets. Many studies (Yang et al., 
2020; Ma et al., 2020) demonstrated that there exist latent patterns and 
dependencies between collected data in each time step within a time 
series. For example, the temperature is usually higher in summer and 
lower in winter. The repetition of these patterns can help infill the 
missing values in temporal cycles (Suo et al., 2020). Taking into account 
the temporal relations can boost the imputation results significantly 
(Luo et al., 2018). 

Neural networks with deep architectures provide a powerful way of 
extracting nonlinear temporal patterns hidden in time series sequences. 
Applying deep learning models when infilling missing data alongside 
vast amounts of collected sensor data has attracted substantial attention 
in recent years. 

Various studies have exploited the power of customised recurrent 
neural networks (RNNs) in handling time series data with missing values 
(Cao et al., 2018; Yoon et al., 2018; Che et al., 2018; Habiba and 
Pearlmutter, 2020). Cao et al. (2018) proposed a bidirectional recurrent 
neural network model for time series data imputation. In their approach, 
the imputed values are estimated and updated during the training pro
cess of the model. Similarly, Yoon et al. (2018) developed a multi- 
directional recurrent neural network that interpolates within data 
streams and imputes across data streams. In this proposal, the model 
imputed missing data more accurately than 11 benchmarks. In the study 
led by Habiba and Pearlmutter (2020), they combined Neural ODEs 
(Ordinary Differential Equations) with the Gated Recurrent Unit to 
predict the missingness of the information in continuous time-series 
data. Experiments on the PhysioNet dataset demonstrate the effective
ness of this architecture. It should be noted that most existing methods 
require extra masking vectors (denoting which variables are missing at 
each time index and maintaining the time interval for each variable 
since its last observation) to locate missing data in the time series. 
Additionally, these approaches require an independent classification 
task in order to guide the data imputation process. When a suitable 
classification task cannot be found, pure imputation accuracy can be 
significantly degraded. 

Sequence-to-sequence models are a general end-to-end approach for 
processing sequential data. These models encode the input sequence 
with a series of RNNs and generate a variable length output with another 
set of decoder RNNs, both of which interface via an attention mechanism 
(Gehring et al., 2017). This architecture has been shown to outperform 
traditional, single RNN based architecture in various application areas 
such as machine translation (Tiwari et al., 2020), speech recognition 
(Nguyen et al., 2020) and text summarization (Shi et al., 2021). 

In our previous work (Zhang et al., 2019b), the sequence-to-sequence 
model was initially designed for the recovery of variable-length missing 
data sequences in wireless sensor networks. The achieved SSIM prom
ised accuracy in imputing missing values in time series sequences, 
however its capability was limited by the standard sequence-to- 
sequence architecture with a single input. In this case, zero value 

vectors are still needed to separate the available information between 
missing gaps. 

In this paper, we have proposed a dual-head sequence-to-sequence 
imputation model (Dual-SSIM) for imputing missing water quality 
sensor data. Substantially extending on our preliminary studie (Zhang 
et al., 2019b), the model proposed in this paper has improvements in 
namely three aspects: model architecture, attention mechanism and loss 
function.  

1. We have designed a sequence-to-sequence model with two encoders 
to process temporal input information. Each encoder is based on the 
gated recurrent unit (GRU) and deals with data from one side of the 
missing gap. Compared to our previous work, no extra information 
has been determined to locate the missing gaps, which may be a 
heavy burden for most comparative imputation methods; and  

2. Based on the new model architecture, we have developed a cross- 
head attention mechanism which is concurrently applied across the 
outputs of two encoders. When imputing the missing data, the cross- 
head attention focuses on high relative pieces of input information in 
order to yield accurate estimations for missing sensor data.  

3. When imputing missing values over a specified period of time, we not 
only expect the estimated missing values to have a low average error, 
but also to have a high similarity compared to the actual time series 
trajectory. Therefore, instead of using Mean Squared Error (MSE) as 
in previous studies, we have introduced the distortion loss including 
shape and time (DILATE) loss function in our model as proposed by 
Guen (Vincent and Thome, 2019).  

4. In the end, we have visualised the attention score as a methodology 
for model interpretation. Instead of applying the neural network 
model as a black-box tool, the visualisation provides a practical and 
intuitive explanation of the model’s predictions. 

The paper is organized as follows. Section 2 describes multi-step data 
imputation problems and the challenges. Then, the dual-head sequence- 
to-sequence imputation model is presented in Sections 3. Section 4 
presents experimental results. Finally, Section 5 concludes the paper. 

