
Highlights
System for automated Quality Control (SaQC) to enable traceable and reproducible data streams
in environmental science
Lennart Schmidt,David Schäfer,Juliane Geller,Peter Lünenschloss,Bert Palm,Karsten Rinke,Jan Bumberger

• We present the software framework System for automated Quality Control (SaQC)
• SaQC facilitates the implementation of workflows for automated quality control
• It is designed for domain scientists that manage environmental sensor networks
• It is universal and extensible, yet user-friendly
• It tackles crucial challenges for quality control and FAIRness of data streams

Electronic copy available at: https://ssrn.com/abstract=4173698

System for automated Quality Control (SaQC) to enable traceable and
reproducible data streams in environmental science
Lennart Schmidta,b,∗, David Schäfera,b,∗∗, Juliane Gellera,b, Peter Lünenschlossa,b, Bert Palma,b,
Karsten Rinked and Jan Bumbergera,b,e

aResearch Data Management - RDM, Helmholtz Centre for Environmental Research GmbH - UFZ, Permoserstraße 15, Leipzig, 04318, Germany
bDepartment of Monitoring and Exploration Technologies, Helmholtz Centre for Environmental Research GmbH - UFZ, Permoserstraße
15, Leipzig, 04318, Germany
dDepartment of Lake Research, Helmholtz Centre for Environmental Research GmbH - UFZ, Brückstraße 3a, Magdeburg, 39114, Germany
eGerman Centre for Integrative Biodiversity Research (iDiv) Halle-Jena- Leipzig, Puschstraße 4, Leipzig, 04103, Germany

A R T I C L E I N F O
Keywords:
data management
quality control
quality assurance
anomaly detection
sensor data
FAIR

A B S T R A C T
Environmental sensor networks produce ever-growing volumes of raw data that need to be transformed
into actionable data for monitoring of ongoing environmental changes and decision-support. The
crucial challenge is the data provisioning in real-time which requires rigorous automation of quality
control (QC) workflows using suitable software tools. We present the System for automated Quality
Control (SaQC), a software framework for automated quality control of time series data that is
universal and extensible in its set of domain-agnostic QC and processing functionalities, yet user-
friendly in its low-code configuration environment. Two use cases present the configuration of basic
and advanced quality control applications using SaQC. Also, we elaborate on the explicit user controls
over the handling of quality flags and how SaQC can be used to make QC-workflows traceable and
reproducible, thus promoting FAIR data streams of high quality.

1. Software and data availability
The System for Automated Quality Control (SaQC) is

available both on the Python Package Index (PyPI)1 and
via its Git repository2. It is open source under the GNU
General Public License, version 3. At the time of writing,
SaQC supports Python 3.7 to 3.9. The computations in
this publication have been executed with SaQC, version
2.1 and Python 3.9. Multiple tutorials in form of so-called
Cookbooks that support the user to get started can be found
in the SaQC online documentation 3. Among these, there are
two Cookbooks that present the two use cases of section 5 in
detail, along with the necessary data and configuration files
to reproduce the results. Note: A persistent version of SaQC
2.1 along with these cookbooks, data and configuration files
will be made available via Zenodo-doi upon final acceptance
of the manuscript.

2. Introduction
Climate change, land use change and human interac-

tions are putting the worlds’ ecosystems under significant
pressure. To promote sustainable resource use, a holistic

∗Corresponding author
∗∗Corresponding software maintainer

lennart.schmidt@ufz.de (L. Schmidt); david.schaefer@ufz.de (D.
Schäfer)

ORCID(s): 0000-0003-3270-8524 (L. Schmidt); 0000-0003-4517-6459
(D. Schäfer); 0000-0001-9602-1997 (P. Lünenschloss); 0000-0001-5106-9057
(B. Palm); 0000-0003-0864-6722 (K. Rinke); 0000-0003-3780-8663 (J.
Bumberger)

1https://pypi.org/project/saqc/
2https://git.ufz.de/rdm-software/SaQC
3https://rdm-software.pages.ufz.de/saqc/index.html

quantification of these impacts is needed. Thus, interdisci-
plinary and large-scale observation networks are required
as a means to leverage environmental sensor data across
domain and terrain boundaries (Reid et al., 2010). To that
respect, large scale observatories like ILTER4, eLTER5,
NEON6, ACTRIS7, ICOS8 or TERENO9 have been set-up,
delivering crucial data for long-term monitoring of environ-
mental systems, the deduction of process understanding as
well as for the parametrization, calibration and validation of
earth system models. Given their significance, observation
networks are continuously expanding in amount of sensors
and geographical coverage. So does the number of newly-
developed environmental sensors available to monitor addi-
tional environmental variables, e.g. air quality parameters in
citizen science applications (Collier-Oxandale et al., 2022).
Consequently, the amount of environmental data that are
being collected is steadily increasing, posing infrastruc-
tural challenges with respect to the data processing routines
handling these data streams. Adding to this, processing is
required to run in real time, immediately transforming raw
data into actionable data products or model results to support
timely decision-making, e.g. for natural hazard management.
The only way to enable this real time provisioning of ever-
growing data volumes is rigorous automation (Sturtevant

4International Long-Term Ecosystem Research Network (Mirtl et al.,
2018)

5European Long-Term Ecosystem Research Network (Mollenhauer
et al., 2018)

6National Ecological Observatory Network (Loescher et al., 2017)
7Aerosols, Clouds and Trace gases Research Infrastructure Network

(ACTRIS, 2021)
8Integrated Carbon Observation System (Heiskanen et al., 2021)
9Terrestrial Environmental Observatories Network (Zacharias et al.,

2011)

Schmidt et al.: Preprint submitted to Elsevier Page 1 of 20
Electronic copy available at: https://ssrn.com/abstract=4173698

https://pypi.org/project/saqc/
https://git.ufz.de/rdm-software/SaQC
https://rdm-software.pages.ufz.de/saqc/index.html

System for automated Quality Control (SaQC)

et al., 2021), thus building on the FAIR principles to provide
Findable, Accessible, Interoperable and Reusable data in
machine-readable form (GoFair, 2021). Adding to this, it is
essential to establish automated data pipelines that address
one major challenge related to sensor data: The process of
quality control (QC), i.e. the separation of erroneous from
usable data based on expert knowledge (Koedel et al., 2022;
Crystal-Ornelas et al., 2021). The use of data that has not
undergone thorough quality control routines can lead to
inaccurate model forecasts and inadequate decision-making,
among others (Doraiswamy et al., 2000). Errors in environ-
mental data can arise from multiple sources, among these
are the suboptimal calibration or malfunctioning of sensors,
technical failures during data recording and transmission or
due to the influence of environmental conditions (e.g. sensor
fouling, obstruction, freezing etc.) (Gandin, 1988; Wagner
et al., 2006a). Ideally, the majority of these error sources
are prevented by data pipeline design (quality assurance). In
application, however, post-processing steps to separate erro-
neous from usable data are commonly required (quality con-
trol) (Campbell et al., 2013). Performing these manually, i.e.
by visual inspection of the data by domain experts, is labo-
rious, introduces subjective bias, requires expert-knowledge
that is neither reproducible nor transferable and is simply
unattainable for real-time provisioning (Fiebrich et al., 2010;
Jones et al., 2018). Fully automated QC-workflows, on the
other hand, are objective, reproducible and offer efficient
handling of large data volumes while allowing for unlimited
test specifications that can be adapted over time (WMO,
2018).
Figure 1 is a schematic representation of such an automated
QC-workflow (left to right): Raw data flow from the sensor
network to the database, run through QC back into the
database as QC-ed data, which can then be published as
a data set and be used for further analysis. The QC-part
(dashed blue box) generally consists of QC-tests that are
run on raw data in order to identify erroneous data points
(e.g. outlier detection algorithms) and assign a so-called flag,
e.g. "Bad", "Suspicious" or "Good" to each data point as
a measure of its quality. These are then sent back into the
database, along with the QC-ed data. In this process, raw
data is always kept to allow for a potential reprocessing
(Campbell et al., 2013).

There are documented set-ups of automated QC-pipelines
in the environmental community, mostly by large and renown
research infrastructures like NEON (Taylor and Loescher,
2012), ICOS (Vitale et al., 2020; Pastorello et al., 2020;
Yver-Kwok et al., 2021), GHCN10 (Durre et al., 2010) or
IAGOS11 (Petzold et al., 2015). Commonly, these infras-
tructures develop QA/QC protocols that are to be fulfilled
by the members of the respective network. In many cases,
the implementation of these protocols lies with the mem-
bers who might be domain-experts with limited technical
expertise, posing a challenge that can result in disadvantages
with respect to data quality and standardization, requiring

10Global Historical Climatology Network
11In-service Aircraft for a Global Observing System

additional harmonization steps at the network level (Sturte-
vant et al., 2021). Similarly, small observation networks
and single research institutes are challenged by the software
implementation of their QC-workflows. To our knowledge,
there are no publications that illustrate both the algorithmical
set-up and the software implementation of such protocol to
assist the domain-experts.
Thus, custom implementations of automated QC-workflows
commonly exhibit the following shortcomings: Often, the
implementations are use case specific and hard-coded, mak-
ing them inflexible to new functionalities and changing re-
quirements such as altered data pre-processing steps or input
data structures. Also, aside from large networks, there are no
standardized flagging schemata, these are usually defined
as best-suited for the respective use case, inhibiting inter-
operability. Quality flags might be altered or overwritten
implicitly, i.e. as an unnoticed result of data processing steps,
or without further notice in the final dataset. Also, current
implementations do not ensure the entire workflow to be
versioned and reproducible. This might lead to different ver-
sions of QC-ed datasets that are published over time without
specific notice in the metadata or without the possibility to
reproduce previous versions, if needed. Additionally, current
implementations pose a challenge to the users, commonly
domain experts: finding a robust choice and parametrization
of quality tests that identifies as many suspicious values
as possible without removing valid data is usually a time-
consuming endeavor, thus requiring an intuitive and efficient
user interface. Current implementations, however, typically
require programming knowledge in order to parametrize or
make changes to the QC-tests, which can not be presumed
to be available.

For a software framework to facilitate the process of
setting up a QC-workflow for any kind of (environmental)
sensor networks, we hereby define the following software
requirements. A QC software framework should be:

• Universal: flexible input/output data structures and
flagging schemata

• Equipped: provide a comprehensive set of generic
pre-/post-processing methods and domain-agnostic
QC-tests

• Extensible: enable integration of custom processing
methods and QC-tests

• Flag-centric: accommodate explicit, user-defined flag
handling inside data processing steps

• Traceable: keep provenance of processing and flag-
ging operations along the pipeline

• Reproducible: enable versioning of QC-workflows
• Accessible: configuration using either a graphical or

a low-code user interface
• Open Source: available to anyone free-of-charge

Schmidt et al.: Preprint submitted to Elsevier Page 2 of 20

Electronic copy available at: https://ssrn.com/abstract=4173698

System for automated Quality Control (SaQC)

Sensor Network Database Dataset Analysis

FAIR

QC-ed DataRaw Data

Quality-Control

Good

Suspicious

Bad

QC-test

Figure 1: Illustration of a generalized data flow from sensor to analysis including automated quality control: Raw data flows from
the sensors into the database and on to the QC-test. Here, a spike in the data (red circle) is identified as erroneous and flagged
as "Bad". The resulting QC-ed data, along with a quality flag for each data point, is sent back into the database, from where it
can be published as a dataset and later be used for analysis.

