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A B S T R A C T   

Sensors measuring environmental phenomena at high frequency commonly report anomalies related to fouling, 
sensor drift and calibration, and datalogging and transmission issues. Suitability of data for analyses and decision 
making often depends on manual review and adjustment of data. Machine learning techniques have potential to 
automate identification and correction of anomalies, streamlining the quality control process. We explored ap
proaches for automating anomaly detection and correction of aquatic sensor data for implementation in a Python 
package (pyhydroqc). We applied both classical and deep learning time series regression models that estimate 
values, identify anomalies based on dynamic thresholds, and offer correction estimates. Techniques were 
developed and performance assessed using data reviewed, corrected, and labeled by technicians in an aquatic 
monitoring use case. Auto-Regressive Integrated Moving Average (ARIMA) consistently performed best, and 
aggregating results from multiple models improved detection. pyhydroqc includes custom functions and a 
workflow for anomaly detection and correction.   

Name of software 

pyhydroqc. 

Description 

A Python package for automated detection and correction of anom
alies in aquatic sensor data. 

Developer and contact information 

Amber Jones, amber.jones@usu.edu. 

Year first available 

2021. 

Program language 

Python 3.7. 

Hardware required 

Personal computer running Microsoft Windows, Apple MacOS, or 
Linux. 

Software required 

pyhydroqc uses the following Python packages, all of which are 
available via the Python Package Index (PyPI): numpy 1.19.1, pandas 
1.1.0, matplotlib 3.3.0, scipy 1.5.2, pmdarima 1.6.1, tensorflow 2.3, 
keras 2.4.3, statsmodels 0.11.1, scikit-learn 0.23.2, os, warnings, pickle, 
random. 

Software Availability 

The pyhydroqc software is open-source and is released under the 
Berkeley Software Distribution Version 3 (BSD3) software license. It can 
be installed within a Python environment from the Python Package 
Index (PyPI) using the PIP utility. Source code, documentation, and 
examples for the software are freely available in GitHub at https://gith 
ub.com/AmberSJones/pyhydroqc and Zenodo (Jones et al., 2022). 
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Dataset Availability 

A resource containing the input data, processing scripts, results, and 
code to generate plots in this manuscript is described and stored in 
Hydroshare (Jones et al., 2022). 

Additional documentation 

A resource containing an example Jupyter notebook with in
structions is described and stored in HydroShare (Jones, 2022). All 
functions included in the package are documented here: https://amb 
ersjones.github.io/pyhydroqc/ 

1. Introduction 

Observation of environmental phenomena using in situ sensors is 
increasingly common as sensors and related peripherals become more 
affordable and as cyberinfrastructure and expertise to support their 
operation have grown (Hart and Martinez, 2006; Pellerin et al., 2016; 
Rode et al., 2016). Sensors are subject to environmental factors that 
affect measurements and their suitability for subsequent analyses. Data 
from environmental sensors include anomalous points and biases that 
are artifacts of instrument noise or drift, power failures, transmission 
errors, or unusual ambient conditions (Horsburgh et al., 2015; Wagner 
et al., 2006). Protocols for ensuring quality of environmental sensor data 
(quality assurance) and mechanisms for performing data post processing 
(quality control) are challenges and key components of sensor network 
cyberinfrastructure (Campbell et al., 2013; Gries et al., 2014; Jones 
et al., 2015). As the quantity of sensor data increases, there is a 
commensurate need for practices that ensure resultant data are of high 
quality for subsequent analyses and exploration (Campbell et al., 2013; 
Gibert et al., 2016). 

In current practice, quality control post processing of sensor data is 
expensive and tedious. Tools exist to assist practitioners and technicians 
in reviewing data and performing corrections (Gries et al., 2014; Hors
burgh et al., 2015; Sheldon, 2008); however, quality control remains a 
time consuming and manual process consisting of an interactive 
sequence of steps. Performing corrections generally requires expert 
knowledge about the sensor and the phenomena being observed as well 
as conditions at the monitoring location (Fiebrich et al., 2010; White 
et al., 2010). Furthermore, the quality control process involves subjec
tivity as individual technicians may make different correction decisions 
(Jones et al., 2018). As a result, it is difficult to transfer the institutional 
knowledge required to post-process data, and even for trained and 
experienced technicians, quality control remains a daunting task as 
datasets grow in size and complexity for environmental observatories 
with ongoing data collection. For one network, a substantial delay of 
approximately six months between data collection and availability of 
reviewed and processed datasets allowed for thorough review and 
correction (Jones et al., 2017). For cases where observations are used for 
real time decisions related to public health and water treatment, the 
impacts of anomalous data are costly. 

As sensor datasets continue to grow, it is not tenable for scientists 
and technicians to manually perform quality control tasks (Gibert et al., 
2018), neither is it advisable to use or publish data without performing 
corrections to mitigate for errors. As a result, there is a recognized need 
for automating and improving quality control post processing for high 
frequency in situ sensor data. In this vein, automated, data driven 
techniques to detect anomalies in streaming sensor data are documented 
in the realm of research (Hill and Minsker, 2010; Leigh et al., 2018; 
Russo et al., 2020; Talagala et al., 2019); however, they are unfamiliar to 
practitioners, generally lack robust and accessible software imple
mentations, and are not typically reproducible. Furthermore, while 
basic checks and more complex algorithms may identify and flag 
potentially erroneous values (e.g., Dereszynski and Dietterich, 2007; 
Hill et al., 2009; Taylor and Loescher, 2013), these procedures are 

generally not capable of applying corrective actions. Thus, the specific 
questions we pursued with this research are: 1) how can data-driven 
methods be applied to automatically detect and correct anomalies in 
aquatic sensor data, and 2) how can these methods be packaged into an 
overall workflow and reusable software for general application? 

Regression models are one class of data-driven techniques that can 
be used as anomaly detectors for time series data by making a prediction 
based on previous data (either univariate or multivariate) and 
comparing the residual of the modeled and observed values to a 
threshold. Because regression models produce an estimate, they are 
well-suited for detection and correction of anomalous data. Although it 
is a substantial step in quality control post-processing, automated 
anomaly correction has not been widely examined. A handful of studies 
replaced raw data with modeled forecasts to exclude anomalies from 
model input but did not generate a corrected version of the dataset (Hill 
and Minsker, 2010; Leigh et al., 2018). In this work, we implemented 
and compared several regression models for anomaly detection and 
explored new approaches for anomaly correction. 

Although effectively implemented for specific case studies, none of 
the techniques described in the cited studies have been packaged as 
accessible software for broad application and dissemination. Without 
reusable code, the specifics of the algorithms as implemented with 
environmental data cannot be examined, further tested, or applied to 
other datasets. Rather than a model calibrated to a specific variable/site 
combination, practitioners need tools that can be applied to a broad 
suite of variables and/or monitoring locations documented in a reusable 
and reproducible way. Thus, we sought to package the tools we devel
oped as open-source software that could easily be deployed in a 
commonly available analytical environment. 

In this paper, we present a Python package (pyhydroqc) that im
plements a set of methods for data-driven anomaly detection and 
correction for aquatic sensor data observed with high frequency in time. 
Our approach includes machine learning algorithms for detection, la
beling, and correction of anomalous points. Multiple years of aquatic 
monitoring data from the Logan River Observatory (LRO) that have been 
reviewed and corrected by trained technicians were used as a case study 
for developing and testing automated detection and correction methods. 
The algorithms are encapsulated in a Python package that is publicly 
available and open-source (see Software and Data Availability section). 
Example scripts are also shared as Jupyter Notebooks that can be run 
with case study data to demonstrate the functionality and performance 
of the tools we developed. As there are many potential approaches to 
anomaly detection, additional techniques can be incorporated by adding 
new functions to the package that can be intrgrated into the workflow. 
Thus, the specific contributions of this work include: 1) advancing the 
algorithms and methods for automated quality control of aquatic sensor 
data, and 2) developing and demonstrating software tools that can make 
the process more approachable for data technicians and scientists. We 
anticipate that this work will be of interest to researchers, practitioners, 
and technicians that maintain environmental monitoring networks. The 
Python package can be used in any Python environment, and potential 
users should be familiar with scripting in Python (or a similar language), 
but do not need specific training or expertise. 

Section 2 outlines the methods we implemented for detecting 
anomalies and performing corrections in the context of the structure and 
design of the pyhydroqc Python package, including a description of the 
case study that drove the implementation. In Section 3, we report the 
performance of the techniques on case study data and offer recom
mendations for next steps, followed by conclusions in Section 4. Ap
pendix A contains related background including an overview of relevant 
literature and additional motivation for the work reported. 
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2. Methods 

2.1. pyhydroqc software design and implementation 

This work implements methods for anomaly detection and correction 
for environmental time series data within a Python-based software 
package. A subset of data-driven regression models are situated within 

an overall workflow that includes practical steps to facilitate anomaly 
detection and correction. The following sections describe the ap
proaches for anomaly detection and correction, including details of how 
the software supports the workflow. 

While many classes of algorithms could be used for detecting 
anomalies in aquatic sensor data, we selected time series regression 
models that were relatively straightforward to implement and that we 

Fig. 1. Workflow for steps and functions in pyhydroqc. Numbers on the left correspond to steps in the process listed in Section 2.1.  

A.S. Jones et al.                                                                                                                                                                                                                                 
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anticipate will meet the needs and considerations of many applications. 
Specifically, we investigated auto-regressive integrated moving average 
(ARIMA), several types of long short-term memory (LSTM), and Face
book Prophet. ARIMA has been successfully implemented to detect 
anomalies in environmental data (Hill and Minsker, 2010; Leigh et al., 
2018; Papacharalampous et al., 2019). LSTM is a class of Artificial 
Neural Networks (ANNs), and though applications to environmental 
data anomalies are limited, studies from other fields have detected 
anomalies with LSTM models (Hundman et al., 2018; Lindemann et al., 
2019; Malhotra et al., 2016; Yin et al., 2020). Prophet was investigated 
but not included in the Python package. Because Prophet is geared to
ward social media and business applications (Taylor and Letham, 2018), 
we found that its applicability to environmental data is insufficient. It 
failed to capture seasonal shifts in the timing of daily cycles, and model 
features did not represent environmental phenomena. This paper fo
cuses on a subset of models, but the modular design of the Python 
package allows for the implementation of additional techniques. 

The software design and development were driven by the following 
steps as a workflow for anomaly detection and correction (Fig. 1), and 
each is described in more detail in the sections that follow.  

1. Import raw sensor data into a memory-resident data structure.  
2. Perform rules-based anomaly detection and correction as a first pass 

at quality control, including addressing sensor calibration.  
3. Build one or more models for predicting observed values:  

a. Determine model hyperparameters.  
b. Transform and scale data if necessary.  
c. Build and fit models.  
d. Execute the model to determine model predictions and residuals.  

4. Post-process model results:  
a. Determine dynamic thresholds based on model residuals and user- 

defined parameters.  
b. Detect anomalies where the absolute value of the model residual 

exceeds the defined threshold.  
c. Widen and index anomalous events.  

5. Compare technician labeled and detected anomalous events (rules- 
based and model-based detections, inclusive) to assign confusion 
matrix categories and report metrics. (This step is only applicable if 
labeled data are available.)  

6. Combine detections identified by multiple models for an aggregate 
anomaly detection (if rules-based detection has been performed, 
those detections are included).  