2. Multi-step data imputation problem 

Handling a singular piece of missing data within a time series is 
straightforward. As evidenced in many studies (Du et al., 2017; Park and 
Kim, 2020), the linear/polynomial imputation can achieve promising 
results. Challenges emerge when the data is missing for extended periods 
of time (Zhang et al., 2019b). As the size of the missing gap increases, the 
performance of many imputation methods drops significantly (Moffat 
et al., 2007). Benefiting from advanced sensor technologies, a large 
amount of data is collected at a high velocity. This high frequency data 
collection has the potential to result in large gaps in the data if the 
network collapses. Therefore, we have focused on recovering consecu
tive missing data points within a time series. 

The general problem of multi-step imputation is depicted in Fig. 1. In 
a multivariate time series, a consecutive number of data points are 
missing. An imputation model is expected to recover the missing data 
points with the help of all the available data on both sides of the gap. 

To formulate the imputation problems, we define the multivariate 
time series X with the constant time interval as follows: 

X =
{

x1,…xn}⊺
=
{

x1,…, xT
}
∈ Rn×T (1)  

where xi = {xi
1,…, xi

T}
⊺
∈ RT is the ith time series and xt =

{x1
t ,…, xn

t }
⊺
∈ Rn represents the vector of n time series at time step t. 

Assuming k numbers of consecutive data points are missing within 
the time series X, the missing data M starts at time index p + 1. It can be 
represented by 
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M =
{

x1
p+1,…, x1

p+k

}
∈ R1×k (2) 

As illustrated in Fig. 1, data around the missing gap include valuable 
information to support predicting the missing data points. Let Lavailable 

and Ravailable represent the remaining data on the left and right side of the 
gap, they are described in the following equation: 

Lavailable =
{

x1,…, xp
}
∈ Rn×p, (3)  

Ravailable =
{

xp+k+1,…, xp+k+q
}
∈ Rn×q, (4)  

where p and q indicate the size of the corresponding available time se
ries. n represents the number of variables measured at each time step. 

Hence, an imputation model is required to predict the missing values 
based on all the available data. We can formulate the prediction as 

M̂ = Model
(

Lavailable ∪ Ravailable

)
∈ R1×k (5) 

For the above imputation problem, we plan to follow the supervised 
training paradigm to obtain the imputation model. As illustrated in 
Fig. 2 left part, a sliding window strategy is applied to prepare training 
data. For each training sample, a size k sequence is set as the target, and 
the model has two input sequences with size p and q. The performance of 
supervised learning highly relies on the quality of training datasets 

(Engelbrecht and Brits, 2002). Hence, it is necessary to prepare the 
complete and cleaned sensor data. 

Benefit from the neural network architectures, when applying the 
imputation model to unseen data, the size of the model’s inputs and 
outputs can differ from what is in the training process. In the right part of 
Fig. 2, we showed two different instances. In the top right example, there 
are enough available data between the gap, and the model accepts the 
size of input as it is fed during the training. In many scenarios like the 
right bottom example, the gap size and available data may vary. The 
imputation model can still handle these cases with the recurrent 
network design. 

In the following section, a deep learning-based imputation model is 
proposed to predict a sequence of missing data M̂ and the detailed model 
architecture is explained. 

3. Proposed dual-head sequence-to-sequence imputation model 

In this section, we propose a dual-head sequence-to-sequence model 
with the cross-head attention mechanism to impute missing water 
quality sensor data. Moreover, advanced training strategies are also 
proposed to help our model achieve the expected performance. 

The Dual-SSIM extends the conventional sequence-to-sequence ar
chitecture as depicted in Fig. 3. The dual encoders process the input 

Fig. 1. Illustration of multi-step imputation problem. Dotted points represent the missing data in the time series. There are available data on both sides of the missing 
gap. p, k and q denote the number of data points for the left side of the gap, the missing data gap, and the right side of the gap, respectively. 

Fig. 2. Supervised Imputation Model with Changeable Gap Size. The left part explains how to generate imputation training samples. The right part presents two 
different scenarios in infilling missing data with different sizes. 
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sequence around the missing gap, which can split the information before 
and after the missing gap naturally. In addition, the decoder with the 
cross-head attention mechanism can focus on the more relative pieces of 
the input information for different predictions. 

3.1. Dual encoders with GRU 

For the data imputation problem, each gap has available data 
around. Both the available information before and after the gap can 
contribute to the imputation task. Hence, we designed two encoders to 
process the input information from each side of the gap, separately. In 
this approach, the place of the gap within the time series input can be 
naturally positioned. No additional masking vectors or specific recurrent 
architectures are required to identify gaps. 