In the environmental community, there are about ten soft-
ware tools available to assist the domain experts in setting
up their QC-workflows. However, to our knowledge, none of
the available frameworks meet all of the above requirements
- see section 3.2 for a detailed screening.
For this reason, we present the newly developed System for
Automated Quality Control (SaQC) that aims at facilitat-
ing the implementation of standardized QC-workflows for
any environmental time series dataset, being user-friendly
and flexible in all relevant interfaces while accounting for
traceability and reproducibility. While all above software
requirements are met, a unique focus of SaQC are its so-
phisticated mechanisms for the handling of quality flags.
Following an overview of the current state of automated
quality control in chapter 3, including a screening of avail-
able software tools, this paper provides a detailed software
description of SaQC and its features in section 4. Next, two
use case examples in section 5 provide an in-depth expla-
nation of how SaQC is employed in practical application.
These use cases present some of its basic and advanced
functionalities and the results of the QC. Following this, we
discuss current limitations of the software as well as future
development and research directions.

3. Current state of automated quality control
Generally, current scientific literature on automated

quality control in the environmental sciences is fragmented,
characterized by many domain-specific applications that
range from single-site to observatory network scale. To
our knowledge, publications either present newly-developed
QC-tests and set-ups of QC-pipelines, or they introduce
software frameworks, never both in a joint manner.

3.1. Related literature
The topic of automated quality control has been pro-

moted primarily by the meteorological community with
large observation networks like GHCN, IAGOS etc. Conse-
quently, the World Meteorological Organisation (WMO) has
been providing the community with extensive and detailed
baseline guidelines on QC-tests, along with parametrization
and flagging guidelines from 1971 on (WMO, 2003, 2018,
e.g.). Based on this, several national services have published
similar guidelines for the operators of their observation
networks, e.g. Wagner et al. (2006b).

While a multitude of deterministic and statistical QC-
tests are available, there is no standard set-up of QC-tests to
be executed for an arbitrary environmental dataset. However,
several (domain-specific) publications are available that
present the entire QC-workflow of known observatories and
thus serve as orientation for researchers aiming at setting up
their own QC-workflow. For instance, Durre et al. (2010),
Estévez et al. (2011) and Fiebrich et al. (2010) present
the set-ups of the NEON, the RIAA12 and the Oklahoma
Mesonet networks, respectively.

Within the meteorological community, the Eddy-Covariance
and solar radiance communities have traditionally been
faced with particularly challenging QC tasks, leading to
the development of physics-based QC routines (e.g. Younes
et al., 2005; Metzger et al., 2013; Mauder et al., 2013; Pas-
torello et al., 2020; Vitale et al., 2020). Next to meteorology,
the oceanographic community has invested considerable
efforts in setting up operational QC-systems that build on

12Agroclimatic Information Network of Andalusia

Schmidt et al.: Preprint submitted to Elsevier Page 3 of 20

Electronic copy available at: https://ssrn.com/abstract=4173698

System for automated Quality Control (SaQC)

consistency checks to tackle high spatial variance in the
measurements (e.g. Ingleby and Huddleston, 2007; Gourrion
et al., 2020). Another challenging task is the QC of in-situ
soil moisture data. Dorigo et al. (2013) and Liao et al. (2019)
studied several spectrum-based approaches to detect error
patterns specific to this application.

As the parametrization of QC-tests for a specific use case
is a time-consuming task, statistical methods to automate
this process have been developed (Taylor and Loescher,
2013; Gourrion et al., 2020). Moving beyond QC-tests at
sensor level, several frameworks to check internal, temporal
and spatial consistency have been presented (e.g. You et al.,
2007; Durre et al., 2010) and subjected to sensitivity analysis
(Hubbard and You, 2005). In order for a QC-workflow to
assure good "quality of quality control", frequent auditing of
QC-routines and its results is necessary to avoid introducing
systematic bias or overflagging (Taylor and Loescher, 2013;
Sturtevant et al., 2021). To this end, Durre et al. (2008)
present a framework of systematic manual inspection and
pattern analysis of the flags that result from a QC-workflow.
Information on the performance of a QC-workflow including
potential errors that may remain should be communicated
to the user. For this purpose, Smith et al. (2014) propose
a modular and flexible framework to aggregate flagging
information at the level of both the sensor as well as the
whole data product.
Generally, there is little standardization regarding imple-
mentation details of QC-workflows among networks or
domains. There are only few guidelines regarding choice and
order of QC-tests, flagging schemata or handling of flags that
are agnostic as to the network or domain of application (see
Campbell et al., 2013; Gouldman et al., 2017).

3.2. Available software tools
In order to accommodate the heterogeneous designs and

requirements of QC-workflows, domain-agnostic, flexible
and extensible software frameworks are needed. Many exist-
ing frameworks in the environmental sciences are, however,
domain-specific and thus either limited with respect to the
data sources that can be used or regarding the available set
of processing functionalities and QC-tests. An example of
this is the the R-package AirSensor (Collier-Oxandale et al.,
2022) that includes basic QC and consistency tests along
with time series processing and visualization functions.
These are, however, taylored to the specific application
of low-cost air quality sensors in the community-based
"PurpleAir" network. Quite similar, Metzger et al. (2017)
present the R-package eddy4R specifically for processing
eddy-covariance data, including QC functionalities follow-
ing Taylor and Loescher (2013) and Smith et al. (2014).
For the solar irradiance community, the BSRN-Toolbox
(Schmithüsen et al., 2019) includes all domain-relevant
QC tests as proposed by Long and Dutton (2010). Going
further, Urraca et al. (2020) present a free web-service of
their "bias based" quality control method (BQC) to find

low magnitude errors in data that are usually not captured
by classical QC-methods. Addressing the current surge of
machine learning in environmental sciences, Jones et al.
(2022) provide multiple algorithms for quality control of
aquatic sensor data via the Python package pyhydroqc.

As to frameworks that are domain-agnostic or flexible
enough to be used for any sensor data there are only five
software tools available and still maintained, at least to
our knowledge. Of these, none meet all the requirements
towards such a framework as formulated in chapter 2. For
the three most suitable tools, capabilities are summarized
in table 1. Horsburgh et al. (2015) present ODM Tools
Python, a Python-based tool that enables users to query and
export, visualize, and edit time series observations stored
in, and thus limited to, an Observations Data Model (ODM)
database. The main focus of the tool is to provide a GUI for
manual QC, where provenance of all manual edits is kept as
each step is recorded in a Python-script to keep the process
traceable and reproducible. However, the tool is restricted
in essential functionalities for setting up entirely automated
QC workflows like data processing methods, flag handling
during processing and regarding its set of available QC-tests.
Another tool that is domain-agnostic and freely-available is
the Great Expectations Framework (Gong and Campbell,
2022). It is available as a Python library and provides the
user with a multitude of so-called "expectations", i.e. tests to
check the validity of a given batch of data or an entire dataset.
Due to an active user community, the range of available tests
is large, ranging from simple checks to statistical methods.
However, the aim of the framework is different from SaQC:
Instead of identifying single erroneous values and assigning
a single flag, the aim is "dataset validation", i.e. to validate
the integrity of a whole dataset by checking its columns or
entire data blocks for certain conditions. Consequently, it
does not provide mechanisms to assign and handle flags at
the data point level. Thus, its use for QC of sensor networks
as envisioned in this paper is limited. There are two frame-
works with a similar focus that are thus not included in table
1: The equivalent in the statistical programming language
R is the assertR-package (Fischetti, 2022). Similarly, the
tensorflow data validation framework (Caveness et al., 2020)
provides the user with functionality for dataset validation in
a machine learning setting.
Adding to the above, the GCE Data Toolbox (Sheldon,
2008) provides a vast array of functionalities to set up QC-
workflows through a GUI, a CLI and a programming API
(Matlab). It provides a set of processing functionalities, in-
tegration of custom functionalities and it ensures traceability
and reproducibility - Thus, meeting most of the software
requirements as formulated. However, the included set of
QC-tests is limited and, using Matlab as the language of
implementation, it can not be considered as open source
software.

Proprietary solutions typically also provide the means
to perform manual and automated QC, but only as part
of a whole data management and alert system. Thus, the

Schmidt et al.: Preprint submitted to Elsevier Page 4 of 20

Electronic copy available at: https://ssrn.com/abstract=4173698

System for automated Quality Control (SaQC)

Table 1
Capabilities of three domain-agnostic software frameworks for automated QC, based on the software requirements as formulated
in chapter 2.

Software Framework
Aim Requirement ODM-Tools Great Expectations GCE Toolbox
Universal Flexible I/O structure and flagging schemata - ✓ ✓

Equipped Comprehensive set of processing methods and QC-tests included - ✓ -
Extensible Integration of custom processing methods and QC-tests - ✓ ✓

Flag-centric Explicit flag handling during processing - - -
Traceable Metadata Enrichment ✓ - ✓

Reproducible Versioning of QC-pipelines ✓ - ✓

Accessible GUI or low-code configuration ✓ - ✓

Open Source Entirely Open source ✓ ✓ -
Note Focus on manual QC Validation at dataset level Based on Matlab
Last Release 06/2017 05/2022 03/2019
Reference Horsburgh et al. (2015) Gong and Campbell (2022) Sheldon (2008)

implementation inside custom infrastructures can be cum-
bersome. Additionally, these data management systems are
typically designed for a specific domain, e.g. Kisters WISKI
or Aquarius for the water sector. Other proprietary software
frameworks are bound to specific hardware, raising the effort
of integration of hardware from other manufacturers.

4. Materials and Methods
4.1. Software description

SaQC is a free and Open Source Software framework
that aims to facilitate the implementation of standardized
QC-workflows for any (environmental) time series dataset.
It specifically addresses domain-scientists and data man-
agers with limited IT expertise. In doing so, it aims to
foster community-wide FAIR data streams by providing all
essential functionalities to set up such workflows. SaQC
can be controlled either via a command line application,
a web-based Configuration App or a Python API that all
address the exploratory nature of quality control by offering
a continuously growing number of quality check routines
through a flexible and simple configuration system. Adding
to its QC functionalities, it provides extensive routines for
data pre- and post-processing as well as handling and trans-
lation of quality flags. Thus, SaQC can be used as a general
data processing tool to turn raw sensor data into secondary
data products of controlled quality. Below its user interface,
SaQC is highly customizable and extensible thanks to its
modular structure with well-defined interfaces. The primary
development goal was to meet the software requirements
as formulated in chapter 2. Here, a particular focus was set
to make SaQC flag-centric, i.e. to integrate explicit control
over flag handling throughout the entire workflow - Making
it unique in its versatility to meet complex requirements
that can arise in practical application. Adding to this, the
code base was developed such that automation of SaQC as
part of an entire data pipeline from sensor to data product
is as simple as possible: The parametrization of QC-tests
is technically separated from the rest of the code so that
the configuration of QC-workflows can be edited without
changing the operational core code.