7. Perform model-based correction for points identified as anomalous. 

In addition to performing the workflow steps, requirements that 
drove our design included: 1) open-source software development to 
facilitate deployment and use by others; 2) cross-platform compatibility 
for use on Windows, MacOS, and Linux platforms; 3) modular and 
extensible architecture that enables each workflow step to be executed 
independently along with integration of new/additional functionality; 
and 4) simple deployment. A Python package was selected as the plat
form for software implementation. The Python language meets the open- 
source and cross-platform requirements, and existing tools and libraries 
in Python support steps in the workflow, including loading and 
manipulating large datasets and developing data-driven models. In a 
Python package, functions that comprise each step in the workflow can 
be called by scripts in a modular manner. Each of the steps can be 
performed independently, facilitating flexibility in use. A Python pack
age also supports extensibility as new functions can be added without 
impacting existing functionality. Finally, Python packages can be pub
lished to the Python Package Index (PyPI, https://pypi.org/) making 
deployment straightforward and ensuring that algorithms can be 
applied in any Python coding environment. 

The anomaly detection and correction workflow steps are encapsu
lated by functions in the pyhydroqc Python package described in the 
following sections. High level workflow wrapper functions 

(‘ARIMA_detect’, ‘LSTM_univar_detect’, and ‘LSTM_multivar_detect’) 
call more granular functions specific to each data and model type to 
perform steps 2–7 (Fig. 1) and generate objects of the ‘ModelWorkflow’ 
class. For clarity, each function is named and described in this paper; 
however, most users will use the overarching workflow function calls. 
Example Python scripts and Jupyter Notebooks (see Software Avail
ability section) illustrate how the workflow functions are implemented 
for the data use case described in this paper. A full list of functions with 
inputs and outputs is found in Appendix B and with the package 
documentation. 

2.1.1. Data format and import 
pyhydroqc operates on pandas data frames, which are high perfor

mance, two-dimensional, tabular data structures for representing data in 
memory (pandas Development Team, 2008). Data frames can be created 
and saved or output as comma separated values (CSV) files. For pyhy
droqc to perform anomaly detection and correction, input data need to 
be formatted as a data frame for each variable of interest indexed by 
date/time with a column of raw data. If technician labels or corrections 
are available (for determining anomaly detection metrics), they are 
included as additional columns in the data frame. In general, most 
date/time formats reported by sensor systems will be interpreted by 
pandas as date/time objects. In the rare case that the date/time format is 
not supported, some pre-processing may be required. 

pyhydroqc also supports environmental sensor data formatted as one 
table or file with a single date/time column and multiple columns of 
measurements – one for each sensor output. For flat files with this 
structure, the pyhydroqc ‘get_data’ function wraps the ‘read_csv’ func
tion from the pandas library to import data into Python and parse into 
separate pandas data frames for each variable as required by the 
anomaly detection and correction functions. 

2.1.2. Rules-based detection and correction 
Rules-based detection is an important precursor to detection using 

models (Leigh et al., 2018; Taylor and Loescher, 2013), and the results of 
this step contribute to the overall set of detected anomalies. Whether a 
result of sensor failure or another cause, some anomalies are “low 
hanging fruit” that can be detected by rules-based preprocessing that 
performs a first pass of the data. Preprocessing the data is motivated, in 
part, by the need to train models on a dataset absent of extreme outliers 
or artifacts that models cannot capture. By applying rules-based anom
aly detection and correction, a first degree of correction is made for 
subsequent input into data driven models. We created Python functions 
to detect and correct out of range and persistent data. Furthermore, 
some aquatic sensors commonly exhibit drift, which requires sensor 
calibration and subsequent data correction. Because calibration shift 
and the preceding drift are subtle and difficult for any type of model to 
detect, we developed a rules-based routine that attempts to identify 
these events. Basic correction methods for these anomaly types were 
also implemented as Python functions. 

2.1.2.1. Range and persistence checks. The function ‘range_check’ adds a 
column to the data frame and populates it with an anomalous label if the 
observation is outside of user-defined thresholds or a valid label if it is 
within the thresholds. Ranges should be determined specific to each 
sensor based on physics and the environment in which the sensor is 
deployed and can be refined based on site specific patterns. Data 
persistence refers to the sensor reporting a repeated value, which is 
unlikely in natural systems, although sensors may report repeated values 
due to limitations in resolution. For the ‘persistence’ function, the user 
defines a minimum duration of repeated values for data to be considered 
anomalous. If repeated values exceed that duration, the points are 
classified as anomalous by populating the column from the ‘range_
check’ function. Beyond these basic checks, additional rules of 
increasing complexity could be added to the pyhydroqc package and the 
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anomaly detection workflow. Examples include ranges that vary 
seasonally, rate of change checks, and differencing checks. 

Once anomalous points are identified by the Python functions that 
implement these rules, labels are carried through to the model-based 
detection steps. Labeled points are omitted from model training, either 
by logical exclusion, or, for models requiring an unbroken time series for 
training, by interpolating between valid points. Linear interpolation is 
performed (using the ‘interpolate’ function) over the entire time series 
as a preliminary correction step so that model input is more valid. If the 
complete workflow is followed, values initially corrected using linear 
interpolation are replaced by the model-based correction described in 
Section 2.1.9. 

2.1.2.2. Calibration and drift correction. Environmental sensors 
commonly drift, and many aquatic sensors (specific conductance, pH, 
dissolved oxygen) require regular calibration to known standards. Drift 
causes a gradual increasing or decreasing trend separate from daily and 
seasonal patterns, and a calibration event manifests as a localized shift 
that corrects subsequent data up or down. These trends and shifts can be 
subtle and difficult to identify without a detailed record of calibration 
dates. In preliminary work, the model-based detectors described in 
subsequent sections were unable to consistently identify these data 
patterns. Detected shifts due to calibration events were undiscernible 
from other localized anomalies. Thus, it is important to address cali
bration events early in the quality control process because it is prefer
able that model-based detectors be trained on data that are free from 
drift. 

For calibration and drift correction, we implemented functions to 
mimic a typical manual workflow. Performing post-processing correc
tion for drift and calibration involves review of data, comparison of field 
records to data shifts to identify points corresponding to calibrations, 
and application of a drift correction that uses start and end points and 
the gap of the calibration shift to retroactively correct data between two 
calibrations. In our experience, calibration events are typically reviewed 
and corrected one at a time. 

While recognizing the difficulty of definitively identifying calibra
tion events in an automated way, we designed functions for detection 
(functions ‘calib_edge_detect’, ‘calib_detect’, ‘calib_overlap’) and 
correction (functions ‘find_gap’, ‘lin_drift_cor’) of data affected by drift 
and calibration. The algorithms take advantage of characteristics of 
calibration events, specifically that events only occur during certain 
hours of the day, they may involve a shift in observed data, and that 
when returned to the water, sensors may report the same values for 
several time steps until the sensor stabilizes. Two separate approaches 
identify calibration events: 1) where there is a discernible shift in the 
data, or 2) persistence occurs over a limited window of points. Both are 
restricted to hours and days when technicians would be in the field. 

Given dates of calibration, a gap value needs to be specified for 
correcting past data. A function ‘find_gap’ identifies the greatest shift for 
a given window of time to determine a gap value and the precise point 
that should be shifted while accounting for outlier spikes commonly 
associated with calibrations. A function for linear drift correction, 
‘lin_drift_cor’, corrects for drift and calibration events given start and 
end dates and a gap value of the calibration shift. While the calibration 
event detectors may not adequately identify events, requiring technician 
review or input, this process is a step toward automation as it evaluates 
gap values according to a set of rules rather than arbitrary determination 
by technicians (as illustrated in Jones et al. (2018)) and allows for bulk 
correction of calibration events. 

2.1.3. Model-based detection using ARIMA 
ARIMA is a time series forecasting model where inputs correspond to 

past time steps of the variable of interest, and the output is a predicted 
value for that variable at the next time step. ARIMA uses three param
eters to define a linear model (Equation (1)): 

yt =
∑p

i=1
φiyt− i + εt −

∑q

i=1
θiεt− i (1)  

where yt is the model output or the prediction for time step t, p is the 
number of previous points in the series to be used in the model, q is the 
number of moving average terms to include, φi are the fitted coefficients 
for auto-regression, θi are fitted model coefficients for the moving 
average, and εt is the moving average error term. Not shown in the 
equation is the term d, which is the order of differencing applied to the 
data y before this equation is evaluated. The parameters (p, d, q) can be 
determined manually or automatically. Manual parameter determina
tion involves time series decomposition and the review of auto- 
correlation plots, which is tedious for numerous data series. Automatic 
determination of the parameters is effective but can be computationally 
demanding. pyhydroqc includes a function ‘pdq’ for automated deter
mination using the pmdarima package (Smith, 2017). Given (p, d, q), 
model training involves determining the values of the coefficients for the 
terms in the linear equation (φi and θi) based on actual data. 

In pyhydroqc, the function ‘build_arima_model’ constructs and trains 
an ARIMA model given input time series data and input parameters (p, d, 
q). It relies on the sarimax function from the statsmodel package (Sea
bold and Perktold, 2010) to fit an ARIMA model (based on Equation (1)), 
make model predictions for each time step, and compare predictions to 
observations. Input data should be free from gaps, so the anomaly 
detection workflow uses output of the rules-based detection with linear 
interpolation of any identified anomalies as input for ARIMA modeling. 

2.1.4. Model-based detection using LSTM 
LSTM is a type of neural network model architecture specifically 

designed for time-dependent and sequenced data. LSTM models consist 
of recurrent “cells” or units, each corresponding to one time step. A cell 
uses “gates” to control the flow of information in and out of the cell and 
how much of the past data that the cell “remembers” for computing 
output. To train an LSTM model, the weights of the connections within 
and between the gates are iteratively refined based on training data. 

There are many variations of LSTM architecture (Greff et al., 2017). 
For our implementation, we compared several LSTM model types that 
are appropriate to time series data modeling for anomaly detection: 
vanilla and bidirectional, univariate and multivariate. In contrast with 
other neural network architectures, for which many layers are advised 
for fitting data, more shallow LSTM have been used because of the in
ternal complexity of LSTM cells (Géron, 2017; Greff et al., 2017; 
Hundman et al., 2018). Other model types could be constructed, model 
layers and complexity could be added, and the input parameters could 
be tuned to each time series. Parameters can be defined by users and can 
be adjusted to investigate sensitivity, and we describe our approach for 
parameter selection in Section 3.1.4. The objective of this work was not 
to achieve the best time series model, but rather to detect anomalies, so 
fine-tuning models was not required or pursued. Instead, comparisons 
were made between a few basic LSTM variations with the same 
parameter settings. 

As mentioned, pyhydroqc workflow functions call multiple lower- 
level functions. For LSTM models, each type is implemented 
within the workflow function by an associated model wrapper 
function (‘LSTM_univar’, ‘LSTM_multivar’, ‘LSTM_univar_bidir’, 
‘LSTM_multivar_bidir’), which calls functions specific to that model type 
for preprocessing, model building, model training, and model 
evaluation (shown in Fig. 1 and described in the Jupyter Notebook 
example script). The model wrappers return objects of the class 
‘LSTMModelContainer,’ containing model predictions and residuals for 
each time step, similar to the output of ‘build_arima_model.’ The model 
wrapper functions also include an option for saving LSTM models for 
future use, which is important because LSTM model training and 
development is stochastic, resulting in a new model each time the al
gorithm is run. We developed models for a particular sensor deployed to 
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a certain location, so the models are variable and location specific and 
can be reused for that data series after training. 