In the proposed model, the Gated Recurrent Unit (GRU) is chosen to 
process time series inputs in the dual-head encoder. GRU is a specific 
type of recurrent neural network proposed by Cho et al. (2014). 
Compared with long short-term memory (LSTM) Schuster and Paliwal 
(1997), GRU with simplified structure can reduce the training parame
ters and speed up the convergence while ensuring the memory ability of 
the neurons, thereby improving the prediction accuracy. The internal 
information flow of the GRU unit can be expressed by the following 
formula: 

ht =
(

1 − zt

)
⊙ ht− 1 + zt ⊙ h̃t, (6)  

h̃t = tanh
(

Whxt +Uh

(
rt ⊙ ht− 1

)
+ bh

)
, (7)  

zt = σ(Wzxt +Uzht− 1 + bz), (8)  

rt = σ(Wrxt +Urht− 1 + br), (9)  

where zt and rt are the update and reset gates of the GRU, respectively. 
tanh, σ and ⊙ represent the tanh activation function, the sigmoid function 
and the element-wise multiplication. 

Modelling the temporal information in both directions can signifi
cantly improve the performance of the recurrent network. Compared to 
the standard GRU, the bidirectional GRU combines the forward hidden 
layer and the backward hidden layer, which can access both the pre
ceding and succeeding contexts (Liu and Guo, 2019). Hence, we choose 
to apply the bidirectional GRU unit in the dual-head encoder. 

In the bidirectional GRU, the hidden states at time index i are 
concatenated as 

hi =
[

hi
→; hi

← ]
. (10) 

Let Encoderl and Encoderr denote the GRU encoder for the input 

sequence on the left and right side of the missing gap, respectively. The 
output of each encoder is a sequence of hidden states H = {h1,h2,…,hn}, 
where n is the length of the input sequence. 

3.2. Decoder with cross-head attention 

Unlike the conventional sequence-to-sequence model with single 
encoder, the model proposed in this paper has twin encoders embedded. 
When making predictions for the future time index, the attention 
mechanism used in this model should be able to pick up the high relative 
information from the input sequences processed by both encoders. 

Hence, we extend the global attention model proposed by (Luong 
et al., 2015) and make it support processing temporal representations 
learned from two different encoders (Fig. 4). According to the previous 
section, each encoder has a sequence of hidden states H generated. 
Therefore, in order to make use of all the temporal representation 
learned by both encoders, we concentrate these hidden states as the new 
input to the decoder as follow: 

Decoderinput =
[
Hl; Hr

]
, (11)  

where Hl and Hr represent the output from Encoderl and Encoderr, 
respectively. 

In the decoder, the predictions of the missing values are generated 
successively. At each time index t, the GRU unit is updated based on the 
previous states, prediction at time index t − 1 and the attention vector ct. 
A linear layer is stacked on top of the GRU layer to generate the numeric 
value. The above procedures are computed as follows: 

Fig. 3. Dual-SSIM architecture. The dual encoders are based on the bidirectional GRU. Each encoder is responsible for input data from one side of the gap. The 
hidden states of both encoders are concatenated and processed by the cross-head attention module. A Linear layer is stacked on top of the GRU decoder to generate 
numeric values. The grey box in the decoder highlights a predictive step when decoding the information passed from the encoder. 

Fig. 4. Cross-head attention mechanism. The example shows how the attention 
module works when estimating the missing data at time index 4 and 5. The 
input data {x1, x2, x3} and {x6, x7, x8} are feed into two encoders, respectively. 
The hidden states learned by the dual encoders are joint to a single vector, and 
the corresponding attention scores are calculated based on the correlation be
tween the hidden states {h1,…, h8} and the states of the decoder s5. 
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yt = Linear(W[st; ct] + b), (12)  

st = GRU(yt− 1, st− 1, ct), (13)  

where st is the hidden state of the decoder at time index t, ct is the 
attention context vector, and [st; ct ] is a concatenation of the decoder 
hidden state and the context vector. The linear layers product the final 
prediction yt. 

In each decoding time index t, the attention context vector ct can be 
described as a weighted sum of the hidden states passed by the dual- 
head encoder: 

ct =
∑n

i=1
αtihi, hi ∈ Decoderinput. (14)  

The weight αti of each hidden states hi is computed by 

eti = a(st− 1, hi), (15)  

αti = softmax(eti), (16)  

where eti represents the correlation between the hidden states around hi 
and the output at time t. a is a neural network that can be jointly trained 
with the GRU decoder. A softmax activation function is applied to eti to 
ensure that the sum of all the attention weights is normalised to 1. 