Based on the generalized data flow from sensor to anal-
ysis as shown in figure 1, figure 2 is a detailed presentation
of the QC-component of such a data flow when using
SaQC. Below, this exemplary SaQC-based QC-workflow is
explained in more detail and in chronological order, with its
elements corresponding to the numbers 1) - 9) as indicated
in the figure. This way, the components of SaQC and their
contribution to meet the requirements of QC software (ch. 2)

Schmidt et al.: Preprint submitted to Elsevier Page 5 of 20

Electronic copy available at: https://ssrn.com/abstract=4173698

System for automated Quality Control (SaQC)

- Metadata enrichment
- Versioning

1

7

2

9

Input data

config-file

time | v1| v2
-----+----+-----
09:45| 8.2| 10.4
09:46| 7| 91.6
09:57| 6.5| 15.6

…| …| …

var ; test
#---;----------------
v1 ; flagRange(7,10)
v2 ; flagMAD(2,5)
… ; …

time | v1| v2
-----+----+-----
09:45| 8.2| 10.4
09:46| 7| 91.6
09:57| 6.5| 15.6

…| …| …

Output data

time | v1| v2
-----+----+----
09:45| OK| OK
09:46| OK| BAD
09:57| BAD| OK

…| …| …

Quality flags

Visualization

SaQC

Pre-
processing

- Timestamp
harmonization

QC-tests

- Pre-defined
- Custom

Flagging
schema

- Customization
- Translation

3 4 5 6

Post-
processing

- Interpolation
- Aggregation

defines 8

Figure 2: General QC-workflow using SaQC: Input data and a config-file are passed to SaQC which returns quality-controlled
output data, along with quality flags and visualizations of the QC-results. The colors in the figure discriminate four categories:
data flows (black), configuration (blue), metadata flows (green) and annotations (grey). The numbers correspond to the workflow
elements as described in more detail in the text below.

are explained in more detail.
(1) Input data can be supplied as .csv or .parquet-files when
using SaQC as a command line application, in any tabular
structure when using it in Python, directly.
(2) Using a text-based configuration scheme that requires no
knowledge of programming, users can then parametrize ex-
isting processing routines as well as QC-tests inside a config-
file. Also, users can write custom routines and tests using a
simplified, Python-like syntax. A detailed presentation of
how to set up a config-file can be found in section 4.3
(3) The config-file also defines the pre-processing routines
that might have to be executed prior to the QC-test. Both
pre-processing- and QC-routines are tightly coupled as most
QC-tests require data pre-processing such as timestamp
harmonization.
(4) The selection of pre-defined QC-tests aims at being
applicable across domains and ranges from standard tests
such as constant value or spike detection to more advanced
methods like pattern recognition and multivariate tests.
More information on both processing and QC-test function-
alities can be found in section 4.2. Users can also implement
entirely new QC-test functionalities in the config-file or in
the core Python code.
(5) Depending on the result of the tests, each data point gets
assigned a flag following a user-defined flagging scheme that
defines the number and hierarchy of the flags, e.g. Good,
Suspicious and Bad. SaQC allows entirely user-defined
flagging schemes and provides functionality to translate
these between each other. See chapter 4.4 for details on the
handling of flags.
(6) If desired, post-processing routines like interpolation or

aggregation over time can be applied on the newly quality-
controlled data.
(7) By default, the processed data, along with the assigned
flags, is then returned as .csv or .parquet-files (command line
application) or any other user-defined format (Python).
(8) Adding to the file output, SaQC provides various visual-
ization functionalities that allow the user to investigate the
effect of different test parametrizations on the QC-results.
(9) Across the whole workflow, SaQC ensures traceability
and reproducibility by metadata enrichment and versioning
of pipelines (see section 4.5 for details).

For documentation and tutorials, readers can refer to the
online documentation of SaQC13 which also contains the
Getting Started Guide14.

13https://rdm-software.pages.ufz.de/saqc/index.html
14https://rdm-software.pages.ufz.de/saqc/getting_started/

TutorialCLI.html

Schmidt et al.: Preprint submitted to Elsevier Page 6 of 20

Electronic copy available at: https://ssrn.com/abstract=4173698

https://rdm-software.pages.ufz.de/saqc/index.html
https://rdm-software.pages.ufz.de/saqc/getting_started/TutorialCLI.html
https://rdm-software.pages.ufz.de/saqc/getting_started/TutorialCLI.html

System for automated Quality Control (SaQC)

Processing:
Interpolation

Basic QC:
Spike detection

Advanced QC:
Pattern recognition

Figure 3: Schematic visualization the three usage categories of exemplary 1) processing, 2) basic QC-test, and 3) advanced
QC-test (from left to right).

Table 2
The three usage categories as included in SaQC. Each category consists of functional groups which encompass a certain number
(#) of functions that serve the same objective.

Group Objective #
Processing Processing steps prior to (pre-processing) or after QC-testing (post-processing)
Resampling Aligning data to equi-distant timestamps by shifting, resampling or interpolation 3
Smoothing Curve smoothing using parametric and non-parametric methods 2
Transformation Derive new variables by transformation or using custom functions 2
Flag projection Project flags from resampled data back onto original data 1
Basic QC Low algorithmic complexity and parametrization effort
Constants Deterministic and variance-based detection of undesired stationary behaviour 2
Breaks Detection of missing/isolated values or jumps in the data 2
Outliers Detection of outliers and spikes, both deterministic and statistical methods 6
Manual flagging Integration of precedent manual QC by experts from auxiliary files 1
Advanced QC Higher algorithmic complexity and parametrization effort
Noise Separate noise from true signal using low pass filters 1
Changepoints Detection of points of undesired system state transitions 2
Drift Detection and correction of sensor drift based on deviation from reference system state 3
Pattern recognition Detection of undesired patterns in the data based on Dynamic time Warping and Wavelets 2
Custom functions Combination of existing/integration of custom QC-tests inside config-file or source code 1
Machine learning Training of machine learning models for flagging and data imputation 4

4.2. Function overview
SaQC ships with extensive processing capabilities as

well as various domain-independent QC-tests, giving a total
of 34 primary functions that are continuously being ex-
tended. Figure 3 aims at giving an intuitive representation of
how these functions are further categorized into 1) process-
ing which serves as either the preliminary (pre-processing)
or finalizing (post-processing) step to both 2) basic QC-
tests and 3) advanced QC-tests. In SaQC, each of these
three categories is populated by multiple functional groups,
which in turn encompass a number (#) of functions that serve
the same objective. Table 2 provides a list and description
of these functional groups, objectives and the respective
number of functions. A more detailed table including the
respective function names can be found in the appendix A.1.
For an in-depth description of each of the functions, readers
are referred to the software documentation.

Furthermore, the following facts should be kept in mind
with respect to the use of the functions of SaQC:

• custom functions can be implemented either right in
the config-file (simplified syntax, logical operators) or
in the source code (Python API)

• The modular architecture of SaQC is designed to
accommodate custom processing and QC functions of
arbitrary complexity via predefined interfaces using
the Python API

• processing functions can be run independently, i.e.
without antecedent or subsequent QC, if desired

4.3. Configuring SaQC for use
As command line application, SaQC is controlled by a

config-file (.csv) listing the variables of the dataset as well
as both the processing routines and QC-tests along with
respective parameters that are to be executed. The content
of such a configuration could look like this:
varname ; test

------------;------------------------------------

SM2 ; shift(freq="15Min")

SM2 ; flagRange(min=10, max=60)

SM2 ; flagMAD(window="30d", z=3.5)

SM2 ; interpolateInvalid(method='linear')

Here, a timestamp shift to a regular interval of 15min
is performed during pre-processing. This is followed by a
range test that flags all values outside the range of [10,60]
and a spike test based on median absolute deviation (MAD,

Schmidt et al.: Preprint submitted to Elsevier Page 7 of 20

Electronic copy available at: https://ssrn.com/abstract=4173698

System for automated Quality Control (SaQC)

Figure 4: Graphical User Interface of the SaQC Configuration App.

see Iglewicz and Hoaglin, 1993). Lastly, data gaps are filled
using linear interpolation. In fact, this is the config-file as
used for use case 1 in section 5.1.
As soon as the basic inputs, a dataset and the config-file are
prepared, running SaQC is as simple as:
saqc --config path_to_configuration.csv --data path_to_data.csv

where path_to_configuration.csv is the spaceholder for
the configuration file described above, and path_to_data.csv

acts as the spaceholder for the input dataset.
The same set-up can be achieved directly in a Python script
by using SaQC’s Python API, which is explained in more
detail in the software documentation.

For users without a programming background, there is
an alternative way to derive a suitable config-file using the
web-based SaQC Configuration App15 (see fig. 4). It offers
a graphical user interface for users to upload their own
data, parametrize the available preprocessing and QC-test
functions and visualize the results. At the end, users can
obtain the respective config-file to use in their own QC-
pipeline.
4.4. Flag Handling inside SaQC

One of the software requirements as stated in chapter
2 is that a software tool should be flag-centric, i.e. all
processing and QC-functionalities should accommodate
explicit, user-defined flag handling. During the development
of SaQC, considerable effort was invested into the handling
and integration of quality flags into the QC workflow: From
the support of custom flagging schemes and flag transla-
tion, their internal representation, the inherent rules for the

15https://webapp.ufz.de/saqc-config-app/

transfer of flags from one processing step to the next one
to a holistic output of the results. When chaining multiple
processing steps and QC tests in practical application, flag
handling raises challenges that can become quite complex.
By means of five key challenges, the following section
illustrates the potential complexity and how a flag-centric
SaQC is equipped to tackle it.
Filtering of flags between QC-tests: Some QC-tests might
require the data to be filtered according to the flags set by
preceding QC-tests. For example, running a sparsity test on
the sensor data 𝑆𝑀2 in order to flag data points that are
surrounded by erroneous data only, requires preceding QC
tests to identify and flag these erroneous data. In SaQC, a
user can control which data a QC-test should receive by
setting a threshold for the flag level, 𝑑𝑓𝑖𝑙𝑡𝑒𝑟, that must not be
exceeded for data to be passed on to the respective test. This
way, all data that was flagged as "BAD" by preceding tests,
in this case by a range test, can be excluded when executing
the sparsity test (𝑓𝑙𝑎𝑔𝐼𝑠𝑜𝑙𝑎𝑡𝑒𝑑):
varname ; test

------------;------------------------------------

SM2 ; flagRange(min=10, max=60)

SM2 ; flagIsolated(dfilter=BAD)