2.1.4.1. Vanilla and bidirectional LSTM. pyhydroqc implements the 
“vanilla” type of LSTM model (Greff et al., 2017), which consists of a 
single layer LSTM in a sequence-to-one manner, i.e. the model returns a 
single output based on a sequence of inputs. Given a user-specified 
number of past time steps, the model output is a single value for the 
next point in time. “Bidirectional” LSTM models use observations both 
before and after the point of interest to provide information for model 
prediction. By encoding a vanilla LSTM model with a bidirectional 
wrapper, input data are traversed both forward and backward in 
sequence, and model output is the value to have occurred in the middle 
of the sequence. In pyhydroqc, parallel functions structure input data to 
contain a user specified number of time steps prior to the point of in
terest for vanilla LSTM and prior to and following the point of interest 
for bidirectional LSTM (functions further described in Section 2.1.5.3). 

2.1.4.2. Univariate and multivariate LSTM. Either univariate or multi
variate input data may be used for vanilla and bidirectional LSTM 
through the LSTM workflow functions and model wrapper functions. 
The workflow functions (‘LSTM_detect_univar’ and ‘LSTM_de
tect_multivar’) prepare data and report results for univariate or multi
variate data and call the associated model wrapper functions 
(‘LSTM_univar’ and ‘LSTM_univar_bidir’ for univariate, ‘LSTM_multi
var_bidir’ and LSTM_multivar’ for multivariate). For multivariate data, 
the models use data for all observed variables as input and output esti
mates of the same variables for the point of interest. Model errors are 
examined for each variable, and independent thresholds are set for 
anomaly detection. 

2.1.4.3. LSTM preprocessing, model building, and training. The functions 
for preprocessing, model building, and model training are compiled as 
sequenced steps in the LSTM model wrapper functions (Fig. 1). Pre
processing for LSTM models involves scaling, reshaping, and ensuring 
that training data are valid, which is facilitated by using the output of 
the rules-based detection. Data must be scaled so that extreme values do 
not have an outsized impact on the model, and pyhydroqc includes a 
function for scaling (‘create_scaler’) based on the standardscaler func
tion from the scikitlearn package, which subtracts the mean and divides 
by the standard deviation to scale the data (Pedregosa et al., 2011). 
Reshaping data creates a sequence of immediately previous points (i.e., 
model input) for each data value (i.e., model output). pyhydroqc func
tions (‘create_sequenced_dataset’ and ‘create_bidir_sequenced_dataset’) 
reshape data based on a user-defined number of past time steps. 

To build a model structure, the pyhydroqc functions 
‘create_vanilla_model’ and ‘create_bidir_model’ use the Sequential 
model from the Keras package (Keras Development Team, n.d.) with 
model layers (LSTM, Dense, and Bidirectional) and the suite of 
user-specified hyperparameters accepted by the Sequential model. 
To train the model, the functions ‘create_training_dataset’ and 
‘create_bidir_training_dataset’ select a subset of data based on a 
user-defined number of random points, ensuring that none were iden
tified as anomalous by the rules-based detection. These points are 
reshaped and used for training the LSTM model. The function ‘train_
model’ uses the Keras early stopping feature so that model training 
ceases when the error of the test and validation sets (randomly selected 
by the algorithm) are approximately equal. 

2.1.5. Post processing: dynamic threshold determination and anomaly 
detection 

A key component of model-based anomaly detection using regression 
approaches is determination of the threshold that regulates whether a 
point is marked as anomalous or valid. Aquatic data vary seasonally, 
daily, and with environmental events, changes that may not be 

adequately captured by a model. A dynamic threshold has the potential 
to improve detection accuracy by applying a narrower range (i.e., higher 
sensitivity) when the model predictions are more precise and a wider 
range when model predictions are more variable. In particular, by using 
a dynamic threshold, we hoped to identify localized outliers that are 
within the absolute expected range of values but are relatively distinct 
for a narrower time window and which were undetectable with a con
stant threshold. 

pyhydroqc implements a dynamic threshold following the format of 
confidence intervals and prediction intervals used in other studies 
(Hundman et al., 2018; Leigh et al., 2018). For each data point, a 
threshold is determined based on a moving window of points (Equation 
(2)): 

T ={
μ ± zα/2σ, if zα/2σ < min
μ ± min, otherwise (2)  

where T is the threshold, μ is the mean of the user-defined moving 
window model residuals, σ is the standard deviation of the moving 
window model residuals, α is a user-defined value to adjust the width of 
the threshold, zα/2 is the α/2 quantile of a normal distribution, and min is 
a user-defined parameter for the minimum threshold value. Note that 
min may be set to zero (having no effect) or to a non-zero value to 
prevent too many false positives - i.e., detections that are not anomalies. 
This can occur when model residuals are low over an extended period 
and the dynamic threshold is smaller than the resolution or uncertainty 
inherent in the sensor. 

Given a time series of model residuals, the ‘set_dynamic_threshold’ 
function in pyhydroqc determines upper and lower thresholds for each 
point in a series using Equation (2) with a user-defined moving window 
– the number of points used to calculate μ and σ. The ‘detect_anomalies’ 
function then compares the dynamic threshold values to the residuals for 
each time step to determine whether a point is anomalous. If rules-based 
detection was performed, the anomalies detected in that step are prop
agated through the workflow and are included in the detections output 
by this step. 

2.1.6. Post processing: anomaly events and widening 
In comparing anomalies identified by the model-based detectors to 

anomalies labeled by technicians, we observed mismatches related to 
resolution and lags in model approximations related to model smooth
ing. When an anomaly is identified, either the technician or the algo
rithm must determine how many points to label. To address this in a 
systematic way, pyhydroqc generalizes anomalies into numbered 
“events” consisting of groups of anomalous points. By widening the 
detection window to include points before and after anomalies detected 
by the algorithm as well as points labeled by the technician, overlap 
between the two is more likely. In pyhydroqc, the ‘anomaly_events’ 
function groups contiguous anomalous points as events by adding a 
column to the data frame with incrementing numbers as an index for 
each anomalous event. To perform widening for each anomalous event, 
the function assigns the event’s index to points before and after the event 
(the number of points is user-defined), effectively adding those points to 
the event. 

2.1.7. Performance metrics 
For data with technician labels, the function ‘compare_events’ de

termines valid and invalid detections by comparing events detected by 
the algorithm to those labeled by the technician. Each point is classified 
as true positive, true negative, false positive, or false negative. When 
there is any overlap between detected events and labeled events (i.e., 
any portion of a labeled event is detected), all points are classed as true 
positives to indicate that the labeled event was detected. For accuracy, 
the points assigned as anomalous on the edges of events by widening are 
removed from the event as part of this step. 

A confusion matrix compares model classifications to actual data to 
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evaluate overall performance by reporting total true positives, true 
negatives, false positives, and false negatives (Leigh et al., 2018; Tan 
et al., 2019). Additional metrics that are commonly reported include 
positive predictive value (precision), negative predictive value, accu
racy, recall, and F scores (Li et al., 2017). In pyhydroqc, the function 
‘metrics’ determines the performance metric outputs in Table 1. As ag
gregates of precision and recall, F scores combine true positives, false 
positives, and false negatives into a single assessment score to assess 
models (Cook et al., 2020). The F1 score gives equal weight to false 
positives and false negatives while the F2 score gives greater weight to 
false negatives. F scores range from 0 to 1, with 1 being the upper bound. 

Because anomalies are sparse relative to the total number of data 
points, the datasets are considered imbalanced (Chandola et al., 2009). 
Counts of true negatives are overwhelming, resulting in high accuracy, 
which may make it difficult to compare between models (Tan et al., 
2019). As a result, anomaly detection focuses on true positives, false 
positives, and false negatives. Anomaly detection requires a balance 
between increasing true positives while reducing both false negatives 
and false positives, objectives that may be mutually exclusive and 
depend on model sensitivity. Our preferred approach is to err on the side 
of sensitivity in the detector to minimize false negatives (along with 
maximizing true positives) even at the expense of increased false posi
tives. The F2 score supports this aim by more heavily weighting false 
negatives while the F1 score equally weights true negatives and false 
negatives (Cook et al., 2020). 

2.1.8. Aggregate detections 
In applying multiple models, rather than select the single best per

forming model, a robust approach is to aggregate results so that a point 
identified by any of the models as anomalous is considered a detection. 
To address this, pyhydroqc includes a function ‘aggregate_results’ for 
combining anomalies detected by the different model types into a single 

column of detected anomalies. The outcome of aggregation is that a 
point is classed as anomalous if it was detected by any of the considered 
models. When a point is identified as anomalous by either rules-based 
detection or by any of the models, it is denoted with a Boolean in col
umns of output data frames (one that corresponds to each model), so the 
source of the anomaly may be traced through the process. Because rules- 
based detections are propagated through the workflow and are present 
in the detections associated with each model, the aggregation auto
matically includes the rules-based detections. 

2.1.9. Model-based correction 
A primary goal of this work was to suggest corrections for anomalous 

points, which is enabled by using time series regression methods for 
anomaly detection. While the model predictions used to determine 
anomalies could be simply substituted as corrections, the prevalence of 
consecutive anomalous points means that anomalous points would be 
used to determine corrections. To prevent this, correction models were 
implemented at a more granular scale. A function ‘generate_corrections’ 
was developed that implements piecewise ARIMA models using the 
following steps:  

1. Given a data frame of observations with anomalies detected, assign 
consecutive points with either valid or anomalous labels to alter
nating groups. The function ‘group_bools’ adds a column populated 
with 0 for valid points and assigns each anomalous event a unique 
integer.  

2. Ensure that sets of valid data points are large enough to generate 
forecast predictions. Where valid data points are in between anom
alous points and the duration is too small to use as model input, the 
function ‘ARIMA_group’ merges them with previous and subsequent 
anomalous points into one anomalous group by resetting the group’s 
incrementing index.  

3. For each anomalous group, beginning with the group of shortest 
duration and progressing in order of increasing duration, develop 2 
ARIMA models: one based on the preceding valid points and one 
based on subsequent valid points (using a specified maximum 
number of points for model development). Use the piecewise models 
to make forecasts and backcasts and blend them using the function 
‘xfade’ to get a single correction estimate for each point in the 
anomalous group. 

4. In the data frame, populate a new column with the correction esti
mates for points in anomalous groups and with the observations for 
the points in valid groups. 

To blend the forecast and backcast, the values are weighted ac
cording to the proximity to each end point of the anomalous event, as 
shown in Equation (3), which is encoded in the function ‘xfade’: 

yk =Ak
N − k
N + 1

+ Bk
k + 1
N + 1

(3)  

where yk is the correction estimate for each time step k in the anomalous 
group, N is the total number of data points in the anomalous group to be 
corrected (k = 0 … N-1), and Ak and Bk are the ARIMA forecasted and 
backcasted values, respectively. Examples in Section 3.4 illustrate this 
concept. Because the ARIMA correction is based on points immediately 
proximate, instead of using the hyperparameters and model generated 
for the dataset as a whole, each forecast and backcast is an individual 
ARIMA model with hyperparameters and model fit based on the window 
of valid data. Using more granular models allows models to be tuned to 
that local time window and helps prevent errors that might arise from 
not having enough valid data points to estimate a point (e.g., if p = 9 for 
the time series as a whole, at least 9 valid data points are required). To 
avoid overfitting and to conserve computational resources, the ‘gen
erate_corrections’ function includes a user-defined limit on the duration 
of data used to develop and train piecewise models to generate the 

Table 1 
Performance metrics calculated in pyhydroqc and associated equations.  

Metric Definition Equation 

True Positives (TP) Count of data points from valid 
detection events where model 
detection events overlap with 
labeled anomalous events.  

False Positives (FP) Count of data points from invalid 
detections where model 
detection events did not overlap 
with labeled anomalous events.  

True Negatives (TN) Count of data points which did 
not belong to either labeled 
events or model detection events.  

False Negatives (FN) Count of data points from labeled 
events which were not detected 
by model(s).  

Positive Predictive 
Value (PPV) 

Ratio of true positives to total 
positives. 