According to the cross-head attention mechanism described from 
(14)–(16), the decoder can reweight the input information based on the 
attention score as demonstrated in (12). Hence, the proposed model can 
figure out the most relevant information from the input sequences when 
predicting the value for missing data at different time index. Moreover, 
the attention mechanism provides an efficient way to interpret and 
visualize what information the model is looking at while generation 
predictions. These explanations are highly required when applying data- 
driven models in solving real-world problems. A thorough analysis of the 
performance of the cross-head attention mechanism will be conducted in 
Section 4.3. 

3.3. Enhanced training strategy 

The training stage can widely determine the success of a neural 
network application. A well designed neural network architecture may 
achieve poor performance because of improper training strategies (Tang 
et al., 2016). In this section, we introduce two strategies to optimize the 
training of Dual-SSIM architectures. 

3.3.1. Scheduled sampling 
As described in Section 2, sensor data usually have missing data 

points during a period of time. Therefore, the Dual-SSIM needs to 
generate predictions iteratively until the missing gap is filled. The pre
dictive bias occurred at each time index during the imputation task 
could downgrade the predictive accuracy considerably. 

Hence, we applied the similarly scheduled sampling strategy (Bengio 
et al., 2015) to improve the stability and accuracy of multi-step pre
diction for the Dual-SSIM. 

When training the model to yield a prediction at time index t, we 
choose to use the true previous observation yt− 1 with probability ε, or 
use the estimated ŷt− 1 coming from the model itself with probability 
1 − ε. During inference, the Dual-SSIM predicts values only depending on 
its own previously predicted values. This process is illustrated in Fig. 5. 

By applying the scheduled sampling, the discrepancy between the 
training and inference can be mitigated. It leads to an imputation model 
that is more robust to correct its own mistakes at inference as it has 
learned to do so during training. 

3.3.2. Shape and temporal aware loss 
Loss functions are one of the most critical parts of training accurate 

machine learning models. The loss function can significantly affect the 

ability of the model to produce optimum results as one expects. (Liang 
et al., 2018). Mean Squared Error (MSE) and Mean Absolute Error 
(MAE) are applied by the vast majority of methods for regression tasks 
(Cuturi and Blondel, 2017). When imputing multiple missing values in a 
time series, we not only expect the estimated missing values have a low 
average error but also have a high similarity to the actual time series 
trajectory. Hence, we applied the distortion loss including shape and 
time (DILATE) proposed by Guen (Vincent and Thome, 2019) in our 
model. 

Let ̂y and y ∈ Rk denote the predicted and actual time series of length 
k. The DILATE loss L(ŷ, y) is designed to compare the prediction ŷ with 
the actual time series y as 

L
(

ŷ, y
)
= αLshape

(
ŷ, y
)
+
(
1 − α

)
Ltemporal

( (
ŷ, y
))

(17)  

where α ∈ [0, 1] is a hyperparameter used to balance two loss terms Lshape 

and Ltemporal. 
Shape Term 
The shape loss function Lshape is based on the Dynamic Time Warping 

(DTW) (Sakoe and Chiba, 1978), which can be formulated to the 
following optimization problem: 

DTW
(

ŷ, y
)

= min
A∈A k,k

〈

A,Δ
(

ŷ, y
)〉

(18)  

where the binary matrix A⊂{0,1}k×k is a warping path with Ai,j = 1 if ŷi 
is associated to yj, and 0 otherwise. A k,k is the set of all valid warping 
paths connecting the endpoints (1, 1) to (k, k). Δ(ŷ, y) = [δ(ŷi, yj)]i,j 

represents the pairwise cost matrix, where δ is a given dissimilarity 
between ŷi and yj, e.g. the euclidean distance. 

The DTW loss in (18) focuses on the structural shape dissimilarity 
between the predicted ŷ and ground truth y. To make the DTW differ
entiable, the smooth min operator proposed in (Cuturi and Blondel, 
2017) is applied to define the differentiable shape term Lshape: 

Lshape
(

ŷ, y
)
= DTWγ

(
ŷ, y
)

= − γlog

(
∑

A∈A k,k

exp

(

−
〈A,Δ(ŷ, y)〉

γ

))
(19) 

Temporal Term 
The second term Ltemporal in (17) aims at penalizing temporal dis

tortions between ŷ and y. Inspired from computing the Time Distortion 
Index (TDI) for temporal misalignment estimation (Frías-Paredes et al., 
2017), the smoothed temporal loss is defined as: 

Ltemporal

⎛

⎜
⎝ŷ, y

⎞

⎟
⎠ =

1
Z
∑

A∈A k,k

〈

A,Ω

〉

exp−
〈A,Δ(̂y ,y)〉

γ (20)  

where Z is the partition function that Z =
∑

A∈A k,k
exp−

〈A,Δ(̂y ,y)〉
γ . Ω is a 

Fig. 5. Scheduled Sampling with Fixed Probability. In the training process, the 
model random decides to use the true previous observation or one estimated 
form the model itself based on the probability factor ε. On the contrary, the 
model only predicts the next step using its own predicted values in inference. 