Conditioning of QC-tests based on previous flags: The
execution of one QC-test might have to be conditioned on
the results of the preceding QC-tests. In the exemplary
configuration below, sensor data 𝑆𝑀2 might be affected
either by a drop in sensor battery voltage 𝐵𝑎𝑡𝑡𝑉 or due to
maintenance work on the power supply. Thus, both a range
test and manual flagging (based on an auxiliary file) are
executed on 𝐵𝑎𝑡𝑡𝑉 . Next, a custom function 𝑓𝑙𝑎𝑔𝐺𝑒𝑛𝑒𝑟𝑖𝑐
is conditioned on the two preceding tests by making use of

Schmidt et al.: Preprint submitted to Elsevier Page 8 of 20

Electronic copy available at: https://ssrn.com/abstract=4173698

https://webapp.ufz.de/saqc-config-app/

System for automated Quality Control (SaQC)

Table 3
Illustration of an exemplary flagging history for sensor data
𝑆𝑀2 after running three QC-tests. Traceability of each flag
to the respective QC-test of origin is ensured by storing flags
column-wise.

time SM2 flagRange flagMAD flagByStray
2016-04-01 00:04:48 32.6 BAD GOOD GOOD
2016-04-01 00:20:42 32.7 GOOD GOOD GOOD
2016-04-01 00:36:05 44.8 GOOD BAD BAD
...

the option to chain expressions via boolean operators (here:
or): If one or both of the tests assigned a flag to 𝐵𝑎𝑡𝑡𝑉 , the
sensor data 𝑆𝑀2 is flagged accordingly.
varname ; test

--------;--

BattV ; flagRange(min=.5, label='voltage drop')

BattV ; flagManual(mdata='maintData', label='maintenance')

SM2 ; flagGeneric(func=isFlagged(BattV, 'voltage drop')

or isflagged(BattV, 'maintenance'))

Provenance of the QC-test for each flag: For each flag, in-
formation on the QC-test that produced it has to be traceable
after the QC-process is finished. In SaQC, this is achieved
by storing and returning the entire flagging history, i.e. the
results of all QC-tests, for each data point (see table 3).
This also allows a final aggregation of all assigned flags
into a probabilistic metric of data quality as presented in e.g.
Kaffashzadeh et al. (2019).
Keeping track of flags during resampling: For example,
when aggregating a dataset of 5-minute temporal resolution
to one of 15-minute resolution, three data points are reduced
into one mean value. As to the flags that were already
assigned, a decision has to be taken which flag should be
assigned to that single value. SaQC allows the user to define
a flag aggregation function 𝑓𝑙𝑎𝑔𝑓𝑢𝑛𝑐. In this case, it takes
the the worst flag of the three (see code below). Internally,
the original data structure is retained, so that the flagging
results on aggregated data can be projected back onto the
original data.
varname ; test

------------;------------------------------------

SM2 ; resample(freq='15min', func=mean, flag_func=max)

Translation of flagging schemes: Datasets that exhibit dif-
ferent flagging schemes, originating from separate previous
QC processes, might have to be joined for being processed
by SaQC. Also, the output of the actual QC-workflow might
need to match yet another flagging scheme. SaQC enables
the translation between different input and output flagging
schemes by representing any data points’ flags history in
a series of floats (not shown). This representation is suffi-
ciently manifold in its structure to capture the majority of
thinkable flagging schemata, ranging from simple, hierar-
chical flagging levels to more complex, cause-sensitive or
probabilistic ones.

4.5. Enabling traceable and reproducible
workflows

The FAIR-principles itself do not explicitly include qual-
ity control as a prerequisite (Koedel et al., 2022): "The
FAIR guiding principles request that optimal care is taken to
enable users to determine the ‘usefulness’ (for their purpose)
of the data and other research objects they find, which in-
cludes rich, machine readable provenance" (GoFair, 2021).
In other words, simply noting the absence of quality control
in the metadata of a dataset would suffice to make a dataset
FAIR. However, data does only actually become re-usable
by going beyond that, i.e. by establishing traceable QC-
workflows. This, in turn, requires more attention if FAIR
guidelines are still to be met: R1.2., i.e. part of the definition
of Reusability, states that "datasets are to be associated with
detailed provenance (Wilkinson et al., 2016)". In the case
of QC-workflows using SaQC, this is achieved by extensive
metadata enrichment along the QA/QC-pipeline: Process-
ing steps, QC-tests and their respective parametrization are
accessible for every single quality flag produced by SaQC
(traceability).
The ultimate goal of such successful metadata provenance
is that "[datasets] can be replicated and/or combined in
different settings" (GoFair, 2021). SaQC supports versioning
of the entire pipeline including all parametrizations through
version control systems (e.g. Git). As such, every single
quality flag is not only traceable, but can be replicated if
necessary (reproducibility).
The following figure 5 is a variation of the exemplary SaQC-
workflow as previously depicted in figure 2 but with a focus
on the metadata component (green colour). Figure 5 illus-
trates in detail how metadata enrichment and versioning can
be achieved in SaQC-based workflows: The input data comes
with source metadata, e.g. sensor location, ID or data author.
As it runs through the SaQC-workflow, and as such through
the QC-tests as defined in the config-file, metadata is being
collected and merged with the source metadata. For instance,
in the case of a data point identified as a spike (red circle in
fig. 5), this includes the quality flag as well as information
on the flagging schema it refers to. Also, the QC-test that
assigned the flag (here: spike-test) is written, which becomes
relevant when multiple QC-tests are executed on the same
variable. To account for varying implementations across
software versions, the version of SaQC is noted as well. In
order to keep track of the version of the entire workflow,
the config-file is versioned via Git and the respective Git
Commit Hash can be written into the metadata. With this,
a user receiving any dataset that was QC-ed using SaQC is
able to 1) trace and 2) reproduce every single step of the
pipeline.

5. Exemplary use cases
This section presents two use cases of SaQC in actual

applications at the Helmholtz-Centre for Environmental Re-
search (UFZ), more specifically at two observatories that
are part of the TERENO Bode Hydrological Observatory
(Wollschläger et al., 2017) which is located in the Harz

Schmidt et al.: Preprint submitted to Elsevier Page 9 of 20

Electronic copy available at: https://ssrn.com/abstract=4173698

System for automated Quality Control (SaQC)

SaQC

GIT Hash:
#sj2ck6m

- time
- long/lat
- raw/processed
- sensor ID
- site
....

- BAD (GOOD; SUSP.; BAD)

- Spike (2, 5)

- SaQC v 1.4

- #sj2ck6m

config-file

Source metadata Enrichment per datapoint

- flag & flagging scheme

- QC-test & parametrization

- Version of SaQC

- GIT Hash

Versioning

Metadata
enrichment

var ; test
#---;----------------
v1 ; flagRange(7,10)
v2 ; flagMAD(2,5)
… ; …

Figure 5: Schematic illustration of metadata enrichment (traceability) and versioning (reproducibility) when using SaQC. The red
circle marks a data point identified as a spike by a QC-test. The other colors discriminate four categories: Data flows (black),
configuration (blue), metadata flows (green) and annotations (grey)

region in central Germany. The first use case at the forest
ecosystem observatory Hohes Holz (Rebmann et al., 2017)
employs some of the functionalities listed as Processing
and Basic QC-test. The second one at the hydrological
Rappbode-observatory (Rinke et al., 2013) presents the use
of Processing functionalities and both Basic and Advanced
QC-tests. Both use cases are presented in more detail in
our collection of Cookbooks in the online documentation16,
along with the necessary data and config-files to reproduce
all results as presented here. For both use cases, the time
series snippets that are shown were selected to be intuitive
and illustrative with the aim of showcasing the functions of
SaQC. The authors do not intend to evaluate the performance
of the developed QC-workflows in detail, therefore the re-
sults are only discussed briefly.
5.1. Use case 1: Basic quality control of soil

moisture data
At the Hohes Holz observatory (Central Germany), a

patch of mixed beech forest, a huge set of environmental
variables is measured continuously to improve the scien-
tific understanding of carbon and water fluxes between the
ecosystem and the atmosphere under the influence of en-
vironmental changes (see fig. 6). Various meteorological,
hydrological and ecological variables are observed at high
spatial and temporal resolution, among these distributed
soil moisture content measurements using about 180 sin-
gle sensors (sensor model: SMT100, TRUEBNER GmbH,

16https://rdm-software.pages.ufz.de/saqc/index.html

Neustadt, Germany). In this use case, quality control of

Figure 6: Left: Birds-eye view of the forest ecosystem observa-
tory Hohes Holz. Right: Measurement set-up of multiple soil
moisture sensors at different soil depths as employed in use
case 1. Image source: UFZ.

soil moisture data is performed in four steps. The dataset
contains the variables time, battery (battery voltage of the
data acquisition platine) and soil moisture SM2 in vol.% at
one sensor. The following description handles line by line
of the actual config-file from section 4.3, also included in
appendix A.2, along with illustrative figures. An in-depth
presentation of the workflow, including all figures, algorith-
mic details and references, can be found in the respective
Cookbook 17. Figure 7 depicts the raw data of sensor SM2
before quality control, exhibiting unrealistic values beyond
a plausible value range.

17https://rdm-software.pages.ufz.de/saqc/getting_started/
TutorialCLI.html

Schmidt et al.: Preprint submitted to Elsevier Page 10 of 20

Electronic copy available at: https://ssrn.com/abstract=4173698

https://rdm-software.pages.ufz.de/saqc/index.html
https://rdm-software.pages.ufz.de/saqc/getting_started/TutorialCLI.html
https://rdm-software.pages.ufz.de/saqc/getting_started/TutorialCLI.html

System for automated Quality Control (SaQC)

Figure 7: Raw soil moisture data of sensor SM2 from a
distributed soil moisture sensor network at the research site
’Hohes Holz’.

Table 4
Exemplary screenshot of the raw soil moisture data with
irregular timestamps.

time battery SM2
2016-04-01 00:04:48 3573 32.6
2016-04-01 00:20:42 3572 32.7
2016-04-01 00:36:05 3572 32.6
...

Table 5
Exemplary screenshot of the pre-processed soil moisture data
after step 1, now with regular timestamps.

time battery SM2
2016-04-01 00:05:00 3573 32.6
2016-04-01 00:20:00 3572 32.7
2016-04-01 00:35:00 3572 32.6
...

1. Timestamp harmonization via resampling: As a
result of irregular data acquisition frequency of the wireless
sensor network, the timestamps of the measurements are not
equidistant. See table 4 for an exemplary screenshot of the
data and the irregular timestamps that are supposed to be
regular at 15min-interval.

To ensure regular time-steps for further processing, the
data points are shifted to the closest timestamp of a 15min-
grid, thereby also eliminating possible duplicates. The cor-
responding line in the config-file is this one:
varname ; test

#-------;------------------------------------

SM2 ; shift(freq="15Min")

And the resulting output data is displayed in table 5: 2.