PPV =
TP

TP + FP 
Negative Predictive 

Value (NPV) (or 
Specificity) 

Ratio of true negatives to total 
negatives. 

NPV =
TN

TN + FN 

Accuracy Ratio of correctly identified 
points to all data points. 

Accuracy =

TP + TN
TP + FP + TN + FN 

Recall (or Sensitivity) Ratio of True Positives to the 
total number of labeled 
anomalies. 

Recall =
TP

TP + FN 

F1 Assessment score that combines 
true positives, false positives, 
and false negatives. Perfect score 
= 1. 

F1 =
2*PPV*Recall
PPV + Recall 

F2 Assessment score that combines 
true positives, false positives, 
and false negatives. Gives greater 
weight to false negatives than 
does F1. Perfect score = 1. 

F2 =

5*TP
5*TP + 4*FN + FP  
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forecasts and backcasts. 
Instead of applying corrections sequentially, the correction function 

first corrects the events of shortest length and then corrects events of 
increasing duration. In this manner, corrected estimates are available as 
model inputs when needed for correcting longer events. This helps 
ensure that the period of valid data before or after an anomalous event is 
sufficient to capture patterns. 

2.2. Experimental use case: Logan River Observatory data 

The primary objective of this work was to advance automation of 
quality control post processing specifically for environmental sensor 
data. As an extensive test case, we used data collected within the LRO 
where high frequency monitoring is conducted at several climate and 
aquatic sites within the Logan River watershed in northern Utah, USA 
(http://lro.usu.edu, (Neilson et al., 2021). Monitoring sites were 
established and infrastructure was originally deployed using protocols 
described by Jones et al. (2017). The LRO is similar to many research 
sites throughout the world where in situ monitoring of aquatic, climatic, 
and terrestrial variables is performed in support of research activities. 
Utah State University manages the monitoring network including site 
maintenance and data dissemination (available at http://lrodata.usu. 
edu/). 

The upper Logan River watershed consists of mountainous forest and 
rangeland with limited development while the lower watershed is 
agricultural and urban with multiple agricultural diversions. Hydrology 
is generally driven by snowmelt, and the upper watershed is charac
terized by karst topography. Aquatic monitoring sites are located in both 
the upper mountain/canyon and lower urban/agricultural sections and 
include sensors for water level, water temperature, pH, dissolved oxy
gen, specific conductance, and turbidity (Fig. 2). 

Raw sensor observations are recorded on field dataloggers, streamed 
to a central base station, and loaded to an operational database (Jones 
et al., 2015). Technicians perform quality control post processing on 
collected data using a suite of interactive tools to generate a quality 
controlled copy of data (Horsburgh et al., 2015). In this process, tech
nicians review data and consult with the record of field activities to 
identify, label, and correct anomalous points or events in the data. LRO 
data exhibit a number of anomaly types including outliers, artificial 

persistence, drift, and others described by Horsburgh et al. (2015). 
Currently, post processing consumes approximately half of a full-time 
technician’s time with additional support from hourly assistants. We 
sought to move toward automated methods to reduce the time and re
sources required to perform quality control post processing. 

To test pyhydroqc, we used data from the six aquatic sites shown in 
Fig. 2 for four variables common to aquatic monitoring and measured at 
all LRO sites: temperature, pH, specific conductance, and dissolved ox
ygen. Most of the sites include over 6 years of data at 15-min intervals 
with few to no gaps for both raw and labeled/corrected data. To assess 
performance, we used the metrics implemented in pyhydroqc to 
compare automated anomaly detection with the manual results pro
duced by technicians. LRO sensor data were exported from a relational 
database (Observations Data Model, Horsburgh et al., 2008) to flat CSV 
files corresponding to each site indexed by a single date/time column 
with columns for the measurements output by each aquatic sensor. The 
pyhydroqc ‘get_data’ function was used to read the CSV files into indi
vidual pandas data frames for subsequent analyses. Testing the software 
against case study data was performed on a 2017 MacBook Pro laptop 
with 16 GB RAM and a 3.1 GHz quad-core Intel Core i7 processor. 

3. Results and discussion 

3.1. Preprocessing and settings 

The following subsections present the parameters, configuration, and 
settings used by each anomaly detection and correction procedure. 
Anomalies detected by the combination of rules (range and persistence) 
and models with thresholds (ARIMA and LSTM) are reported together in 
Section 3.3. 

3.1.1. Rules-based detection and correction: range and persistence checks 
For the LRO data, range thresholds were determined specific to each 

sensor based on manufacturer reported ranges and were further refined 
according to past observations at each site (Table C1). The maximum 
allowable persistence durations were also based on review of raw ob
servations and varied with sensor. Initially, persistence durations were 
set lower (~5–10 time steps); however, those durations resulted in many 
false positives as sensors regularly reported repeated values for more 
than 10 time steps. We observed that repeated values are often caused by 
limitations in sensor resolution, so persistence durations were increased 
(30–45 time steps; Table C1). Anomalies detected by these functions 
retained labels through subsequent steps, so the metrics resulting from 
rules-based detection are reported with the overall anomaly detection 
results in Section 3.3. 

Anomalies detected by the range and persistence checks were 
initially corrected by linear interpolation, which is identical to the LRO 
protocol used by technicians to manually correct over short periods. 
However, in the pyhydroqc anomaly detection and correction workflow, 
the linear interpolation correction is an intermediate step to facilitate 
more accurate model development. These points retain an anomalous 
label through subsequent steps of the workflow and are eventually 
corrected using the model correction algorithm. Consequently, the final 
correction is performed by the model overwriting the interpolated 
points in the final, corrected dataset. 

3.1.2. Rules-based detection and correction: calibration and drift correction 
Results from the calibration detection algorithms were compared to 

calibration events identified and corrected by technicians for all sensors 
at one site (Main Street). The persistence functions (‘calib_detect’ and 
‘calib_overlap’) identified about 25% of the calibration events with a 
high false positive rate (5X). The persistence we observed following a 
calibration may be specific to the sensors used in the LRO (YSI multi
parameter sondes) and not broadly applicable. The edge detection 
function (‘calib_edge_detect’) identified about 40% of calibrations for 
pH but was less successful (<10%) for specific conductance and Fig. 2. Logan River Observatory showing locations of aquatic monitoring sites.  
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dissolved oxygen. Additional effort could be applied to improve cali
bration event detection and to refine the parameters of the edge detec
tion function (threshold and width). In theory, the model algorithms 
should identify these local shifts as anomalies; however, although the 
observed values may deviate from the modeled, the residuals were often 
within the dynamic thresholds (as defined in Table C1) and so were not 
detected as anomalies. Adjusting threshold settings may identify more 
calibration events but cause oversensitivity. Furthermore, the corrective 
action required for calibration events is different from that of other 
anomaly types, so the detection step should be separate. 

Although calibration events were not automatically detected with 
high accuracy, the function for finding gap values was effective at 
determining valid gap values and end times for calibration shifts. In a 
review of the results of the ‘find_gap’ function, out of 100 distinct cali
brations (the total for all variables at Main Street), revision was made for 
only 6 instances. With calibration dates and gap values as inputs, the 
function for linear drift correction was executed for all calibrated sen
sors (specific conductance, pH, dissolved oxygen) for the Main Street 
site. Many of the automatically determined gap values approximated the 
values used by the technician for correction, in which case the linear 
drift correction was comparable to the technician correction. Some 
automatically determined values were judged as preferable to the 
technician selected gap value (e.g., Fig. 3). 

In our experience, selecting a viable gap value and performing drift 
correction can be the most time-consuming aspect of manual quality 
control. So, although the algorithms we designed were not successful in 
identifying a majority of calibration events, technicians typically record 
the dates of calibration, and automatically determining the gap value 
and performing drift correction in batch is a significant improvement. 
Furthermore, using an algorithm for this step increases consistency – the 
range of gap values selected by multiple technicians was the primary 
source of quality control subjectivity identified by Jones et al. (2018). 

Based on our testing using the LRO data, our recommended workflow 
for addressing drift and calibration events is to: 1) identify a list of 
calibration dates (generally from field notes, although the pyhydroqc 
functions may be useful); 2) determine gap values and associated times 
using the ‘find_gap’ function; 3) review those shifts and make any ad
justments; and 4) use the dates and gap values as inputs to the linear 
drift correction function. Code for performing these steps including 
generating plots of gap values for review are demonstrated in example 
notebooks. 

3.1.3. Model-based detection and correction: threshold determination 
The dynamic threshold used to evaluate differences between 

simulated and observed values directly impacts which observations are 
detected as anomalous or valid. For the LRO data, we used trial and error 
to settle on window sizes, alpha values, and minimum range values for 
determining thresholds (Table C1). The same threshold settings were 
used for all model types. We found that moving windows longer than a 
single day resulted in too much smoothing to the threshold and intro
duced artifacts due to daily patterns in model residuals. In general, 
window sizes of 5–10 h (corresponding to 20–40 time steps) were 
selected to balance between over-smoothing of longer windows and 
highly dynamic thresholds of shorter windows. An added benefit of 
smaller window sizes is that fewer computational resources are required 
to determine thresholds. Relatively small alpha values were selected 
(0.001–0.00001) to create a sufficiently high threshold range. With 
larger alpha values, the narrow threshold range was overly sensitive, 
resulting in too many false positives. Minimum values were similar for 
all sensors across sites, with a few exceptions. As illustrated in Fig. 4, the 
pattern of spread in thresholds tracks with the variability in model re
siduals, and residuals that exceed the threshold are detected anomalies. 

3.1.4. Model-based detection and correction: model parameters and settings 
To create ARIMA models, (p, d, q) were determined for each LRO 

data series over the full duration of data using the ‘pdq’ function 
(Table C1). To build, compile, and train LSTM models, consistent pa
rameters and settings were used for all of the LRO data series and the 
several varieties of LSTM models (Table C2). Default settings and 
commonly used parameters (Géron, 2017; Keras Development Team, n. 
d.) were selected with minimal tuning to achieve the goal of satisfactory 
rather than perfect models. Models were trained with a randomized 
subset of 20,000 data points from each data series, corresponding to 
approximately 10% of the dataset. This number of data points was 
determined to be robust given that increasing the number of training 
points did not change the overall results, and training with 20,000 data 
points was less resource intensive compared with larger training sets. 
Anomalous events in both technician-labeled data and model-detected 
data were widened by a single point (widening factor = 1). This 
setting was used for all data series and all model types. 

3.2. Anomaly detection example 

Examples help demonstrate the performance of the workflow for 
both successful and unsuccessful anomaly detection (Fig. 5; additional 
examples in Appendix D). On 2018-11-11, the ARIMA model detected an 
event that was not labeled by the technician (false positive). Although 
this is a false positive, the model with a dynamic threshold behaved as 

Fig. 3. Example of gap values and linear drift correction for pH at Main Street. A calibration shift occurred 2014-07-29. The data at the calibration were shifted by a 
gap value – determined either by the algorithm or by the technician, and data before the calibration were adjusted proportionately. 
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designed in detecting a localized outlier. The events on 2018-11-12 and 
2018-11-13 consist of points both detected by the algorithm and labeled 
by the technician (true positive). Not all points labeled by the technician 
were detected as anomalies by the model; however, performing 
widening and considering the overlapping sets of points as anomalous 
events resulted in true positives for all of these points. The event on 
2018-11-14 was not detected by the algorithm but was labeled by the 
technician (false negative). There is nothing in the original data to 
indicate that something was amiss, so it is unclear why the points were 
labeled as anomalous by the technician. The technician has expert 
knowledge or is following protocol that the algorithm is unable to 
discern. In assessing algorithm performance, we defer to technician la
bels as a benchmark. However, the quality control process is subjective 
(Jones et al., 2018) and data are not perfectly labeled, making reliance 
on technician labels as a gold standard problematic (Russo et al., 2020). 
In the LRO data, we identified numerous cases where it was unclear why 
some data points were labeled and others were not (see Appendix D), 
which may be due to multiple technicians and evolving protocols, 
among other reasons. 