Y. Zhang and P.J. Thorburn                                                                                                                                                                                                                  



Computers and Electronics in Agriculture 189 (2021) 106377

6

square matrix of size k × k penalizing each element ŷi being associated 

to an yj, for i ∕= j. Here, Ω is chosen as a squared penalization that Ω
(

i,

j) = 1
k2(i − j)2. 

DILATE combines two terms for precise shape and temporal locali
zation of time series with sudden changes. The imputation problem 
described in Section 2 requires to predict multiple values across a period 
of time. Hence, this loss function can be a proper choice for processing 
multi-step imputation tasks. 

4. Evaluation 

In this section, the predictive accuracy of the Dual-SSIM is evaluated 
by using the water quality sensor data collected by a water quality 
monitoring network in Australia. 

4.1. Water quality monitoring network 

The Great Barrier Reef Catchment loads monitoring program is a 
large-scale water quality monitoring program that helps track long-term 
trends in water quality entering the Great Barrier Reef lagoon from 
adjacent catchments along the east coast of Queensland (AU, 2018). The 
program monitors all intensive land use catchments. It includes 43 
monitored sites across 20 key catchment areas for monitoring sediments 
and nutrients, and 20 sites for pesticides. 

Each monitoring station has various water quality sensors deployed. 
For example, the acoustic Doppler current profiler (ADCP) is installed to 
measure the discharge and streamflow. All the monitoring data are 
collected automatically into a cloud-based data monitoring platform for 
further analysis. Data used in this study can be find from Kaggle water 
quality dataset (QLD, 2020). 

4.1.1. Water quality data 
Data were collected from an in-situ monitoring station in the 

Mulgrave-Russell catchment in the Great Barrier Reef, Australia (Fig. 6). 
Influenced by both the natural processes and anthropogenic in
terferences, the quality of river water is highly heterogeneous for 
different variables (Ishaq et al., 2012). For instance, conductivity from 
this station locates in a vast range, the minimum value is close to 0, and 
the maximum value is over 50000 (μS/cm). Similar situations can be 
found on other variables such as nitrate and turbidity. This is usually 
caused by heavy rainfall in a short period. Hence, data normalization is 
essential before applying any imputation algorithms. In this study, we 
rescaled all the data in range [0,1]. 

Fig. 7 illustrates two water quality variables monitored in this sta
tion. Observation showed that though water level rises and falls during 
the month, changes in water level apparent in a daily pattern. On the 
contrary, the temporal patterns of in-stream nitrate concentration 
cannot be identified in the daily or weekly scale (Neal et al., 2006). The 
different temporal variations bring great challenges in designing data- 
driven deep learning models. 

Nitrate in creeks and rivers can harm aquatic and marine ecosystems, 
and reliable information on nitrate concentrations are needed to manage 
the problem (Vilas et al., 2020). An important parameter is the nitrate 
load, calculated from nitrate concentration and flow data, and missing 
data can hinder the calculation of loads. Hence, we choose to recover 
missing data for water level (an input to flow) and nitrate concentration. 

4.1.2. Data preprocessing 
All the water quality variables monitored from 2019 were used as 

inputs in this experiment (Table 1). Followed by the cross-validation 
strategy, we trained the model on three quarter’ data and validated 
the model on the remaining quarter’s data. All the values are normalized 
in the range of [0,1]. 

As mentioned in Fig. 2, we use the sliding window algorithm to 

generate all the training/test samples in the experiment. Each sample 
includes k missing data as target gap, p available data on the left size of 
the gap and q available data on the right size of the gap as we described 
in Eqs. (2) and (3). For example, for a time series with 23 time index {x1,

…,x23}, we choose {x1,…, x10} and {x14,…, x23} as two inputs, {x11,… 
, x13} as the target for supervised training. 

Errors and anomalies are commonly found in real-time water quality 
monitoring. Many imputation methods are sensitive to outliers (Van 
Zoest et al., 2021). Therefore, it is critical to detect and remove outliers 
before applying imputation algorithms. 

In this study, we applied three data filtering algorithms to remove 
the obvious outliers in the data steams (Vilas et al., 2020). A threshold 
filter removed the negative and extreme large values. A sensor reference 
filter fixed the sensor-related measurement errors. In addition, we also 
applied a changing rate filter to remove the measurements that have 
significant changes in a short period. The water quality expert config
ures all three data filtering algorithms to fit this specific dataset. 