Range test: Next, a range test to exclude values below/above
a physically meaningful threshold is performed (here: [10,
60], vol.% soil moisture).
SM2 ; flagRange(min=10, max=60)

3. MAD outlier test: Following this, a Modified Z-Score
(MAD) outlier detection test, as proposed by Iglewicz and

Hoaglin (1993), is performed to detect and flag spikes in
the data. The resulting flags of steps 2 and 3 are depicted
in figure 8.
SM2 ; flagMAD(window="30d", z=3.5)

Figure 8: Quality flags of the variable SM2 as a result of steps
2 and 3, i.e. a range-test (flagRange, blue markers) and a MAD
outlier test (flagMAD, orange markers)

4. Linear interpolation of missing values As a final
post-processing step, the missing values that result from
identifying erroneous values during the preceding flagging
are filled using linear interpolation:
SM2 ; interpolateInvalid(method='linear')

The final, clean results, i.e. a comparison of the time
series of the variable SM2 before and after the QC-process
is displayed in figure 9. The major error pattern, fluctuations
beyond a plausible value range, has been successfully cor-
rected for. Given the amount of erroneous data points that
were identified (fig. 8) and excluded, the resulting data gaps
make up a considerable portion of the whole time series
snippet. Therefore, the application of linear interpolation in
step 4 is questionable and would have to be communicated
to the end user in each data points’ metadata as explained
in section 4.5. Here, it is only applied with the aim of
showcasing the functions of SaQC.
5.2. Use case 2: Advanced quality control of

surface water body data
At the Rappbode observatory, Germany‘s largest drink-

ing water reservoir with a maximum storage of about 100
million m3, a multitude of hydrological variables are recorded
to investigate the inflow dynamics of nutrients and dissolved
organic carbon (DOC) from the surrounding catchment (see
fig. 10). For more details on the observatory, please see
Rinke et al. (2013). More specifically, the variables water
level, water temperature, and sac254 (spectral absorption
coefficient at 254 nm, used as a proxy for DOC) are measured
in all four major inflows using the sensors as presented
in table 6. These measurements are highly sensitive and
require regular maintenance as well as sophisticated quality
control which is performed in five steps. In this section,

Schmidt et al.: Preprint submitted to Elsevier Page 11 of 20

Electronic copy available at: https://ssrn.com/abstract=4173698

System for automated Quality Control (SaQC)

Figure 9: time series of the variable SM2 before (top) and after (bottom) the QC-process.

Figure 10: Left: Birds-eye view of the Rappbode reservoir,
the site of the corresponding hydrological observatory. Right:
Measurement buoy carrying sensors as employed in use case 2.
Image source: UFZ.

Table 6
Model and manufacturer of the sensors used to measure the
variables of use case 2.
Variable Unit Sensor model
water level m Analog Submersible Level Sensor, STS AG

water temperature ◦C EXO2 Multiparameter Probe, Xylem Inc
sac254 m−1 OPUS UV Spectral Sensor, TriOS, Germany GmbH

the first four steps are elaborated for one of the variables,
sac254, only. In the last step, all three variables are used as
covariates for multivariate flagging. This description handles
line by line of the actual config-file needed for the final
results (see appendix A.3), along with illustrative figures.
An in-depth presentation of the entire workflow, including
all figures, algorithmic details and references, can be found
in the respective Cookbook 18.
Figure 11 depicts the raw time series of sac254, i.e. before

quality control. It exhibits undesired outliers and cyclical
drops in its data values that are physically implausible.

18https://rdm-software.pages.ufz.de/saqc/cook_books/
MultivariateFlagging.html

This advanced use case touches on the potential complexity

Figure 11: Raw data of the variable sac254 before quality
control.

of QC-workflows with multiple routines building on top of
each other. Also, it shows some of the functionalities of
SaQC that are indispensable in the practical application -
e.g. the projection of flags in step 5.
1. Flagging of maintenance intervals: As a first step, data
recorded during known maintenance operations is flagged
as these operations affect the measurements. The respective
information is encoded in a separate variable maint and used
inside the manual flagging function.
varname ; test

#-------;--

sac254 ; flagManual(mdata='maint')

2. Range test: Next, basic QC in form of a range test to
exclude values below/above a physically meaningful thresh-
old is performed (here: [0,70], m−1). This is necessary to

Schmidt et al.: Preprint submitted to Elsevier Page 12 of 20

Electronic copy available at: https://ssrn.com/abstract=4173698

https://rdm-software.pages.ufz.de/saqc/cook_books/MultivariateFlagging.html
https://rdm-software.pages.ufz.de/saqc/cook_books/MultivariateFlagging.html

System for automated Quality Control (SaQC)

avoid incorrect interpolation of data values in the next step.
The resulting flags of step 1 and 2 are visualized in figure 12
sac254 ; flagRange(min=0, max=70)

Figure 12: Flags for of the variable sac254 as a result of steps 1
and 2, i.e. based on known maintenance intervals (flagManual,
orange markers) and a range test (flagRange, blue markers)

.

3. Timestamp harmonization via resampling: As the
sensors do not necessarily measure at the same interval
or exact same time, the timestamps of all variables are
resampled to an equi-distant, synchronous grid of 15min-
intervals. This is needed for subsequent multivariate QC-
tests. As the data values themselves have to be adapted
accordingly, linear interpolation is performed on the data
values where necessary, not touching on actual missing
values. The interpolation time step has to be adjusted to a
value that is fitting to the original temporal resolution and
that does not lead to larger changes in the dynamics.
sac254 ; linear(freq='15min')

4. Drift correction: The variable sac254 exhibits a
short-term drift: Due to biofilm growth and dirt accumula-
tion on the sensor lenses, the reference, or base value of the
measurements increases over time as illustrated in figure 13.
Based on expert knowledge, these increases are assumed to
follow an exponential growth and are thus corrected for by
subtraction of an exponential term that was parameterized
manually in advance. Whenever maintenance, i.e. sensor
cleaning or replacement is performed, the drift correction
is reset to its new starting point.
sac254 ; correctDrift(target='sac254_corr', maintenance_field='maint',

model=expDriftModel)

5. Multivariate spike detection using kNN and STRAY:
Next, not only the information of sac254, but of all three
variables (water level, water temperature and sac254) is
used to identify multivariate outliers. The methodology is
based on the oddwater-algorithm by Talagala et al. (2019).
The aim is to employ the well-established unsupervised clus-
tering algorithm k-Nearest Neighbors (kNN). This requires
the variables to be normalized in a first step using z-score
transformation. Next, the kNN-algorithm is used to assign

Figure 13: Illustration of the drift correction of the variable
sac254. The grey line depicts the original data, the black line
represents corrected data, both at 15min-resolution.

a multivariate outlier score (new variable: kNN_scores) to
each timestep. Figure 14 (top) provides a visual intuition
of how, during this dimensionality reduction, multivariate
outliers become detectable when transformed into one vari-
able. These kNN_scores are then processed further using the
STRAY-algorithm (Talagala et al., 2021) to automatically
define a threshold above which data points of the kNN-
scores are considered to be actual outliers and can be flagged
as such. As a last step, these flags are projected from the
kNN_scores-variable back onto the actual data variables.
Figure 14 (bottom) depicts the results after this projection
is performed for sac254.

5: Multivariate spike detection using kNN and STRAY

Normalization of variables for kNN

level ; transform(target='level_norm', func='zScore', freq='20D')

water_temp ; transform(target='water_temp_norm', func='zScore', freq='20D')

sac254_corr ; transform(target='sac254_norm', func='zScore', freq='20D')

Flagging by kNN and STRAY

level_norm,water_temp_norm,

sac254_norm ; assignKNNScore(target='kNN_scores', freq='20D')

kNN_scores ; flagByStray(freq='20D')

Project results of STRAY-algorithm onto variables

level ; transferFlags(field=['kNN_scores'])

water_temp ; transferFlags(field=['kNN_scores'])

sac254_corr ; transferFlags(field=['kNN_scores'])

The final, clean results, i.e. a comparison of the time
series of the variable sac254 before and after the QC-
process, are presented in figure 15. In general, all major
error patterns (major outliers, cyclical drops, drift) have been
corrected for. A few spikes remain that should be analyzed
in more detail by the domain expert and that could possibly
be covered by the parametrization of one of the spike tests
included in SaQC. However, it is to be noted that the figures
shown here only depict snippets of the whole time series
at one sensor while the observatory consists of numerous
sensors that exhibit slightly varying error characteristics. As
finding the right parametrization for a time snippet of one
single sensor already requires substantial efforts by the do-
main experts, finding a robust parametrization for the whole
network is always a trade-off between local performance

Schmidt et al.: Preprint submitted to Elsevier Page 13 of 20

Electronic copy available at: https://ssrn.com/abstract=4173698

System for automated Quality Control (SaQC)

Figure 14: Top: Multivariate outliers (red markers) in the
kNN-scores as identified by the STRAY-algorithm, i.e. based
on all three variables (water level, water temperature and
sac254). Bottom: The corresponding outliers projected onto
and visualized for the variable sac254, only. Note that, for
illustration, this plots depicts a shorter time snippet than the
previous figures, i.e. is zoomed in.

(time series snippets of one sensor) and global performance
(whole network).

6. Discussion
The only way to turn ever-increasing volumes of data

from environmental sensor networks into actionable data
products of high quality for monitoring, modeling and de-
cision support is rigorous automation of the entire data
workflow including its quality control component. Com-
monly, the latter has to be implemented by domain experts
with limited IT expertise, requiring suitable and accessible
software tools. The previous sections present SaQC as a
possible solution that meets the key requirements for such
software. Further, it is illustrated how domain experts are
enabled to set up flexible and reproducible QC workflows
for any time series data. Nonetheless, it is important to know
about certain limitations of the software as well as future
developments and research directions as presented in the
following paragraph.
6.1. Limitations of the software

One challenge that still persists for users with limited
IT skills is that, currently, it is required to install the pro-
gramming language Python. Similarly, configuring the QC-
tests via a .csv config-file might be unfamiliar to users
that are used to employ software solely using a Graphical

User Interface (GUI). To this end, the web-based SaQC
Configuration App was developed that supports the process
of QC-test parametrization via GUI. Regarding input file
types, these are currently limited to .csv and .parquet if SaQC
is used via the command line interface (CLI), here netCDF
support is envisioned. If used via the Python API, any file
format or database API can be implemented by the user.
Concerning traceability and reproducibility, 1) versioning
and 2) metadata enrichment are optional functionalities. If
desired, the user is required to 1) host the QC-pipeline on
the code versioning platform Git and 2) be able to store
additional metadata (SaQC version, flagging schema, QC-
test that was executed etc.) for each data point in the respec-
tive data repository. Depending on the system in use, the
latter can potentially result in considerable computational
load if the configuration of the pipeline is changed and all
historical data points are to be re-processed. Lastly and nat-
urally, setting up a QC-workflow still requires considerable
parametrization effort, but SaQC is designed to make this
as easy as possible while rendering labor-intensive manual
quality control superfluous.
6.2. Future development and research directions