3.3. Combined anomaly detection results 

The F2 scores for all time series (Table 2) combine true positives, 
false positives, and false negatives to indicate overall performance for 

each model type, rules-based detection, and an aggregate of all models. 
Higher scores indicate better model performance (F2 = 1 would be a 
perfect score). Fig. 6 is a visual illustration of the confusion matrix where 
each panel corresponds to a time series and each bar to a model type. 
The bottom portion of each bar (light blue) represents true positives, the 
middle portion (orange) represents false negatives, and the sum of those 
is equivalent to all technician labeled points. The top portion of each bar 
(purple) represents false positives. The dashed lines distinguish the 
proportion of anomalies identified by rules-based detection. True posi
tives below the lower dashed line (black) were detected by rules while 
those above it were only detected by models. Likewise, false positives 
below the upper dashed line (gray) were detected by rules, and false 
positives above it were detected by only models. Anomalies detected by 
rules (those below each line) may have also been detected by models, so 
there may be overlap. The results illustrate some general trends 
regarding the performance of both rules-based and model-based 
detection. 

3.3.1. Detections due to rules and threshold settings 
For several time series, the rules-based algorithm accounts for the 

majority of anomaly (true positive) detections (e.g., temperature at 
several sites, dissolved oxygen at Franklin Basin). In these cases, the 
model detection did not provide many additional detections. In other 
cases (e.g., temperature at Tony Grove, all pH time series, most specific 

Fig. 4. Example of model residuals and dynamic thresholds for specific conductance at Main Street.  

Fig. 5. Examples of anomalies detected using an ARIMA model for specific conductance at Tony Grove.  
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conductance and dissolved oxygen time series), the true positives are 
split between rules-based and model-based, indicating that the models 
captured anomalous events that the rules-based detection missed. This 
demonstrates the value of using both approaches in tandem. 

In some cases, the success of the model(s) in detecting anomalies 
(true positives) is offset by a large number of false positives. Particularly 
high counts of false positives indicate oversensitivity, due to either 
persistence durations that are too short or to thresholds that are too 
tight, both of which may result in too many detections. In particular, 
dissolved oxygen at Franklin Basin and Mendon and specific conduc
tance at Blacksmith Fork exhibit high rates of false positives. Given that 
most are under the rules-based line, the false positives are attributable to 
oversensitivity in rules (range check or persistence duration) rather than 
inadequate threshold settings. The similar rates of false positives be
tween models for many time series indicates that using the same 
threshold settings for all model types is acceptable. 

Cases with a large portion of false negatives (undetected anomalies) 
across models indicate that the models were not sensitive enough (e.g., 
temperature at Main Street and Blacksmith Fork). Better detection might 
occur with tighter thresholds or adjusted rules-based settings. Practi
tioners need to consider the tradeoffs with model sensitivity in deter
mining threshold settings. Under the assumption that anomalies 
identified by the algorithm would be further reviewed by a technician, 
the thresholds can be set to capture more potential anomalies, erring on 
the side of false positives. However, sensitivity must be balanced to 
avoid excessive false positives from narrow thresholds. 

3.3.2. Model comparison 
The detections between all models were generally comparable (e.g., 

temperature at most sites, pH at most sites, dissolved oxygen at several 
sites), although, for a few time series, there were distinct variations in 
results between models (e.g., specific conductance at Franklin Basin and 
Tony Grove, dissolved oxygen at Tony Grove). ARIMA models gave the 

best average F2 score (Table 2) – they generally outperformed LSTM 
models for the cases with differences in model performance and were 
often slightly better than the LSTM models for the time series with 
comparable results. ARIMA was generally more sensitive – detecting 
more true positives than the LSTM models at the expense of detecting 
more false positives. Results from the LSTM models varied without a 
discernible pattern. In one case, the univariate bidirectional model 
excelled (temperature at Main Street), while in other cases the multi
variate vanilla was preferred (specific conductance at Franklin Basin and 
Tony Grove, dissolved oxygen at the Water Lab). For some of these se
ries, the more successful models detected a few points that were part of 
long events that were labeled anomalous by technicians, which 
improved the performance of those model types. 

Although the multivariate and bidirectional models include more 
information in their input, either with additional variables or additional 
points in time, these models did not broadly outperform their simpler 
counterparts. With regard to the multivariate model, while there is some 
physical relationship between the variables of interest, the LSTM model 
has no explicit physical drivers. We might expect that the behavior of 
other variables related to diurnal cycle or ambient events to offer some 
predictive information; however, most types of anomalies occur for a 
single variable, independent of other sensors. Some conditions, such as 
sediment or ice built up around a multi-parameter sensing sonde, or an 
issue with power to the sensors, may impact more than one sensor 
simultaneously. In these cases, there is value in noticing concurrent 
anomalies in multiple sensors. Because not all studies measure all var
iables, single sensor algorithms are more versatile, and can perform 
well, as shown in these results. There may be systems in which variables 
are so physically related that a more directly dependent relationship/ 
model can be more reliable. 

Differences in anomaly detection between the model types could be 
due to several factors. ARIMA and LSTM models have inherently 
different structures with distinct processes for hyperparameter tuning 

Table 2 
F2 score comparisons. Scores are reported for ARIMA and LSTM models for each time series as well as rules-based detection and the aggregate of all of the models. The 
aggregate column combines model results by classifying a point as anomalous if it was detected by any of the models. F2 = 1 would be a perfect score.  

Monitoring 
Site 

ARIMA LSTM univar LSTM univar bidir LSTM multi LSTM multi bidir Rules-Based Aggregate 

Temperature 

Franklin Basin 0.926 0.840 0.842 0.840 0.841 0.764 0.920 
Tony Grove 0.966 0.966 0.966 0.966 0.966 0.066 0.966 
Water Lab 0.970 0.909 0.922 0.895 0.923 0.888 0.975 
Main Street 0.546 0.571 0.650 0.569 0.625 0.548 0.709 
Mendon 0.992 0.992 0.992 0.991 0.992 0.867 0.992 
Blacksmith Fork 0.615 0.605 0.605 0.607 0.607 0.448 0.616 
Specific Conductance 

Franklin Basin 0.985 0.403 0.410 0.977 0.723 0.176 0.986 
Tony Grove 0.978 0.383 0.264 0.884 0.501 0.127 0.978 
Water Lab 0.952 0.809 0.810 0.822 0.919 0.370 0.957 
Main Street 0.935 0.876 0.884 0.872 0.904 0.155 0.928 
Mendon 0.945 0.836 0.836 0.943 0.856 0.424 0.966 
Blacksmith Fork 0.845 0.736 0.776 0.839 0.807 0.134 0.806 
pH 

Franklin Basin 0.967 0.852 0.849 0.945 0.839 0.317 0.968 
Tony Grove 0.946 0.654 0.638 0.658 0.632 0.064 0.945 
Water Lab 0.966 0.954 0.932 0.934 0.929 0.175 0.969 
Main Street 0.983 0.982 0.982 0.983 0.980 0.186 0.984 
Mendon 0.995 0.983 0.848 0.849 0.847 0.396 0.995 
Blacksmith Fork 0.989 0.983 0.982 0.958 0.955 0.125 0.990 
Dissolved Oxygen 

Franklin Basin 0.496 0.467 0.457 0.470 0.459 0.429 0.497 
Tony Grove 0.705 0.404 0.256 0.263 0.256 0.140 0.827 
Water Lab 0.892 0.879 0.880 0.967 0.881 0.064 0.980 
Main Street 0.967 0.943 0.942 0.946 0.944 0.194 0.968 
Mendon 0.873 0.736 0.823 0.750 0.735 0.107 0.879 
Blacksmith Fork 0.912 0.964 0.918 0.919 0.963 0.204 0.965 
Average 0.889 0.780 0.769 0.827 0.795    
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and model training. ARIMA models use a limited number of hyper
parameters (three), which were tuned by automated optimization, while 
LSTM models include several hyperparameters for which minimal tun
ing was performed. It is possible that LSTM models could be improved 
with additional tuning; however, the process may not be worth the effort 
given that the objective of modeling was to detect anomalies rather than 
generate a perfect model. As one example, we observed LSTM models 
consistently biased toward the overall time series mean, which was 
reduced when developed with input sequences containing fewer previ
ous data points (5 versus 10). 

Another possible explanation for the poorer performance of LSTM 
models is a result of the training process. LSTM models were trained on a 
randomized subset of available data. Due to the stochastic nature of 
training data selection and initialization of weights, a new model is 
developed each time the algorithm is run (although pyhydroqc can save 
models for future use). If a distinct set of training data was used or 
learning converges to a local minimum, it may cause the seemingly 
arbitrary failure of some LSTM models on certain time series. To test 
this, LSTM models were regenerated. The resulting metrics were similar 
to those reported in Table 2. This indicates that the size of the training 
sets is sufficient so that the strength of the model does not depend on the 
specific, randomized subset of data used for training. Independently 
developing and training multiple models on the same time series is a 
straightforward check for training data robustness. 

Although we tested across a range of sites that span elevation, land 
use, and hydrologic regime within the LRO, these locations do not 
represent the full spectrum of sites across the world. Investigating the 
suitability of the algorithm to additional physical settings is an 

important next step. More directly examining the performance of each 
model type related to physical characteristics of locations may help 
inform transferability of the techniques. 

3.3.3. Model aggregation 
The comparability of most of the results suggests that using any one 

of the models may be acceptable; however, rather than select a single 
model, aggregating detections by the multiple models may improve 
results. F2 scores of aggregated anomaly detection (Table 2) indicate 
overall good performance for most time series (F2>0.8), also illustrated 
by confusion matrix plots (Fig. 7). For some time series, the aggregation 
does not add high value, presumably because the same points were 
detected by multiple models. However, for a few time series in partic
ular, aggregating detections of multiple models had a synergistic effect 
such that the aggregate F2 score is higher than that of any single model 
(e.g., temperature at Main Street, dissolved oxygen at Tony Grove). 
Lower F2 scores (<0.8) that persist after aggregating model detections 
are a result of either high rates of false positives (dissolved oxygen at 
Franklin Basin) or false negatives (temperature at Blacksmith Fork), 
both of which could be addressed by tuning rules and threshold settings 
as described rather than perfecting models. 

The results affirm that time series regression methods with dynamic 
thresholds and widening are an effective tool for automating anomaly 
detection and correction, and implementing these techniques can 
streamline the quality control process. Without the models, a technician 
would need to review 200,000+ data points for each of the time series 
used in this case study. By using the pyhydroqc anomaly detection 
workflow, the number of data points for review (referring to combined 

Fig. 6. Detection confusion matrix values for all time series (panels) and models (bars). y-axis values represent the count of observations that fall within each 
category shown in the legend. Dashed lines differentiate the proportions of detections from the rules-based detection and the model-based detection. 
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rules and model detections) is reduced by at least an order of magnitude 
(e.g., ~20,000 for pH at Franklin Basin), even for cases with high rates of 
false positives (e.g., ~4000 for dissolved oxygen at Franklin Basin). 