4.2. Parametrisation and benchmarks 

We evaluate the performance of recovering missing data based upon 
the root mean square error (RMSE), mean absolute error (MAE) and 
dynamic time warping (DTW). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1

(⃒
⃒
⃒fi − f̂ i

⃒
⃒
⃒

)2
√

, (21)  

MAE =
1
n
∑n

i=1
|fi − f̂ i|, (22)  

DTW =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

(i,j)∈P

‖ fi − f̂ j‖
2

√

, (23) 

Fig. 6. Water quality monitoring station in the Mulgrave-Russell catchment, 
Australia. The icon represents the in-situ monitoring station located in the 
upstream of Russell River. 
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where P is the optimal alignment path between time series. 
We also compared our model with the following five data imputation 

methods.  

• EM. Expectation Maximization (EM) scheme in (Ghomrawi et al., 
2011) is a probabilistic imputation method, which calculates 
maximum likelihood estimates from incomplete data set. 

• KNN. K-nearest neighbour (KNN) imputation (Beretta and Santa
niello, 2016) is designed to find k nearest neighbours to the obser
vation with missing data and then impute them based on the non- 
missing values in the neighbours.  

• SSIM. SSIM (Zhang et al., 2019b) is designed to impute time series 
sensor data with consecutive missing values. It is based on sequence- 
to-sequence architecture with global attention mechanisms.  

• BRITS. BRITS (Cao et al., 2018) is a recurrent neural network based 
method for missing value imputation in time series data.  

• M-RNN. M-RNN(Yoon et al., 2018) is a Multi-directional Recurrent 
Neural Network that interpolates within data streams and imputes 
across data streams. It provides a promising estimation of missing 
measurements by applying to five real-world medical datasets. 

The optimized hyperparameters for the water quality sensor data are 
also shown in Table 2. 

In this study, we applied a grid search over all hyperparameters for 
all neural network-based models. In detail, we tested the number of 

layers from 1 to 3 for both the encoder and decoder. In addition, the 
number of GRU units are tested in the range [25,50,75]. For imputation 
methods such as EM and KNN, we use the recommended parameter 
settings provided in the impyute package (Impyute, 2019). 

For SSIM, BRITS and M-RNN, we implemented the models on 
PyTorch platform (Paszke et al., 2017). In addition, limited by the BRITS 
and M-RNN’s design, we only use water level or nitrate as the input for 
the corresponding imputation task. For KNN and EM, we used the 
implementations provided by impyute package (Impyute, 2019). We 
tested the proposed Dual-SSIM on the CSIRO Accelerator Cluster with 
Nvidia P100 GPU and 64 GB RAM. 

4.3. Experimental results and discussion 

In real-world scenarios, missing data happens randomly during the 
monitoring. The recurrent based encoder and decoder design in Section 
3 promise the capability of our proposed model in generating imputa
tion results with variable lengths. Beside this, the number of available 
data around the missing values can also be adjusted based on the user’s 
configurations. Hence, the Dual-SSIM is designed to deal with the 
arbitrary size of data gaps in the time series. 

In this experiment, to make a fair and consistent comparison between 
all the imputation methods, we choose to evaluate models on the fixed 
gap size with a constant number of data surrounded. All the algorithm 
evaluated in this study can be extended to support more flexible gap 
sizes. 

Based on the analysis of the water quality monitoring data described 
in Table 1, over 90 % of the missing gaps have a size of less than 3. 
Hence, we choose to infill gaps with sizes 3 and 6, respectively. 
Furthermore, to cover helpful information near the gap, we use 10 data 
from the left side of the gap and 10 data from the gap’s right side as all 
the model’s input. The input size can also be changed based on the 
temporal patterns of the targeting variable. 

With the above settings, the evaluated model can be suitable for 
recovering most of the gaps and also handle the larger gaps as well. 
Beside this, all the input data are preprocessed as described in Subsec
tion 4.1.2. 

Table 3 illustrates the normalized imputation performance for both 
imputing missing water level and nitrate data. As we can see, the pro
posed Dual-SSIM model achieved the best performance for RMSE, MAE 
and DTW scores in all the imputation tasks. For instance, when infilling 
the size 3 gap for water level, the Dual-SSIM obtained the scores of 
0.015, 0.013 and 0.026 for RMSE, MAE and DTW, accordingly. More
over, the variance of the performance is very low in these three test cases 
(± 0.001), which means the proposed Dual-SSIM is robust and ensures 
good generalization behaviour in practice (Markatou et al., 2005). 