Future development of SaQC is envisioned in multiple
ways: Firstly, it will be implemented in further real-world
environmental monitoring workflows, both at the authors’
institutions and beyond. While doing so, the existing set of
QC-tests will be continuously extended by both domain-
specific and -agnostic tests. Future data volumes are, how-
ever, expected to be ever growing, among others due to the
use of mobile low-cost sensors inside the growing citizen
science community Koedel et al. (2022). Sensor mobility
will significantly raise the algorithmical complexity of the
respective QC workflows to assure internal consistency,
likely reaching a point where manual parametrization of QC
tests becomes too complex. While we will evaluate semi-
automated parametrization schemes as proposed by Durre
et al. (2008) and Taylor and Loescher (2013), entirely au-
tomated, Machine Learning-based methods are likely to be
required not only for QC, but also for data imputation. As a
step in this direction, we currently evaluate the expansion of
the available Machine Learning functions by Deep Learning
algorithms for anomaly detection as these have recently been
shown to achieve high classification accuracy by exploiting
spatio-temporal patterns in the data of the entire sensor
network (e.g. Erhan et al., 2021; Jones et al., 2022). Another
potential extension of SaQC is the integration of external
data sources to validate online sensor data. As an example,
the soil moisture data of use case 1 could be validated using
remote-sensing products like SMAP19. Another relevant
topic is the auditing of QC-workflows: We will evaluate
methods to monitor QC-workflows regarding spatial and
temporal patterns to avoid introducing systematic bias or
overflagging as a result of malparametrized tests. This could
be achieved based on methods as presented in e.g. Durre

19NASA Soil Moisture Active Passive Mission (Entekhabi et al., 2010)

Schmidt et al.: Preprint submitted to Elsevier Page 14 of 20

Electronic copy available at: https://ssrn.com/abstract=4173698

System for automated Quality Control (SaQC)

Figure 15: time series of the variable sac254 before (top) and after (bottom) the QC-process.

et al. (2008) and Smith et al. (2014), along with a user-
centred communication of the audit results, i.e. an estimate
of the performance of a QC-workflow, as in Sturtevant et al.
(2021).
SaQC will be disseminated in the scientific community via
hands-on workshops to enable more domain scientists to
use it in their specific application. With a growing user
community, the authors envision an open source commu-
nity that contributes specific QC-tests along with suitable
parametrization schemes for future re-use. By providing a
domain-agnostic and flexible software tool, the authors hope
to contribute to an urgent and inevitable standardization of
QC workflows and flagging schemata across domains, thus
fostering FAIR data flows.

7. Conclusions
In order to monitor, model and investigate the drivers

of ongoing environmental changes, large-scale sensor net-
works have been set up and are continuously expanding in
number of sensors and geographical coverage. The corre-
sponding ever-growing raw data volumes that need to be
processed into actionable data products in real-time pose
a significant challenge to the respective data workflows.
Rigorous automation of data workflows and their quality-
control component is essential. This in turn, demands for
domain-agnostic software tools to establish automated QC-
workflows, aiming at a user group that mostly consists of
domain experts with limited IT-expertise. In this publication,
we derive key requirements for such software and present
SaQC, an Open Source framework for quality control of
time series data that meets these requirements by providing

the following features: It is universal as to its application
domain and flexible with regard to both its input/output
data structures as well as flagging schemata. While already
providing a comprehensive set of methods, it is extensible in
its pre- and post-processing as well as QC-testing functions.
All these functions are designed such that the handling of
quality flags between processing steps is controllable and
explicit. Adding to this, it provides functionality to make
QC-workflows traceable and reproducible, thus promoting
FAIR workflows. Also, SaQC is designed to be accessible,
particularly to users without programming knowledge as
is often the case in practical application. By means of a
detailed software description and the presentation of two
real-world use cases, we showcase how SaQC can be used
to process and perform quality control on one‘s own data
both at basic and at advanced level. Thus, the scientific
community is supplied with (instructions on) a software
framework to automatically deliver environmental data that
is of high quality, up-to-date, potentially large in volume and
reusable - Principal prerequisites for data-driven and sustain-
able science to address urgent environmental challenges.

Schmidt et al.: Preprint submitted to Elsevier Page 15 of 20

Electronic copy available at: https://ssrn.com/abstract=4173698

System for automated Quality Control (SaQC)

8. Acknowledgments and Funding
The Hohes Holz and the Rappbode observatories are fi-

nancially supported by TERENO (Terrestrial Environmental
Observatories, funded by the Helmholtz Association and the
Federal Ministry of Education and Research, BMBF) and the
Talsperrenbetrieb Sachsen-Anhalt.
Karsten Rinke received funding from the H2020-MSCA-
ITN-2020 innovative training network InventWater (GrantNo
956623). We acknowledge previous work by Juliane Mai and
Matthias Cuntz who established first data quality control
procedures. Similarly, we acknowledge input by Corinna
Rebmann who provided data, ideas and discussion on test
procedures.

A. Appendix
A.1. Table of QC and processing functions

Please note that, for readability, the following table A.1
only lists the most relevant processing and QC-functions.
There is a multitude of specific helper functions that are
listed in the SaQC online documentation.

Schmidt et al.: Preprint submitted to Elsevier Page 16 of 20

Electronic copy available at: https://ssrn.com/abstract=4173698

System for automated Quality Control (SaQC)

Table 7
Primary processing and QC functions of SaQC. The grouping is according to table 2 but giving name, descriptions and references,
where applicable, for each single function. (Note: Too small due to LaTeX class, will be full-page and horizontal)

Group Function Name Objective
Processing Processing steps prior to (pre-processing) or after QC-testing (post-processing)
Harmonisation shift Shift data points and their flags to align them with regular frequency grids

resample Resample data points and flags with an aggregation to align them with regular frequency grids
interpolate Interpolate data and aggregate flags at regular frequency grids using parametric and non-parametric methods

Smoothing rolling Process data by applying or fitting a function in a rolling window manner
fitPolynomial Smooth data by chunkwise fitting polynomials

Transformation transform Process data by applying a custom function on data chunk, e.g. normalization
processGeneric Generate new data via custom function of (multiple) data variables and their flagging status

Flag projection concatFlags Project flags from (regularly sampled) data products back onto original data
Basic QC-tests Low algorithmic complexity and parametrization effort
Constants flagConstants Flag data where it is strictly constant

flagByVariance Flag data chunks that have too low a variance
Breaks flagMissing Assign flags to missing value markers

flagIsolated Flag groups of values, isolated by missing or invalid data
Outliers flagRange Flag values that lie below or exceed a given absolute limit

flagOffset Customizable deterministic outlier detection
flagByStray Use stray algorithm to flag values
flagMAD Use median statistics to flag outliers
flagByGrubbs Use Grubbs algorithm to find outliers in given window
flagMVScores Use K-nearest neighbor aggregation to flag multiple variables

Manual flagging flagManual Transfer pre-existing flags from auxiliary files into the pipeline
Advanced QC-tests Higher algorithmic complexity and parametrization effort
Noise flagByStatLowPass Flag data chunks based on tests in the frequency domain
Changepoints flagChangePoints Flag data points that represent a system state transition based on sample statistics

flagRegimeAnomaly Flag chunks of the data that behave abnormal based on agglomerative clustering
Drift correctDrift Remove drift component from data, according to a custom drift model

flagDriftFromReference Flag data where its deviation from a reference data set exceeds a threshold
flagDriftFromNorm Flag data chunk that gets assigned to a minority group by agglomerative time series clustering

Pattern recognition flagPatternByWavelet Detect and flag data chunks by evaluating their distance to a given pattern in the frequency domain
flagPatternByDTW Detect and flag data chunks by evaluating their distance to a given pattern using dynamic time warping

Custom functions flagGeneric Derive flags from a custom, boolean valued function of (multiple) data variables and their flagging status
Machine learning trainModel Train an Ensemble of tree-based boosting and bagging models with an Autotuner (MLjar)

modelPredict Predict data with a trained regressor
modelFlag Flag data with a trained classifier
modelImpute Impute data with a trained regressor

A.2. Config-file use case 1
This config-file includes all steps to perform QC as

presented in use case 1 in section 5.1. For a more detailed
description, the reader is referred to the respective Cookbook
in the SaQC online documentation.
varname ; test

#-----------;------------------------------------

SM2 ; shift(freq="15Min")

SM2 ; flagRange(min=10, max=60)

SM2 ; flagMAD(window="30d", z=3.5)

SM2 ; interpolateInvalid(method='linear')

A.3. Config-file use case 2
Please note that, while the description of use case 2 in

section 5.2 focuses on the variable sac254 for readability,
this config-file lists the required steps for all three variables
(water level, water temperature and sac254). For a more
detailed description, the reader is referred to the respective
Cookbook in the SaQC online documentation.
varname ; test

#-----------;------------------------------------

1: Flagging of maintenance intervals

sac254 ; flagManual(mdata='maint')

2: Basic QC: Range-tests

level ; flagRange(min=0)

water_temp ; flagRange(min=-.5)

sac254 ; flagRange(min=0, max=70)

3: Pre-processing: Resampling via linear interpolation

level ; linear(freq='15min')

water_temp ; linear(freq='15min')

sac254 ; linear(freq='15min')

4: Drift correction

sac254 ; correctDrift(target='sac254_corr', maintenance_field='maint',

model='exponential')

5: Multivariate spike detection using kNN and STRAY

Normalization of variables for kNN

level ; transform(target='level_norm', func='zScore', freq='20D')

water_temp ; transform(target='water_temp_norm', func='zScore', freq='20D')

sac254_corr ; transform(target='sac254_norm', func='zScore', freq='20D')

Flagging by kNN and STRAY

level_norm,water_temp_norm,

sac254_norm ; assignKNNScore(target='kNN_scores', freq='20D')

kNN_scores ; flagByStray(freq='20D')

Project results of STRAY-algorithm onto variables

level ; transferFlags(field=['kNN_scores'])

water_temp ; transferFlags(field=['kNN_scores'])

sac254_corr ; transferFlags(field=['kNN_scores'])

CRediT authorship contribution statement
Lennart Schmidt: Conceptualization, Software Devel-

opment, Writing. David Schäfer: Conceptualization, Soft-
ware Development, Supervision. Juliane Geller: Concep-
tualization, Software Development, Writing. Peter Lünen-
schloss: Conceptualization, Software Development, Writ-
ing. Bert Palm: Conceptualization, Software Development,
Writing. Karsten Rinke: Data collection and Curation,

Schmidt et al.: Preprint submitted to Elsevier Page 17 of 20

Electronic copy available at: https://ssrn.com/abstract=4173698

System for automated Quality Control (SaQC)

Writing, Review. Jan Bumberger: Conceptualization, Writ-
ing, Supervision. References

ACTRIS, 2021. Aerosols, clouds, and trace gases research infrastructure
network. URL: https://www.actris.eu.