3.4. Model-based correction examples 

The model-based anomaly correction implemented in pyhydroqc 
generally resulted in smooth data profiles without outstanding non
linearities (Fig. 8). The method offers a viable path for correcting many 
anomalous events, although results varied depending on the duration, 
the variable, the season, and the reliability of anomaly detection. For 
shorter durations (e.g., approximately 2 h, Fig. 8a), the model-corrected 
data are similar to the technician correction (i.e., linear interpolation). 
For longer periods, the blended forecasts and backcasts can estimate 
patterns (diurnal cycles, Fig. 8b and c) that would not be practical for a 
technician to approximate. In these cases, technicians did not attempt 
corrections but set data to a "no data value" (− 9999). In other cases, the 
model did not capture data patterns, particularly for extended periods 
(see Appendix D for examples). Some models overgeneralized and 
missed patterns while others focused on a single dominant feature. 
Overall, the correction algorithm better captured diurnal patterns in 
temperature and pH data while regular patterns in specific conductance 
and dissolved oxygen were less consistently approximated. 

3.5. Combined correction results 

Quantifying the overall performance of the correction algorithm for 
each time series is impractical because no gold standard exists for 
comparison. Algorithm-corrected data cannot be quantitatively 
compared to technician corrected data because the technician corrected 
data are subjective, contain correction and labeling errors, and include 
many periods where the values were set to a designated “no data value” 
(e.g., − 9999 for the LRO). For correcting LRO data, technicians followed 
one of the following paths: 1) linear interpolation for periods less than 4 
h, or 2) setting values to − 9999 for longer periods where interpolation 
was deemed unreasonable. Technicians also performed linear drift 
correction between identified calibration events. The model-based 
correction algorithm is not designed to correct for drift, which was 
performed as part of the rules-based steps (Section 3.1.2). 

Without a benchmark, correction algorithm performance cannot be 
definitively measured for each time series, leaving evaluation to be done 
qualitatively on a case-by-case basis (Section 3.4 and Appendix D). We 
considered simulating artificially introduced anomalies, which are then 
corrected and compared to valid raw data; however, it is unclear what 
frequency and duration of artificial anomalies would be appropriate and 
how to propagate artificial anomalies through multiple concurrently 
measured variables (i.e., in the case of multivariate models). We 

Fig. 7. Detection confusion matrix values for aggregate results for all time series. Symbology is as described for Fig. 6.  
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determined that analysis to be outside the scope of this work. In an 
attempt to assess the value of the correction algorithm in terms of 
relative accuracy, we considered the total number of points in each se
ries that were altered from the raw data by the technician or the algo
rithm and that were set to values outside of a valid range (Table 3). 
Ranges specific to each time series were adopted from the range checks 
in rules-based preprocessing (Table C1) to determine whether altered 
points were valid. Technician corrections resulting in invalid values 
generally correspond to data changed to the "no data value" of − 9999. 

Causes of invalid values produced by the correction algorithm may 
include periods where anomaly detection was not adequately inclusive, 
so the points corrected by the algorithm were overly influenced by 
anomalous points that were not labeled as such (Figure C5). In another 
scenario, anomalous data may be close to the range limits resulting in 
forecasts, backcasts, and corrections outside of the valid range (e.g., the 
estimations of peaks in Fig. 8b exceed the upper limit for that time 
series). 

Fig. 8. Examples of successful correction using piecewise ARIMA models and the cross-fade technique. 8a: temperature at Water Lab, 8b: pH at Main Street, 8c: 
temperature at Water Lab. 

Table 3 
Technician and algorithm invalid changed data points. Counts represent the number of points where raw data were corrected to values outside of the valid range for 
that time series. The total number of data points for each series is ~200,000.  

Monitoring Site Temperature Specific Conductance pH Dissolved Oxygen 

Technician Algorithm Technician Algorithm Technician Algorithm Technician Algorithm 

Franklin Basin 584 8 3123 92 11,259 837 568 1656 
Tony Grove 44 8 1517 13 482 0 692 1185 
Water Lab 22 0 7527 59 4169 35 906 0 
Main Street 168 0 632 0 6454 121 1171 271 
Mendon 1459 2339 8541 0 8187 0 1678 3149 
Blacksmith Fork 502 0 1202 0 1208 0 385 507  
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For most cases, the algorithm correction resulted in significantly 
fewer invalid values than the technician correction. For 16 out of 24 
time series (most of the temperature, specific conductance, and pH se
ries), the number of invalid points produced by the algorithm correction 
was less than 100 (out of 200,000+ total points) while the number of 
invalid points produced by the technician was significantly higher 
(ranging from 22 to 8541). For five of the time series (primarily dis
solved oxygen), the algorithm correction resulted in a higher number of 
invalid values. For some of these series, the anomaly detection was also 
less performant (e.g., dissolved oxygen at Franklin Basin, Tony Grove, 
and Mendon – Fig. 7). These results highlight the need to review 
anomaly detections and refine settings to improve anomaly detection. 
Although the corrections classed as valid were within an acceptable 
range for that time series, the correction may not have approximated 
observed data patterns, so review of proposed algorithm corrections is 
necessary. 

The overarching benefit of the correction in pyhydroqc is that the 
algorithm may capture diurnal patterns to suggest values that a tech
nician could not estimate. However, anomalous events need review 
prior to correction, as do correction suggestions. Adjacent data may be 
inadequate to generate correction estimates for the full duration of an 
anomalous event. A more complete workflow could offer correction 
options for each anomalous event for review and selection by a 
technician. 

4. Conclusions 

We developed a new Python package, pyhydroqc, that enables 
application of rules-based and time series regression techniques coupled 
with dynamic thresholds as part of a workflow to detect and correct 
anomalies in aquatic sensor data. Functions to implement the models 
and supporting steps in the workflow are contained in the Python 
package and documented within the GitHub repository. Available 
functions include rules-based anomaly detection, calibration detection 
and drift correction, model development and estimation, threshold 
determination, anomaly detection and widening, performance metrics 
reporting, and model-based correction. Although this workflow ad
vances the automation of sensor data post processing and can be 
implemented in any Python environment, a Python package and scripts 
may not be intuitive tools for some technicians. A graphical user inter
face offering more interactive review could be built on top of the un
derlying functionality contained in pyhydroqc. Another potential next 
step is investigating execution of the software on an edge computing 
device to streamline the process and reduce reliance on centralized 
systems. 

We tested the methods on 24 time series of aquatic data from the 
Logan River in northern Utah. The case study sites varied in physical 
characteristics and spanned 5–6 years of high frequency data. Based on 
our case study, the anomaly detection workflow enabled by pyhydroqc 
was successful with high detection rates. ARIMA models were most 
performant, likely due to differences in model structure and develop
ment. Rather than using constant thresholds, dynamic thresholds 
allowed for responsiveness to data variability. Adjusting threshold set
tings impacts the sensitivity of model detection. We suggest erring on 
the side of oversensitivity and then reviewing detections. A correction 
algorithm used blended forecasts and backcasts of local models to make 

correction estimates that follow data patterns for events of up to several 
days for some observed variables. These approximations surpass a 
technician’s ability to correct anomalous data, but each corrected event 
needs review. A rules-based approach was successful in determining 
calibration gap values and performing linear drift correction with cali
bration dates as input. Though not completely automated, this work 
helps to streamline the process of quality control related to sensor drift 
and calibration. Beyond the case study data, applying the techniques to 
datasets from other locations and environmental variables outside of the 
aquatic domain is an important next step. 

Manual detection and correction performed by technicians is an 
extended process that overlaps with other tasks. To perform quality 
control for 3–6 month durations of a single time series takes multiple 
days of dedicated effort. In comparison, implementing the complete 
pyhydroqc workflow for anomaly detection and correction for all vari
ables at a single site for a single year of data takes a few hours to run in 
the background on a personal computer. A technician will still need to 
review results; however, we submit that the package and workflow offer 
significant resource savings. 

Throughout this process, the technician was treated as an "oracle" 
with technician labels dictating algorithm performance. The subjectivity 
inherent in manual quality control and uneven application of labels by 
technicians highlight the need for improving consistency in quality 
control, which is an important driver of automating post processing 
given that computers are not subjective in their decisions. 

As the volume of environmental sensor data continues to increase, so 
does the need for performing post processing quality control. This work 
contributes tools and approaches that can be used to streamline and 
automate the quality control process to reduce the costs of manual 
quality control; facilitate a post processing workflow that is reproduc
ible, defensible, and consistent; and provide reliable data for analysis 
and decision making. 
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Appendix A 

Background 

Manual post processing by a technician remains the most commonly implemented approach for correcting anomalies in environmental sensor data. 
Software tools have been developed to assist technicians in performing quality control, wherein anomalies are identified visually or using filters or 
rules that are implemented based on user-input (Horsburgh et al., 2015; Sheldon, 2008). While initially straightforward to implement, manual post 
processing is resource-intensive, requires significant expertise, and may be implemented unevenly within and between sensor networks. Additionally, 
manual approaches may not be reproducible making it difficult to track the provenance of data from raw measurements to quality controlled products. 
Data driven anomaly detection has the potential to address the deficiencies of manual post processing by streamlining and standardizing the workflow. 

Numerous data driven approaches have been documented for anomaly detection (Chandola et al., 2009; Cook et al., 2020; Tan et al., 2019). Basic 
approaches use rules to test data plausibility - e.g., range and variability checks (Taylor and Loescher, 2013), and even studies with complex workflows 
initially implement rules-based approaches (e.g., Leigh et al., 2018). Statistical approaches rely on the distribution of data to identify points outside of 
the expectation (Cook et al., 2020). Regression approaches estimate a value and compare it to the observation (Chandola et al., 2009). Feature based 
approaches apply numerous variables (or features) within one or more machine learning methods to determine if the data point should be grouped 
with valid or anomalous points (Talagala et al., 2019). In approaching data driven methods for anomaly detection, important considerations include:  

• Data extent: What duration of data are available? Some methods require data partitioned into separate groups for training and testing models.  
• Data labels: Do sufficient data exist in which anomalies have been identified by an expert? The availability of labeled data impacts which types of 

models can be used. Supervised model types require labeled data for training while unsupervised model types do not. For all model types, labeled 
data enable assessment of performance.  

• Data quality: Do sufficient data exist in which anomalies have been corrected? Some methods require ‘clean’ data that are free from anomalies for 
training models.  

• Variables: What variables are to be considered? Is a single variable/sensor observed or are multiple variables measured? Do sensors at nearby sites 
provide additional information?  

• Anomaly types: What types of anomalies are of particular concern? Can rules-based detection effectively detect some of these cases?  
• Online/offline detection: Does detection need to occur in real time online, or is a retrospective, offline approach acceptable? 

In the following sections, we provide a brief description of several approaches and methods for detecting and correcting anomalies in environ
mental sensor data. We also illustrate gaps in the current state of practice for anomaly detection and correction in the quality control process. 

A.1 Data Redundancy Approaches 

Various types of data redundancy, including sensors, people, and models, are used to detect anomalies in environmental sensor data. The gold 
standard (World Meteorological Organization, 2008; Mourad and Bertrand-Krajewski, 2002) compares data from multiple sensors, requiring at least 
three sensors to determine which observation is erroneous. Increased cost, maintenance, power, and data storage requirements challenge observa
tional networks to implement redundant sensors. Furthermore, multiple sensors may all exhibit the vagaries of environmental events, sensor mal
functions, and infrastructure failures, complicating assessment and correction of data quality. To improve the consistency of quality control, Jones 
et al. (2018) suggest another form of data redundancy in which multiple technicians collaborate to review and correct data. Finally, data redundancy 
may be achieved by modeling expected values for comparison with sensor measurements. A physically based model could be used; however, model 
availability and uncertainty are barriers (Moatar et al., 2001). Given the relative simplicity of implementation, ability to scale to large volumes of data, 
few input requirements, and potential for fast performance, statistical and data driven techniques may be more appropriate. Thus, we examined 
several classes of data driven techniques to model expected sensor behavior as data redundancy approaches. 