Fig. 7. The trend of two water quality variables during February, 2019. Water Level fluctuates in the daily pattern, while the changing pattern of nitrate con
centration cannot be identified in the daily or weekly time scale. 

Table 1 
Hourly water quality data during 2019.  

Parameters Unit Min Max Mean SD 

Water Temperature ◦C 18.6 32.2 24.9 2.8 
Water Level m 14.0 17.0 15.1 0.5 
Water discharge m3/s − 247.7 670.2 75.1 108.6 
Conductivity μS/cm 0.1 50825.8 3740.4 7607.9 
Turbidity NTU 0.5 124.3 5.8 5.6 
Nitrate mg/l 0.001 1.7 0.2 0.3  

Table 2 
Hyperparameters of the Dual-SSIM.  

Hyperparameters Value 

No. of Hidden Layers for Dual Encoder 1 
No. of Hidden GRU Units per Layer 50 
No. of Hidden Layers for Decoder 1 
No. of Hidden GRU Units per Layer 50 
Optimizer AdamW 
Batch Size 10  
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Beside this, SSIM achieved the second best performance for most of 
the imputation tasks. For example, it outperformed BRITS, M-RNN, EM 
and KNN in recovering water level with both gap size 3 and 6 for all 
three performance criteria. 

BRITS and M-RNN did not perform well in all four test cases, espe
cially when the gap size is large. According to the BRITS and M-RNN’s 
design, they used the multi-task learning approach to improve the 
imputation accuracy by applying the corresponding classification task. 
While in most scenarios, it is very hard to create a meaningful clarifi
cation task based on the collected time series data. For the pure impu
tation task, the accumulated predictive errors among consecutive 
outputs degrade these models’ performance significantly. 

Compared to machine learning-based models, EM and KNN per
formed poorly in recovering both water level and nitrate data. For 
example, EM had 0.275 RMSE scores in estimating water level data with 
gap size 6, and EM got 0.552 RMSE scores when processing nitrate data 
with gap size 6. The major drawback for these methods is that they 
ignored the temporal information, which could be very helpful in esti
mating the tendency of water quality. 

Fig. 8 highlighted the performance improvement of the proposed 
Dual-SSIM as opposed to the other five imputation methods in four test 
cases. It is obvious that the Dual-SSIM performed nearly 20 times better 
than KNN in regarding recover the missing water level data with gap size 
3 and 6 for all three criteria. Also, the DTW scores of Dual-SSIM are 

Table 3 
Imputation Accuracy For Imputing Two Water Quality Variables With Different Gap Size.  

Target Gap Metric Dual-SSIM SSIM BRITS M-RNN EM KNN 

Water Level 

3 
RMSE 0.015 (±0.001) 0.045 (±0.02) 0.067 ( ± 0. 004) 0.164 (±0.006) 0.277 (±0.044) 0.312 (±0.125) 
MAE 0.013 (±0.001) 0.042 (±0.019) 0.052 ( ± 0. 004) 0.136 (±0.007) 0.216 (±0.04) 0.263 (±0.115) 
DTW 0.026 (±0.001) 0.073 (±0.032) 0.343 ( ± 0. 024) 0.290 (±0.027) 0.405 (±0.076) 0.47 (±0.201) 

6 
RMSE 0.026 (±0.006) 0.057 (±0.01) 0.121 ( ± 0. 012) 0.221 (±0.002) 0.275 (±0.045) 0.44 (±0.004) 
MAE 0.023 (±0.006) 0.052 (±0.01) 0.092 (±0. 01) 0.159 (±0.002) 0.216 (±0.04) 0.39 (±0.012) 
DTW 0.058 (±0.013) 0.114 (±0.018) 0.361 (±0. 026) 0.367 (±0.012) 0.531 (±0.099) 1.01 (±0.013) 

Nitrate 

3 
RMSE 0.041 (±0.034) 0.084 (±0.067) 0.107 (±0.098) 0.189 (±0.02) 0.183 (±0.085) 0.232 (±0.154) 
MAE 0.037 (±0.03) 0.079 (±0.063) 0.07 (±0.065) 0.142 (±0.004) 0.113 (±0.055) 0.15 (±0.106) 
DTW 0.068 (±0.055) 0.145 (±0.116) 0.229 (±0.209) 0.529 (±0.042) 0.216 (±0.104) 0.269 (±0.187) 