Campbell, J.L., Rustad, L.E., Porter, J.H., Taylor, J.R., Dereszynski, E.W.,
Shanley, J.B., Gries, C., Henshaw, D.L., Martin, M.E., Sheldon, W.M.,
et al., 2013. Quantity is nothing without quality: Automated qa/qc
for streaming environmental sensor data. BioScience 63, 574–585.
doi:10.1525/bio.2013.63.7.10.

Caveness, E., GC, P.S., Peng, Z., Polyzotis, N., Roy, S., Zinkevich, M., 2020.
Tensorflow data validation: Data analysis and validation in continuous
ml pipelines, in: Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, pp. 2793–2796.

Collier-Oxandale, A., Feenstra, B., Papapostolou, V., Polidori, A., 2022.
Airsensor v1. 0: Enhancements to the open-source r package to enable
deep understanding of the long-term performance and reliability of
purpleair sensors. Environmental Modelling & Software 148, 105256.
doi:10.1016/j.envsoft.2021.105256.

Crystal-Ornelas, R., Varadharajan, C., Christianson, D., Damerow, J.,
Weierbach, H., Robles, E., Ramakrishnan, L., Faybishenko, B., Pas-
torello, G., 2021. A library of ai-assisted fair water cycle and re-
lated disturbance datasets to enable model training, parameterization
and validation URL: https://www.osti.gov/biblio/1769646, doi:10.2172/
1769646.

Doraiswamy, P., Pasteris, P., Jones, K., Motha, R., Nejedlik, P., 2000. Tech-
niques for methods of collection, database management and distribution
of agrometeorological data. Agricultural and Forest Meteorology 103,
83–97. doi:10.1016/S0168-1923(00)00120-9.

Dorigo, W., Xaver, A., Vreugdenhil, M., Gruber, A., Dostálová, A., Sanchis-
Dufau, A., Zamojski, D., Cordes, C., Wagner, W., Drusch, M., 2013.
Global automated quality control of in situ soil moisture data from the
international soil moisture network. Vadose Zone Journal 12. doi:10.
2136/vzj2012.0097.

Durre, I., Menne, M., Gleason, B., Houston, T., Vose, R., 2010. Comprehen-
sive automated quality assurance of daily surface observations. Journal
of Applied Meteorology and Climatology 49. doi:10.1175/2010JAMC2375.
1.

Durre, I., Menne, M.J., Vose, R.S., 2008. Strategies for evaluating quality
assurance procedures. Journal of Applied Meteorology and Climatology
47, 1785–1791. doi:10.1175/2007JAMC1706.1.

Entekhabi, D., Njoku, E.G., O’Neill, P.E., Kellogg, K.H., Crow, W.T.,
Edelstein, W.N., Entin, J.K., Goodman, S.D., Jackson, T.J., Johnson,
J., et al., 2010. The soil moisture active passive (smap) mission.
Proceedings of the IEEE 98, 704–716. doi:https://doi.org/10.1109/
JPROC.2010.2043918.

Erhan, L., Ndubuaku, M., Di Mauro, M., Song, W., Chen, M., Fortino,
G., Bagdasar, O., Liotta, A., 2021. Smart anomaly detection in sensor
systems: a multi-perspective review. Information Fusion 67, 64–79.
doi:10.1016/j.inffus.2020.10.001.

Estévez, J., Gavilán, P., Giráldez, J.V., 2011. Guidelines on validation
procedures for meteorological data from automatic weather stations.
Journal of Hydrology 402, 144–154. doi:10.1016/j.jhydrol.2011.02.
031.

Fiebrich, C.A., Morgan, C.R., McCombs, A.G., Hall Jr, P.K., McPherson,
R.A., 2010. Quality assurance procedures for mesoscale meteorological
data. Journal of Atmospheric and Oceanic Technology 27, 1565–1582.
doi:10.1175/2010JTECHA1433.1.

Fischetti, T., 2022. assertr: Assertive Programming for R
Analysis Pipelines. Https://docs.ropensci.org/assertr/ (website)
https://github.com/ropensci/assertr.

Gandin, L.S., 1988. Complex quality control of meteorological observa-
tions. Monthly Weather Review 116, 1137–1156.

GoFair, 2021. Fair principles. URL: https://www.go-fair.org/

fair-principles/.
Gong, A., Campbell, J., 2022. Great expectations. doi:10.5281/zenodo.

6403212.
Gouldman, C.C., Bailey, K., Thomas, J.O., 2017. Manual for real-time

oceanographic data quality control flags.

Schmidt et al.: Preprint submitted to Elsevier Page 18 of 20

Electronic copy available at: https://ssrn.com/abstract=4173698

https://www.actris.eu
http://dx.doi.org/10.1525/bio.2013.63.7.10
http://dx.doi.org/10.1016/j.envsoft.2021.105256
https://www.osti.gov/biblio/1769646
http://dx.doi.org/10.2172/1769646
http://dx.doi.org/10.2172/1769646
http://dx.doi.org/10.1016/S0168-1923(00)00120-9
http://dx.doi.org/10.2136/vzj2012.0097
http://dx.doi.org/10.2136/vzj2012.0097
http://dx.doi.org/10.1175/2010JAMC2375.1
http://dx.doi.org/10.1175/2010JAMC2375.1
http://dx.doi.org/10.1175/2007JAMC1706.1
http://dx.doi.org/https://doi.org/10.1109/JPROC.2010.2043918
http://dx.doi.org/https://doi.org/10.1109/JPROC.2010.2043918
http://dx.doi.org/10.1016/j.inffus.2020.10.001
http://dx.doi.org/10.1016/j.jhydrol.2011.02.031
http://dx.doi.org/10.1016/j.jhydrol.2011.02.031
http://dx.doi.org/10.1175/2010JTECHA1433.1
https://www.go-fair.org/fair-principles/
https://www.go-fair.org/fair-principles/
http://dx.doi.org/10.5281/zenodo.6403212
http://dx.doi.org/10.5281/zenodo.6403212

System for automated Quality Control (SaQC)

Gourrion, J., Szekely, T., Killick, R., Owens, B., Reverdin, G., Chapron,
B., 2020. Improved statistical method for quality control of hydrographic
observations. Journal of Atmospheric and Oceanic Technology 37, 789–
806. doi:10.1175/JTECH-D-18-0244.1.

Heiskanen, J., Brümmer, C., Buchmann, N., Calfapietra, C., Chen, H., Gie-
len, B., Gkritzalis, T., Hammer, S., Hartman, S., Herbst, M., Janssens,
I.A., Jordan, A., Juurola, E., Karstens, U., Kasurinen, V., Kruijt, B.,
Lankreijer, H., Levin, I., Linderson, M.L., Loustau, D., Merbold, L.,
Myhre, C.L., Papale, D., Pavelka, M., Pilegaard, K., Ramonet, M.,
Rebmann, C., Rinne, J., Rivier, L., Saltikoff, E., Sanders, R., Stein-
bacher, M., Steinhoff, T., Watson, A., Vermeulen, A.T., Vesala, T.,
Vítková, G., Kutsch, W., 2021. The integrated carbon observation
system in europe. Bulletin of the American Meteorological Society
, 1 – 54URL: https://journals.ametsoc.org/view/journals/bams/aop/

BAMS-D-19-0364.1/BAMS-D-19-0364.1.xml, doi:10.1175/BAMS-D-19-0364.
1.

Horsburgh, J.S., Reeder, S.L., Jones, A.S., Meline, J., 2015. Open source
software for visualization and quality control of continuous hydrologic
and water quality sensor data. Environmental Modelling & Software 70,
32–44. doi:10.1016/j.envsoft.2015.04.002.

Hubbard, K.G., You, J., 2005. Sensitivity analysis of quality assur-
ance using the spatial regression approach—a case study of the maxi-
mum/minimum air temperature. Journal of Atmospheric and Oceanic
Technology 22, 1520–1530.

Iglewicz, B., Hoaglin, D., 1993. Volume 16: how to detect and handle
outliers. The ASQC basic references in quality control: statistical
techniques 16.

Ingleby, B., Huddleston, M., 2007. Quality control of ocean temperature
and salinity profiles — historical and real-time data. Journal of Marine
Systems 65, 158 – 175. doi:10.1016/j.jmarsys.2005.11.019.

Jones, A.S., Horsburgh, J.S., Eiriksson, D.P., 2018. Assessing subjectivity
in environmental sensor data post processing via a controlled experi-
ment. Ecological Informatics 46, 86–96. doi:10.1016/j.ecoinf.2018.05.
001.

Jones, A.S., Jones, T.L., Horsburgh, J.S., 2022. Toward automating
post processing of aquatic sensor data. Environmental Modelling and
Software 151, 105364. URL: https://www.sciencedirect.com/science/
article/pii/S1364815222000706, doi:10.1016/j.envsoft.2022.105364.

Kaffashzadeh, N., Kleinert, F., Schultz, M.G., 2019. A new tool for
automated quality control of environmental time series (autoqc4env) in
open web services, in: International Conference on Business Information
Systems, Springer. pp. 513–518.

Koedel, U., Schuetze, C., Fischer, P., Bussmann, I., Sauer, P.K., Nixdorf, E.,
Kalbacher, T., Wichert, V., Rechid, D., Bouwer, L.M., Dietrich, P., 2022.
Challenges in the evaluation of observational data trustworthiness from
a data producers viewpoint (fair+). Frontiers in Environmental Science
9. doi:10.3389/fenvs.2021.772666.

Liao, W., Wang, D., Wang, G., Xia, Y., Liu, X., 2019. Quality control
and evaluation of the observed daily data in the north american soil
moisture database. Journal of Meteorological Research 33, 501–518.
doi:10.1007/s13351-019-8121-2.

Loescher, H.W., Kelly, E.F., Lea, R., 2017. National ecological observatory
network: Beginnings, programmatic and scientific challenges, and eco-
logical forecasting, in: Terrestrial Ecosystem Research Infrastructures.
CRC Press, pp. 27–52.

Long, C.N., Dutton, E.G., 2010. Baseline surface radiation network global
network recommended qc tests, v2.x. doi:10013/epic.38770.d001.

Mauder, M., Cuntz, M., Drüe, C., Graf, A., Rebmann, C., Schmid, H.P.,
Schmidt, M., Steinbrecher, R., 2013. A strategy for quality and
uncertainty assessment of long-term eddy-covariance measurements.
Agricultural and Forest Meteorology 169, 122–135. doi:10.1016/j.
agrformet.2012.09.006.

Metzger, S., Durden, D., Sturtevant, C., Luo, H., Pingintha-Durden, N.,
Sachs, T., Serafimovich, A., Hartmann, J., Li, J., Xu, K., et al., 2017.
eddy4r 0.2. 0: a devops model for community-extensible processing
and analysis of eddy-covariance data based on r, git, docker, and hdf5.
Geoscientific Model Development 10, 3189–3206.

Metzger, S., Taylor, J., Luo, H., Loescher, H., 2013. Development of
a quality assurance and quality control framework for neon’s eddy-
covariance flux measurements.