A.2 Univariate or Multivariate Approaches 

Some predictive time series models are based on data from a single sensor independent of the condition of other co-located sensors or data. 
Advantages of these univariate methods are that processing can be performed on multiple sensors independently and simultaneously, and gaps or 
errors in data from one sensor will not impact data from other sensors (Hill and Minsker, 2010). However, anomalies in one sensor stream may 
correspond to anomalies in a related sensor, so approaches that utilize the information from multiple sensors provide multiple lines of evidence toward 
anomaly detection (Li et al., 2017). Furthermore, when performing quality control post processing, technicians regularly consult the record of other 
variables simultaneously recorded at the same site to check for ‘internal consistency’ (Campbell et al., 2013) and to inform corrective actions. There is 
no clear best approach, and even the same authors simultaneously promote a univariate detector (Hill and Minsker, 2010) and a multivariate approach 
(Hill et al., 2009). Either method may yield acceptable results, although Leigh et al. (2018) report poor performance for multivariate time series 
regression compared to univariate. The data in question will drive whether a univariate method is required or if additional power could be achieved 
with multiple variables. In our work, we considered both univariate and multivariate approaches and compared the benefits and drawbacks related to 
the data we examined. 

A.3 Spatial Dependency 

‘External consistency’ refers to comparison with data from other locations (Campbell et al., 2013), and some data driven approaches are based on 
relationships between sites. In particular, spatial dependencies between weather sensors have been used to identify anomalies (Galarus et al., 2012). In 
another application, data driven models used weighted data from neighboring stream monitoring sites to infill daily mean flow records (Giustarini 
et al., 2016). One study included data at an upstream site offset by estimated travel time to detect anomalies in aquatic data (Conde, 2011). Spatial 
methods assume high correlation for a particular variable at sites having similar characteristics, which may not be clearly established for the data of 
interest. In this work, we focused models on data at a single site of interest so that detection and correction could be applied to sites independently. 
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A.4 Regression Approaches 

Regression models are a class of data driven anomaly detectors for time series that predict the next anticipated value based on previous data (either 
univariate or multivariate). To detect anomalies with regression, the modeled value is compared to the observed, and a range of acceptability is 
determined for the residuals such that points outside of that range are classed as anomalous (and vice versa). Constant acceptability thresholds may be 
based on a user-defined range or determined as a prediction interval based on the model results (Leigh et al., 2018). Thresholds may also be dynamic, 
varying based on the range of the model residuals (Hundman et al., 2018). For example, in one study (Dereszynski and Dietterich, 2007), the threshold 
range for an observation varied based on the modeled state of the sensor (i.e., a narrower range when the sensor was classed as “Good” versus “Bad”). 

Auto-regressive integrated moving average (ARIMA) is a regression technique that uses a combination of past data to forecast the next point. 
ARIMA has been successfully implemented to predict environmental data and subsequently detect anomalies (Hill and Minsker, 2010; Leigh et al., 
2018; Papacharalampous et al., 2019). Another regression technique based on a previous sequence of data is Long Short-Term Memory (LSTM), a class 
of Artificial Neural Networks (ANNs). Though applications to environmental data anomalies to date are limited, LSTM models have been used to 
reconstruct time series to detect anomalies in other fields (Hundman et al., 2018; Lindemann et al., 2019; Malhotra et al., 2016; Yin et al., 2020), and 
other ANN model types have been used for environmental anomaly detection (Hill and Minsker, 2010; Russo et al., 2020). Other algorithms that show 
promise for time series regression include Prophet, a time series forecasting method developed by Facebook with focus on business applications 
(Taylor and Letham, 2018), and Hierarchical Temporal Memory (HTM) (Ahmad et al., 2017). Another method that has been implemented for anomaly 
detection in environmental sensor data is Dynamic Bayesian Networks, which predict values in a time series based on assigned model states corre
sponding to temporal windows. Studies developed models based on a few previous points (Hill et al., 2009), thousands of previous points (Hill and 
Minsker, 2006), and multiple past years of data to give an output based on the day of year and hour of day (Dereszynski and Dietterich, 2007). These 
models assume that temporal states can be definitively assigned as well as consistently applied, and we did not attempt them due to complexity and 
obscurity of implementation. 

Because regression models produce an estimate, they are well-suited for both detection and correction of anomalous data. The time series 
regression models we investigated were ARIMA, LSTM, and Facebook Prophet. While ARIMA has been commonly attempted for anomaly detection in 
time series data, other techniques are emergent in this field (e.g., LSTM), and there are few examples comparing multiple regression techniques for 
aquatic sensor data. 

A.5 Feature Based Approaches 

Feature based methods comprise another class of anomaly detectors commonly used for discrete data (Tan et al., 2019), which some authors have 
applied to environmental time series (Leigh et al., 2018; Russo et al., 2020; Talagala et al., 2019). Unlike regression methods, feature based methods 
do not make a prediction of the observation. Anomalies are detected either based on a supervised model trained to data labels (anomalous or valid) 
(Russo et al., 2020), or an unsupervised model that determines the likelihood of the point being anomalous based on distance to neighboring points. 
These methods rely on multiple variables as model input (features), which, in the case of aquatic sensor time series, may correspond to variables 
measured concurrently by adjacent sensors, past values of the variable of interest, or transformations of the relationships between these variables. 
Particularly for data with temporal correlation, it is not obvious which features should be selected, and complex feature engineering may be required 
(Christ et al., 2018). Another challenge is selecting an appropriate data transformation, a preprocessing step (e.g., taking the first derivative of the 
data) to highlight outlying points (Leigh et al., 2018; Talagala et al., 2019). 

Almost any feature based machine learning method may be applied to anomaly detection problems, and approaches described in the literature 
include principal components analysis, support vector machines (Tran et al., 2019), HDOutliers (Leigh et al., 2018), k-nearest neighbor (Russo et al., 
2020; Talagala et al., 2019), clustering (Hill and Minsker, 2010), random forest (Russo et al., 2020), xgboost, and isolated forest (Smolyakov et al., 
2019). The success of feature based techniques in detecting anomalies from environmental sensor data is mixed (Hill and Minsker, 2010; Leigh et al., 
2018; Russo et al., 2020). As they do not make predictions, feature based approaches are not well-suited to performing corrections. Given that our 
objectives were to both detect and correct anomalies, we did not pursue feature based approaches in the work reported here. 

A.6 Anomaly Types 

In most of the studies cited here, the emphasis is on anomalies that are outliers where the value of the variable is outside of expected ranges or rates 
of change. Detection of gradual bias that may occur due to drift in the sensor or ongoing fouling has not been successfully reported. The models 
implemented by Dereszynski and Dietterich (2007) identify some biases resulting from abrupt shifts in conditions; however, the authors acknowledge 
that complex anomalies are outside of the performance of their detector. Conde (2011) was unable to identify labeled anomalies with relatively small 
variation from the measured baseline. Leigh et al. (2018) intentionally prioritized outliers in development of anomaly detection techniques for aquatic 
sensors. Given that existing methods have not addressed anomalies caused by drift and fouling, there is significant room for improvement in methods 
for detecting these types of anomalies. We examined both outliers and more subtle anomaly types in our methods and software implementation. 

A.7 Reproducibility 

Although effectively implemented for specific case studies in the research realm, none of the techniques described in the cited studies have been 
packaged as easily accessible software for broad application and dissemination. Without reusable code, the specifics of the algorithms as implemented 
with environmental data cannot be examined, further tested, or applied to other datasets. Recent work in outlier detection was encapsulated in an R 
package (Talagala et al., 2019); however, a lack of documentation made it difficult to know how to install the package and apply the methods to our 
datasets. Provenance of data from raw field observations to quality controlled data products is vitally important yet rarely described in sufficient detail 
that the process used to arrive at final data products could be repeated (Horsburgh et al., 2015). Applying more automated techniques can help, and 
reusable software tools can overcome barriers related to understanding and implementing complex algorithms for practical application. Rather than a 
model calibrated to a specific variable/site combination, practitioners need tools that can be applied to a broad suite of variables and/or monitoring 
locations documented in a reusable and reproducible way. Thus, we sought to package the tools we developed as open source software that could 
easily be deployed in a commonly available analytical environment. 
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A.8 Anomaly Correction 

Various techniques and past studies developed functionality for detecting anomalies, but few applied corrective actions, which is an important and 
time consuming step in quality control post processing. A handful of studies used modeled ARIMA forecasts to directly replace anomalies that were 
detected by the same ARIMA model, termed ‘anomaly detection and mitigation’ (ADAM) (Hill and Minsker, 2010; Leigh et al., 2018). However, the 
objective of ADAM was to improve detection by ensuring that model input data did not include detected anomalies, not to generate a corrected version 
of the dataset. Furthermore, the success of ADAM was mixed and resulted in high rates of false positives (Leigh et al., 2018). Given the general lack of 
available methods for automated correction, we explored new approaches for inclusion in the software package we developed. 

Appendix B 

List of Files and Functions 

This appendix provides a listing of each of the Python files in the pyhydroqc package and describes the functionality that each provides. More 
detailed documentation is found in the GitHub repository and package documentation (see the Software Availability Section). 

parameters.py 

This file contains assignments of parameters for all steps of the anomaly detection workflow. Parameters are defined specific to each site and 
observed variable that are referenced in the detect script. LSTM parameters are consistent across sites and variables. ARIMA hyper parameters are 
specific to each site/variable combination, other parameters are used for rules-based anomaly detection, determining dynamic thresholds, and for 
widening anomalous events. 

anomaly_utilities.py 

Contains functions for performing anomaly detection and correction:  

• get_data: Retrieves and formats data. Retrieval is based on site, observed variable, and year. To pass through subsequent steps, the required format 
is a Pandas data frame with columns corresponding to datetime (as the index), raw data, corrected data, and data labels (anomalies identified by 
technicians).  

• anomaly_events: Widens anomalies and indexes events or groups of anomalous data.  
• assign_cm: A helper function for resizing anomaly events to the original size for determining metrics.  
• compare_events: Compares anomaly events detected by an algorithm to events labeled by a technician.  
• metrics: Determines performance metrics of the detections relative to labeled data.  
• event_metrics: Determines performance metrics based on number of events rather than the number of data points.  
• print_metrics: Prints the metrics to the console.  
• group_bools: Indexes contiguous groups of anomalous and valid data to facilitate correction.  
• xfade: Uses a cross-fade to blend forecasted and backcasted data over anomaly events for generating data correction.  
• set_dynamic_threshold: Creates a threshold that varies dynamically based on the model residuals.  
• set_cons_threshold: Creates a threshold of constant value.  
• detect_anomalies: Uses model residuals and threshold values to classify anomalous data.  
• aggregate_results: Combines the detections from multiple models to give a single output of anomaly detections.  
• plt_threshold: Plots thresholds and model residuals.  
• plt_results: Plots raw data, model predictions, detected and labeled anomalies. 

modeling_utilities.py 

Contains functions for building and training models:  

• pdq: Automatically determines the (p, d, q) hyperparameters of a time series for ARIMA modeling.  
• build_arima_model, LSTM_univar, LSTM_multivar, LSTM_univar_bidir, LSTM_multivar_bidir: wrappers that call other functions in the file to 

scale and reshape data (for LSTM models only), create and train a model, and output model predictions and residuals.  
• create_scaler: Creates a scaler object for scaling and unscaling data. 
• create_training_dataset, create_bidir_training_dataset: Creates a training dataset based on a random selection of points from the dataset. Re

shapes data to include the desired time_steps for input to the LSTM model - the number of past data points to examine or past and future points 
(bidirectional). Ensures that data already identified as anomalous (i.e., by rules-based detection) are not used.  