6 
RMSE 0.078 (±0.067) 0.098 (±0.083) 0.117 (±0.107) 0.269 (±0.009) 0.194 (±0.089) 0.552 (±0.166) 
MAE 0.069 (±0.06) 0.089 (±0.076) 0.077 (±0.072) 0.233 (±0.044) 0.122 (±0.058) 0.483 (±0.227) 
DTW 0.177 (±0.151) 0.236 (±0.201) 0.262 (±0.24) 0.703 (±0.046) 0.316 (±0.148) 1.206 (±0.537)  

Fig. 8. The performance improvements of the proposed Dual-SSIM as opposed to the other five imputation methods in four test cases. Value at each spoke represents 
how much the Dual-SSIM can overperformance the corresponding benchmark method. (Unit 100%). 
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around 12 times better than that of BRITS in recovering water level with 
gap size 3, and 8 times better than that of M-RNN in recovering nitrate 
data with the same gap size. 

We also plotted the detailed imputation results for all the listed 
models. Fig. 9a and 9b show how all the models performed when 
imputing 3 consecutive missing water level measurements. 

In Fig. 9a, 3 consecutive measurements around the peak area were 
missed. Overall, Dual-SSIM, SSIM and BRITS can recover the missing 
data with the correct temporal pattern. While M-RNN, EM and KNN 
cannot capture the ascending and descending trends adequately. By 
feeding the available information before and after this gap (solid red 
line), the proposed Dual-SSIM recovered the missing data with the 
highest accuracy (dark blue line). This demonstrates the operational 
effectiveness of the proposed model architecture in Fig. 3. 

In addition, we also picked up a descending period to test all the 
models (Fig. 9b). In this case, the water level measurements were 
decreasing, which is a more straightforward case compared to that in 
Fig. 9a. Dual-SSIM, SSIM, BRITS, KNN can offer the imputations with the 
downtrend. EM and M-RNN generated biased imputations. 

In Fig. 9c and d, we did the same test on the nitrate data. Considering 
nitrate measurements do not have a recognised daily or weekly pattern 
(Fig. 7), it can be more difficult to recover missing nitrate measure
ments. In Fig. 9c, only Dual-SSIM can offer proper imputations when 
missing measurements happened in the peak region. When the data has 
an apparent changing trend (Fig. 9d), most imputation models can 
generate promising results. 

Fig. 10 exemplifies how the attention mechanism works when 
imputing missing nitrate measurements. The proposed Dual-SSIM model 
pays more attention to the inputs from the previous time than that from 
the future time. It is reasonable that the nitrate concentration variates 
among the time and the measures in the near past contribute consider
ably to the prediction of the missing value. Moreover, it is noticeable 

that the Dual-SSIM model also pays much attention to the first few in
puts from the right side of the gap. This proves our design in Section 3 
that feeding available data in the future time index of the gap can pro
vide useful information in recovering the missing data. The available 
data in the future time index can guide the predictions of the Dual-SSIM 
and reduce the predictive bias accumulated through multiple time 
index. In addition, the attention scores vary between these two exam
ples. This indicates that the model can focus on different parts of the 
inputs dynamically, which proves the cross-head attention mechanism 
contributes significantly to generate imputation value. Overall, the 
attention visualization gives us insight into how the inputs data from 
different time index are utilized by our model and proves the efficiency 
of the dual-head design. 

5. Conclusion 

Water quality measurements have been widely used to interpret 
current situations and trends in the water system, and support decision- 
makers in agricultural activities such as the use of irrigation, pesticides, 
and fertilisers. This paper proposes a dual-head sequence-to-sequence 
model (Dual-SSIM) for water quality sensor data imputation. In order to 
naturally support the time series data with missing gaps, two encoders 
with the gated recurrent unit have been designed to process the tem
poral information. In addition, an attention module has been designed to 
calculate the attention score by crossing the hidden states from two 
encoders. 

We have evaluated all imputation models on a real-world dataset 
collected from a water quality monitoring system deployed in Australia. 
Experimental results demonstrated that Dual-SSIM outperforms other 
benchmarks such as EM, KNN, SSIM, BRITS and M-RNN. In imputing 
missing nitrate and water level values, Dual-SSIM achieved the best 
scores of RMSE, MAE and DTW in both imputation cases with gap sizes 3 

Fig. 9. Model performance in imputing 3 consecutive missing measurements for both water level and nitrate. The solid red line is the ground truth measurements. 
Other colours represent the imputation results generated by different models. 20 available data before and after the gap are used as the model’s input. 
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and 6. When checking the estimated predictions, the outputs of Dual- 
SSIM matched the temporal changing patterns in both peak and non- 
peak periods precisely. Consequently, this model could be successfully 
used to impute missing time-series measurements, thereby helping in 
water quality monitoring and management. 
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