Mirtl, M., Borer, E., Djukic, I., Forsius, M., Haubold, H., Hugo, W.,
Jourdan, J., Lindenmayer, D., McDowell, W.H., Muraoka, H., et al.,
2018. Genesis, goals and achievements of long-term ecological research
at the global scale: a critical review of ilter and future directions. Science
of the total Environment 626, 1439–1462. doi:10.1016/j.scitotenv.
2017.12.001.

Mollenhauer, H., Kasner, M., Haase, P., Peterseil, J., Wohner, C., Frenzel,
M., Mirtl, M., Schima, R., Bumberger, J., Zacharias, S., 2018. Long-
term environmental monitoring infrastructures in europe: observations,
measurements, scales, and socio-ecological representativeness. Science
of The Total Environment 624, 968–978. doi:10.1016/j.scitotenv.2017.
12.095.

Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah,
Y.W., Poindexter, C., Chen, J., Elbashandy, A., Humphrey, M., et al.,
2020. The fluxnet2015 dataset and the oneflux processing pipeline
for eddy covariance data. Scientific data 7, 1–27. doi:10.1038/
s41597-021-00851-9.

Petzold, A., Thouret, V., Gerbig, C., Zahn, A., Brenninkmeijer, C.A.,
Gallagher, M., Hermann, M., Pontaud, M., Ziereis, H., Boulanger, D.,
et al., 2015. Global-scale atmosphere monitoring by in-service aircraft–
current achievements and future prospects of the european research
infrastructure iagos. Tellus B: Chemical and Physical Meteorology 67,
28452. doi:10.3402/tellusb.v67.28452.

Rebmann, C., Claudia, S., Sara, M.J., Sebastian, G., Matthias, Z., Luis,
S., Matthias, C., 2017. Integrative measurements focusing on carbon,
energy and water fluxes at the forest site ’hohes holz’ and the grassland
’am grossen bruch’, in: EGU General Assembly Conference Abstracts,
p. 9727.

Reid, W.V., Chen, D., Goldfarb, L., Hackmann, H., Lee, Y.T., Mokhele, K.,
Ostrom, E., Raivio, K., Rockström, J., Schellnhuber, H.J., et al., 2010.
Earth system science for global sustainability: grand challenges. Science
330, 916–917. doi:10.1126/science.1196263.

Rinke, K., Kuehn, B., Bocaniov, S., Wendt-Potthoff, K., Büttner, O., Tittel,
J., Schultze, M., Herzsprung, P., Rönicke, H., Rink, K., et al., 2013.
Reservoirs as sentinels of catchments: the rappbode reservoir observa-
tory (harz mountains, germany). Environmental earth sciences 69, 523–
536. doi:10.1007/s12665-013-2464-2.

Schmithüsen, H., Koppe, R., Sieger, R., König-Langlo, G., 2019. BSRN
Toolbox V2.5 - a tool to create quality checked output files from BSRN
datasets and station-to-archive files. URL: https://doi.org/10.1594/

PANGAEA.901332, doi:10.1594/PANGAEA.901332.
Sheldon, W.M., 2008. Dynamic, rule-based quality control framework for

real-time sensor data, in: Proceedings of the Environmental Information
Management Conference, Citeseer. pp. 145–150.

Smith, D.E., Metzger, S., Taylor, J.R., 2014. A transparent and transferable
framework for tracking quality information in large datasets. PLoS One
9, e112249. doi:10.1371/journal.pone.0112249.

Sturtevant, C., Metzger, S., Nehr, S., Foken, T., 2021. Quality assurance
and control, in: Springer Handbook of Atmospheric Measurements.
Springer, pp. 47–90. doi:10.1007/978-3-030-52171-4_3.

Talagala, P.D., Hyndman, R.J., Leigh, C., Mengersen, K., Smith-Miles, K.,
2019. A feature-based procedure for detecting technical outliers in water-
quality fata from in situ sensors. Water Resources Research 55, 8547–
8568. doi:10.1029/2019WR024906.

Talagala, P.D., Hyndman, R.J., Smith-Miles, K., 2021. Anomaly detection
in high-dimensional data. Journal of Computational and Graphical
Statistics 30, 360–374. doi:10.1080/10618600.2020.1807997.

Taylor, J., Loescher, H., 2012. Neon’s fundamental instrument unit dataflow
and quality assurance plan.

Taylor, J.R., Loescher, H.L., 2013. Automated quality control methods for
sensor data: a novel observatory approach. Biogeosciences 10, 4957–
4971. doi:10.5194/bg-10-4957-2013.

Urraca, R., Sanz García, A., Sanz-Garcia, I., 2020. Bqc: A free web service
to quality control solar irradiance measurements across europe. Solar
Energy 211, 1–10. doi:10.1016/j.solener.2020.09.055.

Schmidt et al.: Preprint submitted to Elsevier Page 19 of 20

Electronic copy available at: https://ssrn.com/abstract=4173698

http://dx.doi.org/10.1175/JTECH-D-18-0244.1
https://journals.ametsoc.org/view/journals/bams/aop/BAMS-D-19-0364.1/BAMS-D-19-0364.1.xml
https://journals.ametsoc.org/view/journals/bams/aop/BAMS-D-19-0364.1/BAMS-D-19-0364.1.xml
http://dx.doi.org/10.1175/BAMS-D-19-0364.1
http://dx.doi.org/10.1175/BAMS-D-19-0364.1
http://dx.doi.org/10.1016/j.envsoft.2015.04.002
http://dx.doi.org/10.1016/j.jmarsys.2005.11.019
http://dx.doi.org/10.1016/j.ecoinf.2018.05.001
http://dx.doi.org/10.1016/j.ecoinf.2018.05.001
https://www.sciencedirect.com/science/article/pii/S1364815222000706
https://www.sciencedirect.com/science/article/pii/S1364815222000706
http://dx.doi.org/10.1016/j.envsoft.2022.105364
http://dx.doi.org/10.3389/fenvs.2021.772666
http://dx.doi.org/10.1007/s13351-019-8121-2
http://dx.doi.org/10013/epic.38770.d001
http://dx.doi.org/10.1016/j.agrformet.2012.09.006
http://dx.doi.org/10.1016/j.agrformet.2012.09.006
http://dx.doi.org/10.1016/j.scitotenv.2017.12.001
http://dx.doi.org/10.1016/j.scitotenv.2017.12.001
http://dx.doi.org/10.1016/j.scitotenv.2017.12.095
http://dx.doi.org/10.1016/j.scitotenv.2017.12.095
http://dx.doi.org/10.1038/s41597-021-00851-9
http://dx.doi.org/10.1038/s41597-021-00851-9
http://dx.doi.org/10.3402/tellusb.v67.28452
http://dx.doi.org/10.1126/science.1196263
http://dx.doi.org/10.1007/s12665-013-2464-2
https://doi.org/10.1594/PANGAEA.901332
https://doi.org/10.1594/PANGAEA.901332
http://dx.doi.org/10.1594/PANGAEA.901332
http://dx.doi.org/10.1371/journal.pone.0112249
http://dx.doi.org/10.1007/978-3-030-52171-4_3
http://dx.doi.org/10.1029/2019WR024906
http://dx.doi.org/10.1080/10618600.2020.1807997
http://dx.doi.org/10.5194/bg-10-4957-2013
http://dx.doi.org/10.1016/j.solener.2020.09.055

System for automated Quality Control (SaQC)

Vitale, D., Fratini, G., Bilancia, M., Nicolini, G., Sabbatini, S., Papale,
D., 2020. A robust data cleaning procedure for eddy covariance
flux measurements. Biogeosciences 17, 1367–1391. doi:10.5194/
bg-17-1367-2020.

Wagner, R.J., Boulger Jr, R.W., Oblinger, C.J., Smith, B.A., 2006a. Guide-
lines and standard procedures for continuous water-quality monitors:
station operation, record computation, and data reporting. Technical
Report.

Wagner, R.J., Boulger Jr, R.W., Oblinger, C.J., Smith, B.A., 2006b. Guide-
lines and standard procedures for continuous water-quality monitors:
station operation, record computation, and data reporting. Technical
Report. U.S. Geological Survey. doi:https://doi.org/10.3133/tm1D3.

Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton,
M., Baak, A., Blomberg, N., Boiten, J.W., da Silva Santos, L.B., Bourne,
P.E., et al., 2016. The fair guiding principles for scientific data manage-
ment and stewardship. Scientific data 3, 1–9. doi:10.1038/sdata.2016.18.

WMO, 2003. Guidelines on the global data-processing system (WMO-
No.305). World Meteorological Organization Geneva, Switzerland.

WMO, 2018. Guide to the Global Observing System (WMO-No.488).
World Meteorological Organization Geneva, Switzerland.

Wollschläger, U., Attinger, S., Borchardt, D., Brauns, M., Cuntz, M.,
Dietrich, P., Fleckenstein, J.H., Friese, K., Friesen, J., Harpke, A., et al.,
2017. The bode hydrological observatory: a platform for integrated, in-
terdisciplinary hydro-ecological research within the tereno harz/central
german lowland observatory. Environmental Earth Sciences 76, 1–25.
doi:10.1007/s12665-016-6327-5.

You, J., Hubbard, K.G., Nadarajah, S., Kunkel, K.E., 2007. Performance
of quality assurance procedures on daily precipitation. Journal of Atmo-
spheric and Oceanic Technology 24, 821–834. doi:10.1175/JTECH2002.1.

Younes, S., Claywell, R., Muneer, T., 2005. Quality control of solar
radiation data: Present status and proposed new approaches. Energy 30,
1533–1549. doi:10.1016/j.energy.2004.04.031.

Yver-Kwok, C., Philippon, C., Bergamaschi, P., Biermann, T., Calzolari, F.,
Chen, H., Conil, S., Cristofanelli, P., Delmotte, M., Hatakka, J., et al.,
2021. Evaluation and optimization of icos atmosphere station data as
part of the labeling process. Atmospheric Measurement Techniques 14,
89–116. doi:10.5194/amt-14-89-2021.

Zacharias, S., Bogena, H., Samaniego, L., Mauder, M., Fuß, R., Pütz, T.,
Frenzel, M., Schwank, M., Baessler, C., Butterbach-Bahl, K., et al.,
2011. A network of terrestrial environmental observatories in germany.
Vadose zone journal 10, 955–973. doi:10.2136/vzj2010.0139.

Schmidt et al.: Preprint submitted to Elsevier Page 20 of 20

Electronic copy available at: https://ssrn.com/abstract=4173698

http://dx.doi.org/10.5194/bg-17-1367-2020
http://dx.doi.org/10.5194/bg-17-1367-2020
http://dx.doi.org/https://doi.org/10.3133/tm1D3
http://dx.doi.org/10.1038/sdata.2016.18
http://dx.doi.org/10.1007/s12665-016-6327-5
http://dx.doi.org/10.1175/JTECH2002.1
http://dx.doi.org/10.1016/j.energy.2004.04.031
http://dx.doi.org/10.5194/amt-14-89-2021
http://dx.doi.org/10.2136/vzj2010.0139