• create_sequenced_dataset, create_bidir_sequenced_dataset: Reshapes all inputs into sequences that include time_steps for input to the LSTM 
model - using either only past data points or past and future data points (bidirectional). Used for testing or for applying the model to a full dataset.  

• create_vanilla_model, create_bidir_model: Helper functions used to create single layer LSTM models.  
• train_model: Fits the model to training data. Uses a validation subset to monitor for improvements to ensure that training is not too long. 

rules_detect.py 

Contains functions for rules-based anomaly detection and preprocessing. Depends on anomaly_utilities.py. Functions include: 
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• range_check: Scans for data points outside of user-defined limits and marks the points as anomalous.  
• persistence: Scans for repeated values in the data and marks them as anomalous if the duration exceeds a user-defined length.  
• group_size: Determines the maximum length of anomalous groups identified by the previous steps.  
• interpolate: Corrects data points with linear interpolation, a typical approach for short anomalous events.  
• add_labels: Enables the addition of anomaly labels (referring to anomalies previously identified by an expert) in the case that labels may have been 

missed for corrected data that are NaN or have been set to a no data value (e.g., − 9999). 

calibration.py 

Contains functions for identifying and correcting calibration events. Functions include:  

• calib_edge_detect: Identifies possible calibration event candidates by using edge filtering.  
• calib_persist_detect: Identifies possible calibration event candidates based on persistence of a user-defined length.  
• calib_overlap: Identifies possible calibration event candidates by finding concurrent events of multiple sensors from the calib_persist_detect 

function.  
• find_gap: Determines a gap value for a calibration event based on the largest data difference within a time window around a datetime.  
• lin_drift_cor: Performs linear drift correction to address sensor drift given calibration dates and a gap value. 

model_workflow.py 

Contains functionality to build and train ARIMA and LSTM models, apply the models to make predictions, set thresholds, detect anomalies, widen 
anomalous events, and determine metrics. Depends on anomaly_utilities.py, modeling_utilities.py, and rules_detect.py. Wrapper function names are: 
ARIMA_detect, LSTM_detect_univar, and LSTM_detect_multivar. LSTM model workflows include options for vanilla or bidirectional. Within each 
wrapper function, the full detection workflow is followed. Options allow for output of plots, summaries, and metrics. 

ARIMA_correct.py 

Contains functionality to perform corrections and plot results using ARIMA models. Depends on anomaly_utilities.py.  

• ARIMA_group: Ensures that the valid data surrounding anomalous data points and groups of data points are sufficient forecasting/backcasting.  
• ARIMA_forecast: Creates predictions of data where anomalies occur.  
• generate_corrections: The primary function for determining corrections. Passes through data with anomalies and determines corrections using 

piecewise ARIMA models. Corrections are determined by averaging together (cross fade) both a forecast and a backcast. 

Appendix C 

Logan River Observatory Input Parameters and Settings  

Table C1 
Input parameters for each time series. Persistence duration and window size refer to the number of time steps: 20 = 5 h, 30 = 7.5 h, 40 = 10 h, 45 = 11.25 h.  

Observed Variable Parameter Franklin Basin Tony Grove Water Lab Main Street Mendon Blacksmith Fork 

Temperature (degrees C) Maximum range 13 20 18 20 28 28 
Minimum range − 2 − 2 − 2 − 2 − 2 − 2 
Persistence duration 30 30 30 30 30 30 
Window size 30 30 30 30 30 30 
alpha 1E-04 1E-05 1E-04 1E-05 1E-04 1E-04 
Threshold minimum 0.25 0.4 0.4 0.4 0.4 0.4 
(p, d, q) (1, 1, 3) (10, 1, 0) (0, 1, 5) (0, 0, 0) (3, 1, 1) (1, 1, 0) 

Specific Conductance (μS/cm) Maximum range 380 500 450 2700 800 900 
Minimum range 120 175 200 150 200 200 
Persistence duration 30 30 30 30 30 30 
Window size 30 40 40 40 40 20 
alpha 1E-04 1E-05 1E-04 1E-06 1E-05 1E-02 
Threshold minimum 4 5 5 5 5 4 
(p, d, q) (10, 1, 3) (6, 1, 2) (7, 1, 0) (1, 1, 5) (9, 1, 4) (0, 0, 5) 

pH Maximum range 9.2 9 9.2 9.5 9 9.2 
Minimum range 7.5 8 8 7.5 7.4 7.2 
Persistence duration 45 45 45 45 45 45 
Window size 30 40 40 20 20 30 
alpha 1E-05 1E-05 1E-05 1E-04 1E-04 1E-05 
Threshold minimum 0.02 0.02 0.02 0.03 0.03 0.03 
(p, d, q) (10, 1, 1) (8, 1, 4) (10, 1, 0) (3, 1, 1) (0, 1, 2) (0, 1, 4) 

Dissolved Oxygen (mg/L) Maximum range 13 14 14 15 15 14 
Minimum range 8 7 7 5 3 2 
Persistence duration 45 45 45 45 45 45 
Window size 30 30 30 30 30 30 
alpha 1E-04 1E-04 1E-05 1E-05 1E-03 1E-04 
Threshold minimum 0.15 0.15 0.15 0.25 0.15 0.15 
(p, d, q) (0, 1, 5) (10, 1, 0) (1, 1, 1) (1, 1, 1) (10, 1, 3) (0, 0, 5)  
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Table C2 
LSTM model parameters and settings selected for the LRO case study. Defaults were used for all other settings and parameters not listed here. See Géron (2017) and 
Keras Development Team (n.d.) for additional details.  

Parameter Function Setting Details 

Time steps model.add 5 The number of past data considered as input for prediction. For the LRO data, more time steps (10, 15, 20) biased results toward 
the mean. Reduced time steps (5) gave greater accuracy and improved computational time. 

Units/cells model.add 128 Number of cells or nodes in the model architecture. There is no rule for finding the perfect number of cells. We chose a high 
number and used early stopping and dropout to prevent overfitting. For processing purposes, it is generally preferred to have 
network dimensions in multiples of 32. 

Dropout model.add 0.2 A fraction of cells that are randomly ignored during training. Using dropout improves the model by reducing overfitting, but the 
number usually matters little. 20% is often used to balance accuracy and overfitting. 

Optimizer model. 
compile 

adam Algorithm for training. Adam (adaptive movement estimation) is commonly selected for training LSTM models for being 
computationally efficient, requiring little memory, and handling large amounts of data. 

Loss model. 
compile 

Mean absolute 
error 

The quantity to be minimized during training. Mean absolute error computes the mean of the difference between observations 
and predictions. 

Epochs model.fit 100 The number of rounds to train the model. We opted for a high number that is truncated by early stopping that ends training 
when the model is sufficiently fit. 

Validation 
split 

model.fit 0.1 Fraction of training data to be used as validation data on which the loss is evaluated at the end of each epoch. 

Callbacks model.fit Early stopping Interrupts training when performance on the validation set drops. 
Patience model.fit 6 Number of epochs with no improvement after which training will be stopped. 
Shuffle model.fit False Whether to shuffle training data before each epoch. Set to false because the order of training data matters for these data.  

Appendix D 

Anomaly Detection and Correction Examples 

This appendix includes additional examples of anomaly detection and correction performed by the pyhydroqc workflow on LRO case study data. 
Figure C1 illustrates anomaly detection false positives and true positives. Peaks and troughs in the data were considered anomalies by the model 

(ARIMA), but only two of them (2017-12-18 and 2017-12-26) were labeled by the technician. It is unclear why certain peaks were labeled by the 
technician while others were not. Although this example includes several false positives, the algorithm behaved as expected.

Fig. C1. Examples of anomalies detected using an ARIMA model for specific conductance at Main Street.  

In some cases, the apparent success of the model results may be an artifact of both the generalization of detections in the ‘compare_events’ function 
and the liberal application of labels by technicians. Some time series contain extensive periods of data labeled as anomalous that correspond to 
concerns with sensor validity or site conditions (e.g., Figure C2). When comparing events to determine confusion matrix categories, any overlap in 
model detections results in all points of the anomalous period being identified as true positives. This is an example where large events may bias the 
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metrics toward true positives if any point in the event is detected or toward false negatives if the event goes undetected (less likely). This particular 
event contributes to the 13,000+ true positives for this time series (pH at Main Street).

Fig. C2. Examples of anomalies detected using an LSTM multivariate bidirectional model for pH at Main Street for of an extended period of data labeled as a sensor 
malfunction. 

We were interested in whether the models could detect calibration events. For one time series (pH at Main Street), one model type (LSTM 
multivariate bidirectional) detected approximately 20% of labeled calibration events. We found that the master list of calibrations recorded in the field 
notes differs from what technicians labeled in the data. Some calibrations recorded in the field notes were not labeled by technicians in the data, and 
other events labeled by technicians appeared to be calibrations but were not part of the master list derived from the field notes. These discrepancies 
point to deficiencies in the labeled data. The model predictions are erratic and do not track the observations at most calibration events (Figure C3a), 
even if the threshold was not sensitive enough to result in detections. In some cases, calibration events were detected as anomalous by the model 
(Figure C3b), but there was no mechanism to distinguish from other anomalies. These examples illustrate the challenge of using the model-based 
approach for detecting and correcting calibration events.

Fig. C3. Examples of anomalies detected using an LSTM multivariate bidirectional model on a pH sensor at Main Street with calibration events. 
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A direct comparison of results from each model type illustrates model behaviors and associated detections. For specific conductance at Tony Grove, 
where there was variability in performance between model types (see Section 3.4), the ARIMA and LSTM multivariate vanilla models detected points 
at the edges of long duration labeled events, improving their performance metrics relative to the other model types. Figure C4 further illustrates 
differences between model estimates and resulting detections. For the first date range, the estimates of both multivariate models deviate from the 
original data because they use other variables as input. In the absence of this information, only one univariate model detects an anomaly. In the second 
date range, models responded to the localized event in distinct ways, and none resulted in a detection. In the third date range, estimates from the 
multivariate models exhibit spikes around the detections illustrating that information is coming from other variables. It is likely that some of these 
labeled anomalies correspond to calibration events for which other variables exhibited greater shifts than did specific conductance.

Fig. C4. Examples comparing model estimates and detected anomalies for all model types for specific conductance at Tony Grove.  

Although the correction algorithm was capable of capturing diurnal oscillations, in some cases, data patterns did not translate and propagate 
through the corrections (e.g., Figure C5). Because each correction is based on individual, independent models trained for data immediately prior to 
and following an anomalous event, the number of data points considered can vary. Even though the adjacent data used for input is limited by the 
maximum duration parameter, some models may still overgeneralize (i.e., a straight line). Other models may use so little data that a pattern is missed, 
while still others are focused on a single dominant feature (i.e., an oscillation or a curve). Furthermore, a pattern may be damped over an extended 
time period. Explicitly incorporating seasonality into development of the ARIMA models may result in more consistent output of oscillations. 
However, developing seasonal ARIMA models is computationally demanding, and the correction algorithm already requires significant computational 
resources. 

The correction algorithm is directly dependent on identified anomalies. In Figure C5c, an anomalous event (2018-06-19 – 2018-06-20) was 
detected by the model, but even with widening, the initial abrupt decrease was not labeled anomalous, so it was considered valid data, and it directly 
influenced the forecast. For the correction algorithm to be effective, anomalies should be reviewed and may need adjustment (e.g., further widening). 
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Fig. C5. Examples of problematic algorithm correction. a and b: dissolved oxygen at Tony Grove, c: specific conductance at Mendon.  
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